Yes, that's me
Nikolai L. Vasilevski

Department of Mathematics
CINVESTAV, Mexico City


Home
From CV
Publications
Genealogy
Links

Principal Publications

Research Book

Book
Nikolai Vasilevski,
Commutative Algebras of Toeplitz Operators on the Bergman Space.
Series: Operator Theory: Advances and Applications , Vol. 185
2008, XXIX, 417 p., Hardcover
ISBN: 978-3-7643-8725-9
Birkhäuser book

Edited Books

Book
E. Ramírez de Arellano, N. Salinas, M. V. Shapiro, N. L. Vasilevski (Editors)
Operator Theory for Complex and Hypercomplex Analysis.
Contemporary Mathematics, Vol. 212
1998, 289 p.
ISBN: 978-0-8218-0677-7
AMS Publication

Book
E. Ramírez de Arellano, M. V. Shapiro, L. M. Tovar, N. L. Vasilevski (Editors)
Complex Analysis and Related Topics.
Series: Operator Theory: Advances and Applications, Vol. 114
2000, VII, 284 p., Hardcover
ISBN: 978-3-0348-9734-1
Birkhäuser book

Book
Ya. M. Erusalimsky, I. Gohberg, S. M. Grudsky, V. Rabinovich, N. Vasilevski (Editors)
Modern Operator Theory and Applications.
Series: Operator Theory: Advances and Applications, Vol. 170
2007, VII, 256 p., Hardcover
ISBN: 978-3-7643-7736-6
Birkhäuser book

Book
D. Alpay, M. Shapiro, I. Spitkovski, and N. Vasilevski (Editors)
Special Issue Dedicated to the Memory of Professor G. S. Litvinchuk.
Complex Analysis and Operator Theory, Vol. 2, Issue 2 and Issue 4
2008, p. 201-382 and p. 525-732
ISBN: 11661-8254
Issue 2 and Issue 4

Book
Joseph A. Ball, Raúl Curto, Sergei M. Grudsky, J. William Helton, Raúl Quiroga-Barranco, Nikolai L. Vasilevski (Editors)
Recent Progress in Operator Theory and its Applications.
Series: Operator Theory: Advances and Applications, Vol. 220
2012 IX, 342 p., Hardcover
ISBN: 978-3-0348-0345-8
Birkhäuser book

Book
V. Rabinovich, I. Spitkovsky, N. Vasilevski (Editors)
Special Issue Dedicated to Sergei Grudsky on the Occasion of his 60th Anniversary.
Boletín de la Sociedad Matemática Mexicana, Vol. 22, Issue 2
2016, 309-744 p.
ISBN: 1405-213X
Birkhäuser journal

Book
R. Duduchava, M.A. Kaashoek, N. Vasilevski, V. Vinnikov (Editors)
Operator Theory in Different Settings and Related Applications.
Series: Operator Theory: Advances and Applications, Vol. 262
2018, VIII, 313 p., Hardcover
ISBN: 978-3-319-62526-3
Birkhäuser book

Book
Wolfram Bauer, Roland Duduchava, Sergei Grudsky, Marinus A. Kaashoek (Editors)
Operator Algebras, Toeplitz Operators and Related Topics.
Series: Operator Theory: Advances and Applications, Vol. 279
2020, X, 245 p., Hardcover
ISBN: 978-3-030-44650-5
Birkhäuser book

Papers

  1. A. Turbiner, N. Vasilevski. Poly-analytic Functions and Representation Theory. Complex Analysis and Operator Theory, 15:110, 2021, 24 p.
  2. G. Rozenblum, N. Vasilevski. Trace Class Toeplitz Operators with Singular Symbols. Proceedings of the Steklov Institute of Mathematics, 2020, Vol. 311, pp. 1-8.
  3. Nikolai Vasilevski. Algebra generated by Toeplitz operators with T-invariant symbols. Bol. Soc. Mat. Mex. (3) 26 (2020), no. 3, 1217-1242.
  4. G. Rozenblum, N. Vasilevski. Toeplitz Operators with Singular Symbols in Polyanalytic Bergman Spaces on the Half-Plane. In: Operator Theory: Advances and Applications, v. 279, 2020, p. 403-421.
  5. A. Sánchez-Nungaray, N. Vasilevski. Algebras Generated by Toeplitz Operators on the Hardy Space over the Siegel Domain. Complex Analysis and Operator Theory, v. 14, Article 82, 2020, 26 pp.
  6. M. Loaiza, N. Vasilevski. Commutative Algebras Generated by Toeplitz Operators on the Unit Sphere. Integral Equations and Operator Theory, v. 92, no. 3, 2020, Article 25, 33 pp.
  7. K. Esmeral, G. Rozenblum, N. Vasilevski, L-invariant Fock-Carleson type measures for derivatives of order k and the corresponding Toeplitz operators. J. Math. Sci. (N.Y.) 242 (2019), no. 2, Problems in mathematical analysis. No. 99, 337-358.
  8. G. Rozenblum, N. Vasilevski, Toeplitz operators in polyanalytic Bergman type spaces. Functional analysis and geometry: Selim Grigorievich Krein centennial, 273-290, Contemp. Math., 733, Amer. Math. Soc., Providence, RI, 2019.
  9. W. Bauer, R. Hagger, N. Vasilevski, Algebras of Toeplitz operators on the n-dimensional unit ball. Complex Anal. Oper. Theory 13 (2019), no. 2, 493-524.
  10. Nikolai Vasilevski. On commutative C*-algebras generated by Toeplitz operators with Tm-invariant symbols. In: Operator Theory: Advances and Applications, v. 271, 2018, p. 443-464.
  11. A. Sánchez-Nungaray, N. Vasilevski. Algebras of Toeplitz Operators on the Three-Dimensional Siegel Domain. Integral Equations and Operator Theory, v. 90, no. 4, 2018, p. 1-42.
  12. G. Rozenblum, N. Vasilevski. Toeplitz Operators via Sesquilinear Forms. In: Operator Theory: Advances and Applications, v. 262, 2018, p. 287-304.
  13. W. Bauer, R. Hagger, N. Vasilevski. Uniform continuity and quantization on bounded symmetric domains. J. London Math. Soc., v. 96, Issue 2, 2017, p. 345-366.
  14. Nikolai Vasilevski. On Toeplitz Operators with Quasi-radial and Pseudo-homogeneous Symbols. In: Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory, Volume 2, 2017, p. 401-417.
  15. A. Sánchez-Nungaray, N. Vasilevski. Commutative Algebras of Toeplitz Operators on a Siegel Domain Associated with the Nilpotent Group of Its Biholomorphisms. Operator Theory: Advances and Applications, v. 258, 2017, p. 275-300.
  16. W. Bauer, N. Vasilevski. On algebras generated by Toeplitz operators and their representations. J. Functional Analysis, v. 272, 2017, p. 705-737.
  17. G. Rozenblum, N. Vasilevski. Toeplitz Operators in the Herglotz Space. Integral Equations and Operator Theory, v. 86, no. 3, 2016, p. 409-438.
  18. G. Rozenblum, N. Vasilevski. Toeplitz operators defined by sesquilinear forms: Bergman space case. Journal of Mathematical Sciences, v. 213, no. 4, 2016, p. 582-609.
  19. Kevin Esmeral, Nikolai Vasilevski. C*-algebra generated by horizontal Toeplitz operators on the Fock space. Bol. Soc. Mat. Mex. v. 22, no. 2, 2016, p. 567-582.
  20. Kevin Esmeral, Egor A. Maximenko, and Nikolai Vasilevski. C*-Algebra Generated by Angular Toeplitz Operators on the Weighted Bergman Spaces Over the Upper Half-Plane. Integral Equations and Operator Theory, 2015, v. 83, no. 3, 2015, p. 413-428.
  21. C. Herrera Yañez, E. A. Maximenko, and N. Vasilevski. Radial Toeplitz Operators Revisited: Discretization of the Vertical Case. Integral Equations and Operator Theory, v. 83, no. 1, 2015, p. 49-60.
  22. Maribel Loaiza, Nikolai Vasilevski. On Toeplitz operators on the harmonic Bergman space with pseudodifferential symbols. Current Trends in Analysis and its Applications, Proceedings of the 9th ISAAC Congress, 2015, p. 591-603.
  23. Alma García, Nikolai Vasilevski. Toeplitz Operators on the Weighted Bergman Space over the Two-Dimensional Unit Ball. Journal of Function Spaces, vol. 2015, Article ID 306168, 10 pages, 2015. doi:10.1155/2015/306168
  24. W. Bauer, N. Vasilevski. On the structure of commutative Banach algebras generated by Toeplitz operators on the unit ball. Quasi-elliptic case. II: Gelfand Theory. Complex Anal. Oper. Theory, v. 9, no. 3, 2015, p. 593-630.
  25. Alma García, Nikolai Vasilevski. Quasi-radial Operators on the Weighted Bergman Space over the Unit Ball. Commun. Math. Anal., v. 17, No. 2, 2014, p. 178-188.
  26. Erick Lee, Maribel Loaiza, Nikolai Vasilevski. On Toeplitz operators with piecewise continuous and slowly oscillating radial symbols. Commun. Math. Anal., v. 17, No. 2, 2014, p. 231-238.
  27. W. Bauer, C. Herrera Yañez, N. Vasilevski. (m, λ)-Berezin Transform and Approximation of Operators on Weighted Bergman Spaces over the Unit Ball. Operator Theory: Advances and Applications, v. 240, 2014, p. 45-68.
  28. G. Rozenblum, N. Vasilevski. Toeplitz operators defined by sesquilinear forms: Fock space case. Journal of Functional Analysis, v. 267, 2014, p. 4399-4430.
  29. W. Bauer, C. Herrera Yañez, N. Vasilevski. Eigenvalue characterization of radial operators on weighted Bergman spaces over the unit ball. Integral Equations Operator Theory, v. 78, no. 2, 2014, p. 271-300.
  30. W. Bauer, N. Vasilevski. On the structure of commutative Banach algebras generated by Toeplitz operators on the unit ball. Quasi-elliptic case. I: Generating subalgebras. J. Functional Analysis, v. 265, 2013, p. 2956-2990.
  31. C. Herrera Yañez, E. A. Maximenko, and N. Vasilevski. Vertical Toeplitz Operators on the Upper Half-Plane and Very Slowly Oscillating Functions. Integral Equations and Operator Theory, v. 77, no. 2, 2013, 149-166.
  32. A. Sánchez-Nungaray, N. Vasilevski. Toeplitz Operators on the Bergman Spaces with Pseudodifferential Defining Symbols. Operator Theory: Advances and Applications, v. 228, 2013, p. 355-374.
  33. S. M. Grudsky, E. A. Maximenko, and N. L. Vasilevski. Radial Toeplitz Operators on the Unit Ball and Slowly Oscillating Sequences. Commun. Math. Anal., v. 14, no. 2, 2013, 77-94.
  34. W. Bauer, N. Vasilevski. On the structure of a commutative Banach algebra generated by Toeplitz operators with quasi-radial quasi-homogeneous symbols. Integral Equations and Operator Theory, v. 74, no.2, 2012, 199-231.
  35. N. Vasilevski. On the algebras generated by Toeplitz operators with piecewise continuous symbols. Indag. Math. (N.S.) v. 23, no. 3, 2012, p. 556-570.
  36. W. Bauer, N. Vasilevski. Banach Algebras of Commuting Toeplitz Operators on the Unit Ball via the Quasi-hyperbolic Group. Operator Theory: Advances and Applications, v. 218, 2012, p. 155-175.
  37. W. Bauer, N. Vasilevski. Commutative Toeplitz Banach algebras on the ball and quasi-nilpotent group action. Integral Equations and Operator Theory, v. 72, no.2, 2012, 223-240.
  38. N. Vasilevski. On compactness of commutators and semi-commutators of Toeplitz operators on the Bergman space. Commun. Math. Anal. 2011, Conference 3, 2011, 225-234.
  39. Yu. I. Karlovich, V. S. Rabinovich, and N. L. Vasilevski. Algebras of pseudodifferential operators with discontinuous oscillating symbols. Commun. Math. Anal. 2011, Conference 3, 2011, 108-130.
  40. N. L. Vasilevki, S. M. Grudsky, E. A. Maximenko. Toeplitz operators on the Bergman space generated by radial symbols and slowly oscillating sequences. Proceedings of the Scientific School of I. B. Simonenko, Rostov-on-Don, Russia, 2010, p. 38-43.
  41. N. Vasilevski. Parabolic Quasi-radial Quasi-homogeneous Symbols and Commutative Algebras of Toeplitz Operators. Operator Theory: Advances and Applications, v. 202, 2010, p. 553-568.
  42. N. Vasilevski. Quasi-Radial Quasi-Homogeneous Symbols and Commutative Banach Algebras of Toeplitz Operators. Integral Equations and Operator Theory, v. 66, no. 1, 2010, p. 141-152.
  43. S. Grudsky, N. Vasilevski. Anatomy of the C*-algebra generated by Toeplitz operators with piece-wise continuous symbols. Operator Theory: Advances and Applications, v. 190, 2009, p. 243-265.
  44. S. Grudsky, N. Vasilevski. On the structure of the C*-algebra generated by Toeplitz operators with piece-wise continuous symbols. Complex Analysis and Operator Theory, v. 2, no. 4, 2008, p. 525-548.
    Available for downloading in PDF format.
  45. N. Vasilevski. Commutative algebras of Toeplitz operators and Berezin quantization. Contemporary Mathematics, v. 462, 2008, p. 125-143.
    Available for downloading in PDF format.
  46. R. Quiroga-Barranco, N. Vasilevski. Commutative C*-algebras of Toeplitz operators on the unit ball, II. Geometry of the level sets of symbols. Integral Equations and Operator Theory, v. 60, no. 1, 2008, p. 89-132.
    Available for downloading in PDF format.
  47. R. Quiroga-Barranco, N. Vasilevski. Commutative C*-algebras of Toeplitz operators on the unit ball, I. Bargmann-type transforms and spectral representations of Toeplitz operators. Integral Equations and Operator Theory, v. 59, no. 3, 2007, p. 379-419.
    Available for downloading in PDF format.
  48. R. Quiroga-Barranco, N. Vasilevski. Commutative algebras of Toeplitz operators on the Reinhardt domains. Integral Equations and Operator Theory, v. 59, 2007, p. 67-98.
    Available for downloading in PDF format.
  49. N. Tarkhanov, N. Vasilevski. Microlocal analysis of the Bochner-Martinelli integral. Integral Equations and Operator Theory, v. 57, 2007, p. 583-592.
    Available for downloading in PDF format.
  50. N. Vasilevski. Poly-Bergman spaces and two-dimensional singular integral operators. Operator Theory: Advances and Applications, v. 171, 2007, p. 349-359.
    Available for downloading in PDF format.
  51. N. Vasilevski. On Toeplitz operators with piecewise continuous symbols on the Bergman space. In: "Modern Operator Theory and Applications", Operator Theory: Advances and Applications, v. 170, 2007, p. 229-248.
    Available for downloading in PDF format.
  52. N. L. Vasilevski, S. M. Grudsky, A. N. Karapetyants. Dynamics of properties of Toeplitz operators on weighted Bergman spaces. Siberian Electronic Math. Reports, v. 3, 2006, p. 362-383 (Russian).
    Available for downloading in PDF format.
  53. S. Grudsky, R. Quiroga-Barranco, N. Vasilevski. Commutative C*-algebras of Toeplitz operators and quantization on the unit disk. J. Functional Analysis, v. 234, 2006, p. 1-44.
    Available for downloading in PDF format.
  54. N. Vasilevski. On a general local principle for C*-algebras. Izv.VUZ North-Caucasian Region, Natural Sciences, Special Issue, "Pseudodifferenrial operators and some problems of mathematical phisics", 2005, p. 34-42 (Russian).
    Available for downloading in PDF format.
  55. S. Grudsky, N. L. Vasilevski. Dynamics of Spectra of Toeplitz Operators. In: Advances in Analysis. Proceedings of the 4th International ISAAC Congress. (York University, Toronto, Canada 11-16 August 2003), World Scientific, New Jersey London Singapore, 2005, p. 495-504.
  56. S. Grudsky, A. Karapetyants, N. Vasilevski. Dynamics of properties of Toeplitz operators with radial symbols. Integral Equations and Operator Theory, v. 20, no. 2, 2004, p. 217-253.
    Available for downloading in PDF format.
  57. S. Grudsky, A. Karapetyants, N. Vasilevski. Dynamics of properties of Toeplitz operators on the upper half-plane: Parabolic case. J. Operator Theory, v. 52, no. 1, 2004, p. 185-204.
    Available for downloading in PDF format.
  58. S. Grudsky, A. Karapetyants, N. Vasilevski. Dynamics of properties of Toeplitz operators on the upper half-plane: Hyperbolic case. Bol. Soc. Mat. Mexicana (3), v. 10, 2004, p. 119-138.
    Available for downloading in PDF format.
  59. J. Ortega, N. Vasilevski, E. Ramírez de Arellano On the algebra generated by the Bergman projection and a shift operator. II. Bol. Soc. Mat. Mexicana (3), v. 10, 2004, p. 105-117.
  60. N. L. Vasilevski. Toeplitz operators on the Bergman space. In: Factorization, Singular Operators and Related Problems, Edited by S. Samko, A. Lebre, A. F. dos Santos, Kluwer Academic Publishers, 2003, p. 315-333.
  61. J. Ortega, N. Vasilevski, E. Ramírez de Arellano On the algebra generated by the Bergman projection and a shift operator. I. Integral Equations and Operator Theory, v. 46, no. 4, 2003, p. 455-471.
  62. S. Grudsky, A. Karapetyants, N. Vasilevski, Toeplitz Operators on the Unit Ball in Cn with Radial Symbols. Journal of Operator Theory, v. 49, 2003, p. 325-346.
    Available for downloading in DVI and PostScript formats.
  63. N. Vasilevski, Bergman Space Structure, Commutative Algebras of Toeplitz Operators and Hyperbolic Geometry. Integral Equations and Operator Theory, v. 46, 2003, p. 235-251.
    Available for downloading in PostScript format.
  64. S. Grudsky, N. Vasilevski, Toeplits operators on the Fock space: Radial component effects. Integral Equations and Operator Theory, v. 44, no. 1, 2002, p. 10-37.
    Available for downloading in DVI and PostScript formats.
  65. N. L. Vasilevski. Commutative algebras of Toeplitz operators and hyperbolic geometry. In: Proceedings of the Ukranian Mathematical Congres - 2001, Functional Analysis, Section 11, Institute of Mathematics of the National Academy of Sciences, Ukraine, 2002, p. 22-35.
  66. N. L. Vasilevski. Toeplitz Operators on the Bergman Spaces: Inside-the-Domain Effects. Contemporary Mathematics, v. 289, 2001, p. 79-146.
    Available for downloading in PostScript format.
  67. A. N. Karapetyants, V. S. Rabinovich, N. L. Vasilevski, On algebras of two dimensional singular integral operators with homogeneous discontinuities in symbols. Integral Equations and Operator Theory, v. 40, no. 3, 2001, p. 278-308.
    Available for downloading in DVI and PostScript formats.
  68. S. Grudsky, N. Vasilevski, Bergman-Toeplits operators: Radial component influence. Integral Equations and Operator Theory, v. 40, no. 1, 2001, p. 16-33.
    Available for downloading in DVI and PostScript formats.
  69. N. L. Vasilevski. Bergman type spaces on the unit disk. In: Clifford Analysis and Its Applications, F. Bracks et al. (eds.), Kluwer Academic Publishers, The Netherlands, 2001, p. 399-409.
  70. V. V. Kucherenko, N. L. Vasilevski, A shift operator generated by a trigonometric system. Mat. Zametki, v. 67, no. 4, 2000, p. 539-548 (Russian).
  71. V. S. Rabinovich, N. L. Vasilevski. Bergman-Toeplitz and Pseudodifferential Operators. Operator Theory. Advances and Applications, v. 114, 2000, p. 207-234.
  72. N. L. Vasilevski. Poly-Fock Spaces. Operator Theory. Advances and Applications, v. 117, 2000, p. 371-386.
    Available for downloading in DVI and PostScript formats.
  73. N. L. Vasilevski. On Quaternionic Bergman and Poly-Bergman Spaces. Complex Variables, v. 41, 2000, p. 111-132.
    Available for downloading in DVI and PostScript formats.
  74. N. L. Vasilevski, The Bergman space in tube domains, and commuting Toeplitz operators. Doklady RAN, v. 372, no. 1, 2000, p. 9-12 (Russian).
    English translation: Doklady Mathematics, v. 61, no. 3.
  75. N. L. Vasilevski. Bergman space on tube domains and commuting Toeplitz operators. In: Proceedings of the Second ISAAC Congres, Volume 2, H. G. W. Begahr et al. (eds.), Kluwer Academic Publishers, The Netherlands, Chapter 163, 2000, p. 1523-1537.
    Available for downloading in DVI and PostScript formats.
  76. N. L. Vasilevski. Group convolution operators on step two nilpotent Lie groups. In: Partial Differential and Integral Equations, H. G. W. Begahr et al. (eds.), Kluwer Academic Publishers, The Netherlands, Chapter 2, 1999, p. 23-35.
    Available for downloading in DVI and PostScript formats.
  77. N. L. Vasilevski. On Bergman-Toeplitz operators with commutative symbol algebras. Integral Equations and Operator Theory, v.34, 1999, p. 107-126.
    Available for downloading in DVI and PostScript formats.
  78. N. L. Vasilevski. On the structure of Bergman and poly-Bergman spaces. Integral Equations and Operator Theory, v.33, 1999, p. 471-488.
    Available for downloading in DVI and PostScript formats.
  79. E. Ramírez de Arellano, N. L. Vasilevski. Bargmann projection, three-valued functions and corresponding Toeplitz operators. Contemporary Mathematics. v. 212, 1998, p. 185-196.
    Available for downloading in DVI and PostScript formats.
  80. N. L. Vasilevski, M. V. Shapiro. On the Bergman kern-function in quaternionic analysis. Izvestiia VUZov, Matematika, no. 2, 1998, p. 84-88 (Russian).
    English translation: Russian Math. (Izv. VUZ)
  81. N. L. Vasilevski. C*-algebras generated by orthogonal projections and their applications. Integral Equations and Operator Theory, v. 31, 1998, p. 113-132.
    Available for downloading in DVI and PostScript formats.
  82. M. V. Shapiro, N. L. Vasilevski. On the Bergman kernel function in hyperholomorphic analysis. Acta Applicandae Mathematicae, v. 46, 1997, p. 1-27.
  83. E. Ramírez de Arellano, N. L. Vasilevski. Algebras of singular integral operators generated by three orthogonal projections. Integral Equations and Operator Theory, v. 25, no. 3, 1996, p. 277-288.
    Available for downloading in DVI and PostScript formats.
  84. E. Ramírez de Arellano, N. L. Vasilevski. Toeplitz operators on the Fock space with presymbols discontinuous on a thick set. Mathematische Nachrichten, v. 180, 1996, p. 299-315.
  85. N. Vasilevski, E. Ramírrez de Arellano, M. Shapiro. Hurwitz classical problem and associated function theory. Russian Math. Doklady, v. 349, no. 5, 1996, p. 588-591 (Russian).
    English translation: Russian Math. Doklady
  86. E. Ramírez de Arellano, M. V. Shapiro, N. L. Vasilevski. Hurwitz analysis: basic concepts and connection with Clifford analysis. In: Generalizations of Complex Analysis and their Applications in Physics, J. Lawrynowicz, Ed. Banach Center Publications, V. 37, Warszawa, 1996, p. 209-221.
  87. E. Ramírez de Arellano, M. V. Shapiro, N. L. Vasilevski. The hyperholomorphic Bergman projector and its properties. In: Clifford Algebras and Related Topics, J. Ryan, Ed. CRC Press, Chapter 19, 1996, p. 333-344.
    Available for downloading in DVI and PostScript formats.
  88. M. V. Shapiro, N. L. Vasilevski. Quaternionic Ψ-hyperholomorphic functions, singular integral operetors and boundary value problems. II. Algebras of singular integral operators and Riemann type boundary value problems. Complex Variables, v. 27, 1995, p. 67-96.
    Available for downloading in DVI and PostScript formats.
  89. M. V. Shapiro, N. L. Vasilevski. Quaternionic Ψ-hyperholomorphic functions, singular integral operetors and boundary value problems. I. Ψ-hyperholomorphic function theory. Complex Variables, v. 27, 1995, p. 17-46.
    Available for downloading in DVI and PostScript formats.
  90. N. Vasilevski, V. Kisil, E. Ramírrez de Arellano, R. Trujillo. Toeplitz operators with discontinuous presymbols on the Fock space. Russian Math. Doklady, v. 345, no. 2, 1995, p. 153-155 (Russian).
    English translation: Russian Math. Doklady
  91. N. L. Vasilevski. On an algebra generated by two-dimensional singular integral operators in plane domains. Complex Variables, v. 26, 1994, p. 79-91.
  92. N. L. Vasilevski. Convolution operators on standard CR - manifolds. II. Algebras of convolution operators on the Heisenberg group. Integral Equations and Operator Theory, v. 19, no. 3, 1994, p. 327-348.
    Available for downloading in DVI and PostScript formats.
  93. N. L. Vasilevski, R. Trujillo. Convolution operators on standard CR - manifolds. I. Structural Properties. Integral Equations and Operator Theory, v. 19, no. 1, 1994, p. 65-107.
    Available for downloading in DVI and PostScript formats.
  94. E. Ramírez de Arellano, M. V. Shapiro, N. L. Vasilevski. Two types of analysis associated to the notion of Hurwitz pairs. Differential Geometric Methods in Theoretical Physics, Ed. J. Keller, Z. Oziewich, Advances in Applied Clifford Algebras, v. 4 (S1), 1994, p. 413- 422.
    Available for downloading in DVI and PostScript formats.
  95. R. M. Porter, M. Shapiro, N. Vasilevski. Quaternionic differential and integral operators and the d-bar-problem. J. Natural Geometry, v. 6, no. 2, 1994, p. 101-124.
  96. M. V. Shapiro, N. L. Vasilevski. On the Bergman kernel function in the Clifford analysis. Clifford Algebras and Their Applications in Mathematical Physics, F. Brackx et al., eds, Kluwer Academic Publishers, Netherlands, 1993, p. 183-192.
    Available for downloading in DVI and PostScript formats.
  97. E. Ramírez de Arellano, M. V. Shapiro, N. L. Vasilevski. Hurwitz pairs and Clifford algebra representations. Clifford Algebras and Their Applications in Mathematical Physics, F. Brackx et al., eds, Kluwer Academic Publishers, Netherlands, 1993, p. 175-181.
    Available for downloading in DVI and PostScript formats.
  98. R. M. Porter, M. V. Shapiro, N. L. Vasilevski. On the analogue of the d-bar-problem in quaternionic analysis. Clifford Algebras and Their Applications in Mathematical Physics, F. Brackx et al., eds, Kluwer Academic Publishers, Netherlands, 1993, p. 167-173.
    Available for downloading in DVI and PostScript formats.
  99. N. L. Vasilevski. On "discontinuous" boundary value problems for pseudodifferential operators. International Conference on Differential Equations, Vol. 1,2, (Barcelona, 1991), World Sci. Publishing, River Edge, NJ, 1993, p. 953-958.
  100. N. L. Vasilevski. On an algebra generated by abstract singular operators and a shift operator. Math. Nachr., v. 162, 1993, p. 89-108.
  101. M. V. Shapiro, N. L. Vasilevski. Singular integral operator in Clifford analysis. Clifford Algebras and Their Applications in Mathematical Physics, Kluwer Academic Publishers, Netherlands, 1992, p. 271-277.
  102. N. L. Vasilevski. Non-classical singular integral operators and algebras generated by them. Integral Equations and Boundary Value Problems. World Scientific. 1991, p. 210-215.
  103. N. L. Vasilevski. Convolution operators on nilpotent Lie groups. Reports of Enlarged Session of the Seminar of I. N. Vekua Institute of Applied Mathematics. Tbilisi, vol. 5, N 1, 1990, p. 42-45 (Russian).
  104. N. L. Vasilevski, M. V. Shapiro. Some questions of hypercomplex analysis. "Complex Analysis and Applications '87", Sofia , 1989, p. 523-531.
  105. N. L. Vasilevski, M. V. Shapiro. Holomorphy, hyperholomorphy Toeplitz operators. Uspehi Matematicheskih Nauk, 1989, v. 44, N 4 (268), p. 226-227 (Russian).
    English translation: Russian Math. Surveys, v. 44, no. 4, 1989, p. 196-197.
  106. N. L. Vasilevski. Toeplitz operators associated with the Siegel domains. Matematicki Vesnik, 1988, v. 40, p. 349-354.
  107. N. L. Vasilevski. On an algebra associated with Toeplitz operators on the tube domains. Izvestija Akad. Nauk SSSR, ser. matem., 1987, v. 51, N 1, p. 79-95 (Russian).
    English translation: Math. USSR Izvestija, v. 30, no.1, 1988, p. 71-87.
  108. N. L. Vasilevski. Hardy spaces associated with the Siegel domains. Reports of Enlarged Sessions of Seminars of the I. N. Vekua Institute of Applied Mathematics. Tbilisi, 1988, v. 3, N 1, p. 48-51 (Russian).
  109. N. L. Vasilevski, R. Trujillo. On an algebra generated by almost-periodic two-dimensional singular integral operators with discontinuous presymbols. Funkcionalny Analiz i ego Prilogenija, 1987, v. 21, N 3, p. 75-76 (Russian).
    English translation: Func. Analysis and its Appl., v. 21, no. 3, 1987, p. 235-236.
  110. N. L. Vasilevski. Algebras generated by multidimensional singular integral operators and by coefficients admitting discontinuities of homogeneous type. Matematicheski Sbornik, 1986, v. 129, N 1, p. 3-19 (Russian).
    English translation: Math. USSR Sbornik, v. 57, no. 1, 1987, p. 1-19.
  111. N. L. Vasilevski. On an algebra generated by Toeplitz operators with zero-order pseudodifferential presymbols. Doklady Akad. Nauk SSSR, 1986, v. 289, N 1, p. 14-18 (Russian).
    English translation: Soviet Math. Dokl., v. 34, no. 1, 1987, p. 4-7.
  112. N. L. Vasilevski. Banach algebras generated by two-dimensional integral operators with Bergman Kernel and piece-wise continuous coefficients. II. Izvestija VUZov, Matematika, 1986, N 3, p. 33-38 (Russian).
    English translation: Soviet Math. (Izv. VUZ), v. 30, no. 3, 1986, p. 44-50.
  113. N. L. Vasilevski. Banach algebras generated by two-dimensional integral operators with Bergman Kernel an d piece-wise continuous coefficients. I. Izvestija VUZov, Matematika, 1986, N 2, p. 12-21 (Russian).
    English translation: Soviet Math. (Izv. VUZ), v. 30, no. 2, 1986, p. 14-24.
  114. N. L. Vasilevski. Two-dimensional Mikhlin-Calderon-Zygmund operators and bisingular operators. Sibirski Matematicheski Zurnal, 1986, v. 27, N 2, p. 23-31 (Russian).
    English translation: Siberian Math. J., v. 27, no. 2, 1986, p. 161-168.
  115. N. L. Vasilevski. Multidimensional singular integral operators with coefficients admitting discontinuities of homogeneous type. Soobshchenija Akad. Nauk GSSR, 1986, v. 124, no 1, p. 41-44 (Russian).
  116. N. L. Vasilevski. Algebras generated by multivariable Toeplitz operators with piece-wise continuous presymbols. Scientific Proceedings of the Boundary Value Problems Seminar Dedicated to 75-birthday of Academician BSSR Academy of Sciences F. D. Gahov. Minsk, 1985, p. 149-150 (Russian).
  117. N. L. Vasilevski, M. V. Shapiro. On an analogy of monogenity in the sense of Moisil-Teodoresko and some applications in the theory of boundary value problems. Reports of Enlarged Sessions of Seminars of the I. N. Vekua Institute of Applied Mathematics. Tbilisi, 1985, v. 1, p. 63-66 (Russian).
  118. N. L. Vasilevski. On an algebra generated by multivariables Wiener-Hopf operators. Reports of Enlarged Session of Seminars of the I. N. Vekua Institute of Applied Mathematics. Tbilisi, 1985, v. 1, p. 59-62 (Russian).
  119. N. L. Vasilevski. On an algebra generated by abstract singular operators and Carleman shift. Soobshchenija Akad. Nauk GSSR, 1984, v. 115, no. 3, p. 473-476 (Russian).
  120. N. L. Vasilevski. On certain algebras generated by a space analog of the singular operator with Cauchy kernel. Doklady Akad. Nauk SSSR, 1983, v. 273, N 3, p. 521-524 (Russian).
    English translation: Soviet Math. Dokl., v. 28, no. 3, 1983, p. 654-657.
  121. N. L. Vasilevski. On the algebra generated by two-dimensional integral operators with Bergman kernel and piece-wise continuous coefficients. Doklady Akad. Nauk SSSR, 1983, v. 271, N 5, p. 1041-1044 (Russian).
    English translation: Soviet Math. Dokl., v. 28, no. 1, 1983, p. 191-194.
  122. N. L. Vasilevski, I. M. Spitkovski. On an algebra generated by two projectors. Doklady Akad. Nauk UkSSR, Ser. "A", 1981, N 8, p. 10-13 (Russian).
  123. N. L. Vasilevski. On the symbol theory for Banach operator algebras which generalizes algebras of singular integral operators. Differentsialnye Uravnennija, 1981, v. 17, N 4, p. 678-688 (Russian).
    English translation: Diff. Equations, v. 17, no. 4, 1981, p. 462-469.
  124. N. L. Vasilevski. Banach algebras generated by some two-dimensional integral operators. II. Math. Nachr., 1980, b. 99, p. 136-144 (Russian).
  125. N. L. Vasilevski. Banach algebras generated by some two-dimensional integral operators. I. Math. Nachr., 1980, b. 96, p. 245-255 (Russian).
  126. N. L. Vasilevski. On an algebra generated by some two-dimensional integral operators with continuos coefficients in a subdomain of the unit disc. Journal of Integral Equations, 1980, v. 2, p. 111-116.
  127. N. L. Vasilevski, R. Trujillo. On the theory of ΦR-operators in matrix algebras of operators. Linear Operatrs, Kishinev, Mat. Issled. no. 54, 1980, p. 3-15 (Russian).
  128. N. L. Vasilevski, R. Trujillo. On ΦR-operators in matrix algebras of operators. Doklady Akad. Nauk SSSR, 1979, v. 245, N 6, p. 1289-1292 (Russian).
    English translation: Soviet Math. Dokl., v. 20, no. 2, 1979, p. 406-409.
  129. N. L. Vasilevski, A. A. Karelin. An investigation of a boundary value problem for the partial differential equation of the mixed type with the help of reduction to the singular integral equation with Carleman shift. Izvestija VUZov. Matematika, 1978, N 3, p. 15-19, (Russian).
    English translation: Soviet Math. (Izv. VUZ), v. 22, no. 3, 1978, p. 11-15.
  130. N. L. Vasilevski. A.A. Karelin, P. V. Kerekesha, G. S. Litvinchuk. On a class of singular integral equations with shift and its applications in the theory of boundary value problems for partial differential equations. II. Differentsialnye Uravnenija, 1977, v. 13, N 11, p. 2051-2062 (Rusian).
    English translation: Diff. Equations, v. 13, no. 11, 1977, p. 1430-1438.
  131. N. L. Vasilevski, A.A. Karelin, P. V. Kerekesha, G. S. Litvinchuk. On a class of singular integral equations with shift and its applications in the theory of boundary value problems for partial differential equations. I. Differentsialnye Uravnenija, 1977, v. 13, N 9, p. 1692-1700 (Russian).
    English translation: Diff. Equations, v. 13, no. 9, 1977, p. 1180-1185.
  132. N. L. Vasilevski. Symbols of operator algebras. Doklady Akad. Nauk SSSR, 1977, v. 235, N 1, p. 15-18 (Russian).
    English translation: Soviet Math. Dokl., v. 18, no. 4, 1977, p. 872-876.
  133. N. L. Vasilevski. On a class of singular integral operators with kernels of polar-logarithmic type. Izvestija Akad. Nauk SSSR, ser. matem., 1976, v. 40, N 1, p. 131-151 (Russian).
    English translation: Math. USSR Izvestija, v. 10, no. 1, 1976, p. 127-143.
  134. N. L. Vasilevski, E.V. Gutnikov. On the structure of the symbol of operators forming finite- dimensional algebras. Doklady Akad. Nauk SSSR, 1976, v. 230, N 1, p. 11-14 (Russian).
    English translation: Soviet Math. Dokl., v. 17, no. 5, 1976, p. 1225-1229.
  135. N. L. Vasilevski, M. V. Shapiro. On an algebra generated by singular integral operators with the Carleman shift and in the case of piece-wise continuous coefficients. Ukrainski Mathematicheski Zurnal, 1975, v. 27, N 2, p. 216-223 (Russian).
    English translation: Ukrainian Math. J., v. 27, no. 2, 1975, p. 171-176.
  136. N. L. Vasilevski, G. S. Litvinchuk. Theory of solvability of a class of singular integral equations with involution. Doklady Akad. Nauk SSSR, 1975, v. 221, N 2, p. 269-271 (Russian).
    English translation: Soviet Math. Dokl., v. 16, no. 2, 1975, p. 318-321.
  137. N. L. Vasilevski, E. V. Gutnikov. On the symbol of operators forming finite-dimensional algebras. Doklady Akad. Nauk SSSR, 1975, v. 221, N 1, p. 18-21 (Russian).
    English translation: Soviet Math. Dokl., v. 16, no. 2, 1975, p. 271-275.
  138. N. L. Vasilevski. The Noether theory of a class of potential type integral operators. Izvestija VUZov. Matematika, 1974, N 7, p. 12-20 (Russian).
    English translation: Soviet Math. (Izv. VUZ), v. 18, no. 7, 1974, p. 8-15.
  139. N. L. Vasilevski. On the Noetherian theory of integral operators with a polar logarithmic kernel. Doklady Akad. Nauk SSSR, 1974, v. 215, N 3, p. 514-517 (Russian).
    English translation: Soviet Math. Dokl., v. 15, no. 2, 1974, p. 522-527.
  140. N. L. Vasilevski. On properties of a class of integral operators in the space Lp. Matemat. Zametki, 1974, v. 16, N 4, p. 529-535 (Russian).
    English translation: Math. Notes, v. 16, no. 4, 1974, p. 905-909.
  141. N. L. Vasilevski. On the Noether conditions and a formula for the index of a class of integral operators. Doklady Akad. Nauk SSSR, 1972, v. 202, N 4, p. 747-750 (Russian).
    English translation: Soviet Math. Dokl., v. 13, no. 1, 1972, p. 175-179.