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DYNAMICS OF PROPERTIES OF TOEPLITZ OPERATORS
ON THE UPPER HALF-PLANE: HYPERBOLIC CASE

S. GRUDSKY, A. KARAPETYANTS, AND N. VASILEVSKI

Abstract. We consider Toeplitz operators T
(λ)
a acting on the weighted

Bergman spaces A2
λ(Π), λ ∈ [0,∞), over the upper half-plane Π, whose

symbols depend on θ = arg z. Motivated by the Berezin quantization pro-
cedure we study the dependence of the properties of such operators on the
parameter of the weight λ and, in particular, under the limit λ →∞.

1. Introduction

This is a part of the two-paper set devoted to the study of Toeplitz operators
acting on weighted Bergman spaces on the upper half-plane. Both are motivated
by the same ideas and are a continuation of our research started in [6]. We
have mentioned in [6] the papers [1, 2, 3, 9, 10], where Toeplitz operators with
smooth (or continuous) symbols acting on the weighted Bergman spaces, as well
as C∗-algebras generated by such operators, appear naturally in the context of
problems in mathematical physics. In particular, recall that given a smooth
symbol a = a(z), the family of Toeplitz operators Ta = {T (h)

a }, with h ∈ (0, 1),
is considered under the Berezin quantization procedure [1, 2]. For a fixed h the
Toeplitz operator T

(h)
a acts on the weighted Bergman space A2

h. In the special
quantization procedure each Toeplitz operator T

(h)
a is represented by its Wick

symbol ãh, and the correspondence principle says that for smooth symbols one
has

lim
h→0

ãh = a.

Moreover by [8] the above limit remains valid in the L1-sense for a wider class
of symbols.

The same, as in a quantization procedure, weighted Bergman spaces appear
naturally in many questions in complex analysis and operator theory. In the last
cases a weight parameter is normally denoted by λ and runs through (−1, +∞).
In the sequel we will consider weighted Bergman spaces A2

λ parameterized by
λ ∈ (−1, +∞) which is connected with h ∈ (0, 1), used as the parameter in the
quantization procedure, by the rule λ + 2 = 1

h .
At this stage an important problem emerges: study of the behavior of dif-

ferent properties (boundedness, compactness, spectral properties, etc.) of T
(λ)
a
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in dependence on λ, and comparison of their limit behavior under λ → ∞ with
corresponding properties of the initial symbol a.

It seems to be quite impossible to get a reasonably complete answer to the
above problem for general (smooth) symbols, even for the simplest case of the
weighted Bergman spaces on the unit disk (hyperbolic plane). At the same time
the recently discovered classes of commutative ∗-algebras of Toeplitz operators
on the unit disk suggest classes of symbols for which a satisfactory complete
answer can be given. Recall in this connection (for details see [11, 12]) that
all known cases of commutative ∗-algebras of Toeplitz operators on the unit
disk are classified by pencils of (hyperbolic) geodesics of the following three
possible types: geodesics intersecting in a single point (elliptic pencil), parallel
geodesics (parabolic pencil), and disjoint geodesics, i.e., all geodesics orthogonal
to a given one (hyperbolic pencil). Symbols which are constant on the cycles, the
orthogonal trajectories to the geodesics forming a pencil, generate in each case
a commutative ∗-algebra of Toeplitz operators. Moreover these commutative
properties of Toeplitz operators do not depend at all on smoothness properties
of symbols, the symbols can be merely measurable.

The model case for elliptic pencils, Toeplitz operators on the unit disk with
radial symbols, was considered in [6]. In the present paper we consider the
model case for hyperbolic pencils, while another paper [5] of this two-paper set
is devoted to the study of the model case for parabolic pencils. Both papers
together cover the part remaining after [6]. The results for other (non model)
cases can be easily obtained by means of Möbius transformations.

We study Toeplitz operators on the upper half-plane equipped with the hyper-
bolic metric, where the model case for hyperbolic pencils is realized as Toeplitz
operators with symbols depending only on θ = arg z.

The key feature of symbols constant on cycles, which permits us to obtain
much more complete information than when studying general symbols, is as
follows. In each case of a commutative ∗-algebra generated by Toeplitz operators
the Toeplitz operators admit a spectral type representation, i.e., they are unitary
equivalent to multiplication operators, by a certain sequence in the elliptic case
and by certain functions on R+ and R in the parabolic and hyperbolic cases,
respectively.

We mention a difference between the previously studied elliptic case [6] and
the remaining cases. In particular, in the elliptic case the Toeplitz operators
have a discrete spectrum and can be compact even having symbols unbounded
near the boundary, while in both the parabolic and hyperbolic cases the Toeplitz
operators always have only a continuous spectrum and, being nonzero, can not
be compact.

As in the preceding paper [6], the word “dynamics” in the title stands for the
emphasis on our main theme: what happens to properties of Toeplitz operators
acting on weighted Bergman spaces when the weight parameter varies.

In the paper, as is a custom in operator theory, we consider weighted Bergman
spaces depending on a real parameter λ ∈ (−1,∞).

Denote by Π the upper half-plane in C, and introduce the weighted Hilbert
space L2(Π, dµλ) which consists of measurable functions f on Π for which the
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norm

‖f‖L2(Π,dµλ) =
(∫

Π

|f(z)|2dµλ(z)
)1/2

is finite. Here dµλ(z) = µλ(z)dv(z) with

µλ(z) = (λ + 1)(2Im z)λ, dv(z) =
1
π

dxdy, z = x + iy.

Let further A2
λ(Π) denote the weighted Bergman space defined to consist of

functions belonging to L2(Π, dµλ) and analytic in the upper half-plane Π.
It is well known (see, for example, [10]) that the orthogonal Bergman pro-

jection BΠ,λ of L2(Π, dµλ) onto the weighted Bergman space A2
λ(Π) has the

form

(BΠ,λf)(z) = (λ + 1)
∫

Π

f(ζ)
(

ζ − ζ

z − ζ

)λ+2
dv(ζ)

(2 Im ζ)2

= iλ+2

∫

Π

f(ζ)
(z − ζ)λ+2

dµλ(ζ).

Given a function (symbol) a = a(z), z ∈ Π, the Toeplitz operators T
(λ)
a acting

on A2
λ(Π) is defined as follows

T (λ)
a f = BΠ,λaf, f ∈ A2

λ(Π).

The key result, which gives an easy access to the properties of Toeplitz op-
erators studied in the paper, is established in Section 2. Namely, we prove that
the Toeplitz operator T

(λ)
a with symbol a(θ) is unitary equivalent to the multi-

plication operator γa,λI acting on L2(R), where

γa,λ(ξ) = 2λ (λ + 1)ϑ2
λ(ξ)

∫ π

0

a(θ) e−2ξθ sinλ θ dθ ξ ∈ R,

where the function ϑλ(ξ) is given by (2.2).
We mention in this context (see, for example, [1, 3]) the Wick (or covariant,

or Berezin) symbol ãλ(z, z), z ∈ Π, of the Toeplitz operator T
(λ)
a , which together

with the so-called star product carries many essential properties of the corre-
sponding Toeplitz operator. Recall that given a bounded operator A acting on a
Hilbert space H which has a system of coherent states {kg}g∈G, its Wick symbol
is defined as

ãA(g, g) =
〈Akg, kg〉
〈kg, kg〉 , g ∈ G.

In our particular case we have A = T
(λ)
a , H = A2

λ(Π), and kg = kz(ζ) =
iλ+2(ζ − z)−(λ+2), where z, ζ ∈ Π. The star product defines the composition
of two Wick symbols ãA and ãB of the operators A and B, respectively, as the
Wick symbol of the composition AB, i.e., ãA ? ãB = ãAB .

In Section 3 we give the formulas for the Wick symbols of Toeplitz operators
T

(λ)
a , whose symbols depend only on θ, and the formulas for the star product in

terms of our function γa,λ.
An interesting and important feature of Toeplitz operators on the (weighted)

Bergman spaces is that such operators can be bounded even when they have sym-
bols unbounded near the boundary. In Section 4 we study in details boundedness
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properties of Toeplitz operators with such unbounded symbols. We give several
separate sufficient and necessary boundedness conditions, as well as a number of
illustrating examples. It turns out that for unbounded symbols, the behaviour of
certain means of a symbol, rather than the behaviour of the symbol itself, plays
a crucial role in the boundedness properties. Given a symbol a, it is natural to
introduce the set B(a) of values λ ∈ [0,∞) for which the corresponding Toeplitz
operator T

(λ)
a is bounded on A2

λ(Π). We show that being nonempty the set B(a)
may have only one of the following three forms: [0,∞), [0, ν), or [0, ν].

Section 5 is devoted to the spectral properties. The (continuous) spectrum of
each T

(λ)
a coincides with the closure of the image of the corresponding continu-

ous function γa,λ. For each fixed λ the spectrum seems to be quite unrestricted,
as the definite tendency starts appearing only as λ tends to infinity. The corre-
spondence principle suggests that the limit set of the spectra has to be somehow
connected with the range of the initial symbol a. This is definitely true for
continuous symbols. Given a continuous symbol a, the limit set of the spectra,
which we will denote by M∞(a), does coincide with the range of a. As in [6], the
new effects appear when we consider more complicated symbols. To understand
the impact of each type of a discontinuity of a symbol we consider two model
cases, piecewise continuous and oscillating symbols. In particular, in the case
of piecewise continuous symbols the limit set M∞(a) coincides with the range
of a together with the line segments connecting the one-sided limit points of our
piecewise continuous symbol.

Proofs of various theorems and construction of examples in the section are
analogous to those of [5] and we omit them. On the other hand side to diminish
somehow an imbalance with [5] we give a few illustrating graphical examples.

The authors would like to express their deep gratitude to O. Grudskaia for
her help in preparation of the figures in the paper.

2. Representations of the weighted Bergman space

We start with the description of the weighted Bergman space A2
λ(Π)), where

λ ∈ (−1, +∞), which is compatible with the polar coordinates in Π. Passing to
polar coordinates we have

L2(Π, dµλ) = L2(R+, rλ+1dr)⊗ L2([0, π], 1/π2λ(λ + 1) sinλ θdθ),

Rewriting the equation ∂
∂z ϕ = 0 in polar coordinates, we have that the Bergman

space A2
λ(Π) as the set of all functions satisfying the equation

(
r

∂

∂r
+ i

∂

∂θ

)
ϕ(r, θ) = 0.

Introduce the unitary operator

U1 = 1/
√

π(M ⊗ I) : L2(Π, dµλ) = L2(R+, rλ+1dr)⊗ L2([0, π], 1/π2λ(λ + 1) sinλ θdθ)

−→ L2(R)⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ),

where the Mellin transform M : L2(R+, rλ+1dr) −→ L2(R) is given by

(Mψ)(ξ) =
1√
2π

∫

R+

r−iξ+λ/2 ψ(r) dr.



DYNAMICS OF PROPERTIES OF TOEPLITZ OPERATORS 5

The inverse Mellin transform M−1 : L2(R) −→ L2(R+, rλ+1dr) has the form

(M−1ψ)(r) =
1√
2π

∫

R
riξ−λ/2−1 ψ(ξ) dξ.

It is easy to see that

U1

(
r

∂

∂r
+ i

∂

∂θ

)
U−1

1 = i(ξ + (λ/2 + 1)i)I + i
∂

∂θ
.

Thus, the image of the Bergman space A2
1,λ = U1(A2

λ(Π)) can be described as
the (closed) subspace of L2(R) ⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ) which consists of
all functions ϕ(ξ, θ) satisfying the equation

(
(ξ + (λ/2 + 1)i)I +

∂

∂θ

)
ϕ(ξ, θ) = 0.

The general L2(R) ⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ) solution of this equation has
the form

(2.1) ϕ(ξ, θ) = f(ξ)ϑλ(ξ) e−(ξ+(1+λ/2)i)θ, f(ξ) ∈ L2(R),

where (see, for example, [4] formula 3.892)

ϑλ(ξ) =
(

2λ(λ + 1)
∫ π

0

e−2ξθ sinλ θdθ

)−1/2

=
B(λ+2

2 + iξ, λ+2
2 − iξ)1/2

√
π

eπξ/2 =
|Γ(λ+2

2 + iξ)|√
π Γ(λ + 2)1/2

eπξ/2,(2.2)

and
‖ϕ(ξ, θ)‖L2(R)⊗L2([0,π],2λ(λ+1) sinλ θdθ) = ‖f(ξ)‖L2(R).

Lemma (2.3). The unitary operator U1 = 1/
√

π(M ⊗ I) is an isometric iso-
morphism of the space L2(Π, dµλ), where λ ∈ (−1, +∞), onto
L2(R) ⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ) under which the Bergman space A2

λ(Π) is
mapped onto

A2
1,λ =

{
ϕ(ξ, θ) = f(ξ)ϑλ(ξ) e−(ξ+(1+λ/2)i)θ : f(ξ) ∈ L2(R)

}
.

As above, let R0 : L2(R) −→ A2
1,λ(Π) ⊂ L2(R)⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ)

be the isometric imbedding given by

(R0f)(ξ, θ) = f(ξ) ϑλ(ξ) e−(ξ+(1+λ/2)i)θ.

The adjoint operator R∗0 : L2(R) ⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ) −→ L2(R) has
the form

(R∗0ψ)(ξ) = 2λ(λ + 1)ϑλ(ξ)
∫ π

0

ψ(ξ, θ) e−(ξ−(1+λ/2)i)θ sinλ θ dθ,

and

R∗0R0 = I : L2(R) −→ L2(R),

R0R
∗
0 = B1 : L2(R)⊗ L2([0, π], 2λ(λ + 1) sinλ θdθ) −→ A2

1,λ,

where B1 = U1B
λ
ΠU−1

1 is the orthogonal projection of L2(R)⊗ L2([0, π], 2λ(λ +
1) sinλ θdθ) onto A2

1,λ.
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Now the operator Rλ = R∗0U1 maps the space L2(Π, dµλ) onto L2(R), and its
restriction

Rλ|A2
λ
(Π) : A2

λ(Π) −→ L2(R)

is an isometric isomorphism. The adjoint operator

R∗λ = U∗
1 R0 : L2(R) −→ A2

λ(Π) ⊂ L2(Π, dµλ)

is an isometric isomorphism of L2(R) onto A2
λ(Π).

Remark (2.4). We have

RλR∗λ = I : L2(R) −→ L2(R),

R∗λRλ = Bλ
Π : L2,λ(Π) −→ A2

λ(Π).

Theorem (2.5). The isometric isomorphism

R∗λ = U∗
1 R0 : L2(R) −→ A2

λ(Π)

is given by

(2.6) (R∗λf)(z) =
1√
2

∫

R
ziξ−(1+λ/2) ϑλ(ξ) f(ξ) dξ.

Proof. Calculate

(R∗λf)(z) = (U∗
1 R0f)(z)

=
√

π(M−1 ⊗ I)f(ξ)ϑλ(ξ) e−(ξ+(1+λ/2)i)θ

=
1√
2

∫

R
riξ−(1+λ/2)f(ξ)ϑλ(ξ) e−(ξ+(1+λ/2)i)θ dξ

=
1√
2

∫

R
ziξ−(1+λ/2) ϑλ(ξ) f(ξ) dξ.

Corollary (2.7). The inverse isomorphism

Rλ : A2
λ(Π) −→ L2(R)

is given by

(2.8) (Rλϕ)(ξ) =
ϑλ(ξ)√

2

∫

Π

(z)−iξ−(1+λ/2) ϕ(z) µλ(z) dv(z).

The above representation of the Bergman space A2
λ(Π) is especially important

in the study of the Toeplitz operators with symbols depending only on θ = arg z.

Theorem (2.9). Given a = a(θ) ∈ L1(0, π), the Toeplitz operator T
(λ)
a acting

on A2
λ(Π) is unitary equivalent to the multiplication operator γa,λI = Rλ T

(λ)
a R∗λ,

acting on L2(R). The function γa,λ(ξ) is given by

γa,λ(ξ) = 2λ(λ + 1)ϑ2
λ(ξ)

∫ π

0

a(θ) e−2ξθ sinλ θ dθ(2.10)

=
(∫ π

0

e−2ξθ sinλ θ dθ

)−1 ∫ π

0

a(θ) e−2ξθ sinλ θ dθ, ξ ∈ R.
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Proof. Calculate

RλT (λ)
a R∗λ = RλBΠ,λaBΠ,λR∗λ = Rλ(R∗λRλ)a(R∗λRλ)R∗λ

= (RλR∗λ)RλaR∗λ(RλR∗λ) = RλaR∗λ
= R∗0U1a(θ)U−1

1 R0

= R∗0a(θ)R0.

Thus

(R∗0a(θ)R0f)(ξ) = 2λ(λ + 1)ϑλ(ξ)
∫ π

0

a(θ) e−(ξ−(1+λ/2)i)θ f(ξ)

× ϑλ(ξ) e−(ξ+(1+λ/2)i)θ sinλ θ dθ

= γa,λ(ξ)f(ξ),

where

γa,λ(ξ) = 2λ (λ + 1)ϑ2
λ(ξ)

∫ π

0

a(θ) e−2ξθ sinλ θ dθ ξ ∈ R.

Here the function ϑλ(ξ) is given by (2.2).

The above theorem suggests considering not only L∞-symbols, but unbounded
ones as well. Note that given a bounded symbol a(z), the Toeplitz operator
T

(λ)
a is bounded on all spaces A2

λ(Π), for λ ∈ (−1,∞), and the corresponding
norms are uniformly bounded by supz |a(z)|. That is, all spaces A2

λ(Π), where
λ ∈ (−1,∞), are natural and appropriate for Toeplitz operators with bounded
symbols. As one of our aims is a systematic study of unbounded symbols, we wish
to have a sufficiently large class of them common to all admissible λ; moreover,
we are especially interested in properties of Toeplitz operators for large values
of λ. Thus it is convenient for us to consider λ belonging only to [0,∞), which
we will always assume in what follows.

We have obviously:

Corollary (2.11). The Toeplitz operator T
(λ)
a with symbol a(θ) is bounded

on A2
λ(Π) if and only if the corresponding function γa,λ(ξ) is bounded.

3. Toeplitz operators with symbols depending on θ = arg z

Reverting the statement of Theorem 2.9 we come to the following spectral-
type representation of a Toeplitz operator.

Theorem (3.1). Let a = a(θ) ∈ L1(0, π). Then the Toeplitz operator T
(λ)
a

acting on A2
λ(Π) admits the representation

(3.2) (T (λ)
a ϕ)(z) =

1√
2

∫

R
ziξ−(1+λ/2) ϑλ(ξ) γa,λ(ξ) f(ξ) dξ,

where f(ξ) = (Rλϕ)(ξ) ∈ L2(R).

Proof. Follows directly from Theorems 2.9, and 2.5, and Corollary 2.7.

Theorem (3.3). Given a = a(θ) ∈ L1(0, π), the Wick symbol ãλ(z, z) of the
Toeplitz operator T

(λ)
a depends only on θ (= arg z ) and has the form

(3.4) ãλ(θ) = ãλ(z, z) = 2λ+1 sinλ+2 θ

∫

R
e−2ξθ ϑ2

λ(ξ) γa,λ(ξ) dξ
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and the corresponding Wick function is given by formula

ãλ(z, w) =
〈T (λ)

a kw, kz〉
〈kw, kz〉

= (z − w)λ+2 (zw)−(λ+2)/2 i−(λ+2)

2

∫

R
(
z

w
)iξ ϑ2

λ(ξ) γa,λ(ξ) dξ.(3.5)

Proof. Consider kz(w) = i2+λ(w − z)−(λ+2) = i2+λ(ρeiα − re−iθ)−(λ+2) and
calculate

(U1kz)(ξ, α) =
i2+λ

π
√

2

∫

R+

ρ−iξ+λ/2(ρeiα − z)−(λ+2)dρ.

Using formula 3.194.3 from [4] and (2.2), we have

(U1kz)(ξ, α) =
B(λ+2

2 − iξ, λ+2
2 + iξ)√

2π
eπξ e−ξα−i λ+2

2 α (z)−iξ−λ+2
2

=
ϑ2

λ(ξ)√
2

e−ξα−i λ+2
2 α (z)−iξ−λ+2

2 .

Thus

〈T (λ)
a kz, kz〉 = 〈akz, kz〉 = 〈U1akz, U1kz〉 = 〈aU1kz, U1kz〉 =

=
1
2

∫

R

∫ π

0

a(α) ϑ4
λ(ξ)e−2ξα(z)−iξ−λ+2

2 ziξ−λ+2
2 2λ(λ + 1) sinλ α dξdα

=
r−(λ+2)

2

∫

R
ϑ2

λ(ξ) e−2ξθdξ 2λ(λ + 1)ϑ2
λ(ξ)

∫ π

0

a(α) e−2ξα sinλ α dα

=
r−(λ+2)

2

∫

R
ϑ2

λ(ξ) e−2ξθ γa,λ(ξ)dξ.

Similarly

〈T (λ)
a kw, kz〉 =

(zw)−(λ+2)/2

2

∫

R
(
z

w
)iξ ϑ2

λ(ξ) γa,λ(ξ) dξ.

Furthermore 〈kw, kz〉 = kw(z) = iλ+2(z − w)−(λ+2), and 〈kz, kz〉 = kz(z) =
(2Im z)−(λ+2). Thus we have both (3.4) and (3.5).

Remark (3.6). Given a symbol a = a(θ) ∈ L1(0, π), writing the Toeplitz oper-
ator T

(λ)
a in terms of its Wick symbol we obtain formula (3.2). Indeed

(T (λ)
a ϕ)(z) =

∫

Π

ã(z, w)
ϕ(w) iλ+2

(z − w)λ+2
µλ(w) dv(w)

=
1
2

∫

Π

(zw)−(λ+2)/2ϕ(w) µλ(w) dv(w)
∫

R
(
z

w
)iξ ϑ2

λ(ξ) γa,λ(ξ) dξ

=
1√
2

∫

R
ziξ−λ+2

2 ϑλ(ξ) γa,λ(ξ) dξ

× ϑλ(ξ)√
2

∫

Π

(w)−iξ−λ+2
2 ϕ(w) µλ(w) dv(w)

=
1√
2

∫

R
ziξ−λ+2

2 ϑλ(ξ) γa,λ(ξ) (Rλϕ)(ξ) dξ.
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Corollary (3.7). Let T
(λ)
a and T

(λ)
b be two Toeplitz operators with symbols

a(θ), b(θ) ∈ L1(0, π) respectively, and let ãλ(θ) and b̃λ(θ) be their Wick symbols.
Then the Wick symbol c̃(θ) of the composition T

(λ)
a T

(λ)
b is given by

c̃λ(θ) = (ãλ ? b̃λ)(θ) = 2λ+1 sinλ+2 θ

∫

R
e−2ξθ ϑ2

λ(ξ) γa,λ(ξ) γb,λ(ξ) dξ.

Proof. This can be verified directly from the formula for the star product,
and also follows immediately from Theorems 2.9 and 3.3.

4. Boundedness of Toeplitz operators with symbols depending on
θ = arg z.

Recall (Corollary 2.11) that the function

(4.1) γa,λ(ξ) =
(∫ π

0

e−2ξθ sinλ θ dθ

)−1 ∫ π

0

a(θ) e−2ξθ sinλ θ dθ, ξ ∈ R

is responsable for the boundedness of a Toeplitz operator with symbol a(θ) (∈
L1(0, π)). If the symbol a(θ) ∈ L∞(0, π), then the operator T

(λ)
a is obviously

bounded on A2
λ(Π) for each λ, and ‖T (λ)

a ‖ ≤ ess-sup|a(θ)|.
For a(θ) ∈ L1(0, π) the function γa,λ(ξ) is continuous at all finite points ξ ∈ R.

For a “very large ξ” (ξ → +∞) the exponent e−2ξθ has a very sharp maximum at
the point θ = 0, and thus the major contribution to the integral containing a(θ)
in (4.1) for these “very large ξ” is determined by values of a(θ) int a neighborhood
of the point 0. The major contribution for a “very large negative ξ” (ξ → −∞)
is determined by values of a(θ) at a neighborhood of π, due to a very sharp
maximum of e−2ξθ at θ = π for these values of ξ. In particular, if a(θ) has limits
at the points 0 and π, then

lim
ξ→+∞

γa,λ(ξ) = lim
θ→0

a(θ),

lim
ξ→−∞

γa,λ(ξ) = lim
θ→π

a(θ).

As a matter of fact, 0 and π are the only worrying points for unbounded symbols
a(θ) ∈ L1(0, π). Moreover, the behaviour of certain means of a symbol, rather
than the behaviour of the symbol itself, plays a crucial role under the study of
boundedness properties.

Given λ ∈ [0,∞) and a function a(θ) ∈ L1(0, π) introduce the following means:

C
(1)
a,λ(σ) =

∫ σ

0

a(θ) sinλ θdθ,

D
(1)
a,λ(σ) =

∫ π

σ

a(θ) sinλ θdθ,

C
(j)
a,λ(σ) =

∫ σ

0

C
(j−1)
a,λ (θ)dθ, j = 2, 3, . . . ,

D
(j)
a,λ(σ) =

∫ π

σ

D
(j−1)
a,λ (θ)dθ, j = 2, 3, . . . .
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Theorem (4.2). Let a(θ) ∈ L1(0, π). If for certain λ0 ∈ [0,∞) and j0, j1 ∈ N
the following conditions hold

(4.3) C
(j0)
a,λ0

(σ) = O(σj0+λ0), σ → 0,

(4.4) D
(j1)
a,λ0

(σ) = O((π − σ)j1+λ0), σ → π,

then the corresponding Toeplitz operator T
(λ)
a is bounded on A2

λ(Π) for each λ ∈
[λ0,∞).

Proof. Note that the function γa,λ(ξ) is continuous at finite points. Let ξ →
+∞ and the condition (4.3) holds with j0 = 1. Then

γa,λ(ξ) = 2λ(λ + 1)ϑ2
λ(ξ)

∫ π

0

sinλ−λ0(θ)e−2ξθdC
(1)
a,λ0

(θ)

= 2λ(λ + 1)ϑ2
λ(ξ)

∣∣∣∣
∫ π

0

C
(1)
a,λ0

(θ)[(λ− λ0) sinλ−λ0−1 θ cos θ

− 2ξ sinλ−λ0 θ]e−2ξθdθ
∣∣

≤ const 2λ(λ + 1)ϑ2
λ(ξ)

[
(λ− λ0)

∫ ∞

0

θλe−2ξθdθ + 2ξ

∫ ∞

0

θλ+1e−2ξθdθ

]

≤ constϑ2
λ(ξ)

[
(λ− λ0)(2ξ)−(λ+1)Γ(λ + 1) + (2ξ)−(λ+1)Γ(λ + 2)

]

≤ const (2λ− λ0 + 1)2λ(λ + 1)ϑ2
λ(ξ)(2ξ)−(λ+1)Γ(λ + 1).

It is easy to get the asymptotic representation of the function ϑ2
λ(ξ). According

to (2.2) we have

2−λ(λ + 1)−1ϑ−2
λ (ξ) =

∫ π

0

e−2ξθ sinλ θdθ

=
∫ π

0

θλe−2ξθdθ[1 + θ(ξ−1)]

= (2ξ)−(λ+1)Γ(λ + 1)[1 + O(ξ−1)].(4.5)

Thus we have finally

|γa,λ(ξ)| ≤ const (2λ− λ0 + 1).

The case ξ → −∞ (and j1 = 1) is reduced to the previous one using the change
of variable θ = π − θ′ in the integral for γa,λ(ξ).

The cases j0,1 > 1 are considered analogously using integration by parts.

The proof of the following statement is analogous to that of Theorem 4.3 in
[5].

Theorem (4.6). 1. Let conditions (4.3), (4.4) hold for j0 = j′0, j1 = j′1,
and some λ0. Then these conditions hold for j0 = j′0 + 1, j1 = j′1 + 1, and
the same λ0.

2. Let conditions (4.3), (4.4) hold for j0 = j′0, j1 = j′1, and some λ0. Then
these conditions hold for j0 = j′0, j1 = j′1, and λ0 replaced by any λ1 ≥ λ0.
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Example (4.7). Consider the following family of unbounded symbols

a(θ) = (sin θ)−β sin[(sin θ)−α].

As in Example 4.4 in [5] it can be proved that for all λ ≥ 0 the operator T
(λ)
a is

bounded for each β ∈ (0, 1) and α > 0.

Theorem (4.8). Let the Toeplitz operator T
(λ)
a , with a(θ) ∈ L1(0, π), be

bounded on some A2
λ0

(Π). Then it is bounded on each A2
λ(Π), with λ ∈ [0, λ0].

Proof. Let supξ∈R |γa,λ0(ξ)| < ∞. We split a(θ) in two functions which vanish
on neighborhoods of 0 and π, respectively. The study of these two cases is quite
similar, thus we suppose that a(θ) vanishes in a neighborhood of π, for example.
Suppose also that ξ →∞. A similar argument is applicable for the study of the
behavior of γa,λ(ξ) when ξ → −∞. For λ ∈ [0, λ0), write

γa,λ(ξ) =
22λ−λ0 (λ + 1)ϑ2

λ(ξ)
Γ(λ0 − λ)

∫ ∞

0

yλ0−λ−1dy

∫ π

0

a(θ)e−2θ(ξ+ sin θ
θ y) sinλ0 θdθ.

Using sin θ
θ = 1 + O(θ2), as θ → 0, for some cλ 6= 0, we have

γa,λ(ξ) = (cλ + o(1))ϑ2
λ(ξ)

∫ ∞

0

yλ0−λ−1dy

∫ π

0

a(θ)e−2θ(ξ+y) sinλ0 θdθ

=
(cλ + o(1))ϑ2

λ(ξ)
2λ0(λ0 + 1)

∫ ∞

0

yλ0−λ−1 γa,λ0(ξ + y)
ϑ2

λ0
(ξ + y)

dy.

Using (4.5) and supξ∈R |γa,λ0(ξ)| < ∞ we have

|γa,λ(ξ)| ≤ const ξλ+1

∫ ∞

0

yλ0−λ−1(ξ + y)−(λ0+1)dy

= const
∫ ∞

0

uλ0−λ−1(1 + u)−(λ0+1)du < ∞,

since λ < λ0 and λ0 + 1 > 1.

As an immediate corollary of Theorems 4.2 and 4.8 we have now.

Theorem (4.9). Under the hypothesis of Theorem 4.2 the Toeplitz operator
T

(λ)
a is bounded on A2

λ(Π) for each λ ∈ [0,∞).

The proof of the next theorem is analogous to one of Theorem 4.8 in [5].

Theorem (4.10). 1. Assume that a(θ) ∈ L1(0, π) and a(θ) ≥ 0 almost
everywhere. Let the operator T

(λ′)
a be bounded on A2

λ′(Π) for some λ′ >
0. Then the conditions (4.3) and (4.4) hold for j0 = j1 = 1, λ0 = 0
and consequently the operator T

(λ)
a is bounded on A2

λ(Π) for arbitrary λ ∈
[0,∞).

2. Assume that the means satisfy C
(j0)
a,µ0(σ) ≥ 0 and D

(j1)
a,µ1(σ) ≥ 0 almost

everywhere for some j0 ≥ 1, j1 ≥ 1 and µ0 ≥ 0, µ1 ≥ 0, and that the
operator T

(λ′)
a is bounded on A2

λ′(Π) for some λ′ ≥ 0. Then the operator
T

(λ)
a is bounded on A2

λ(Π) for arbitrary λ ∈ [0,∞).
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For a nonnegative a(θ) we set

ma,0(σ) = ess-infθ∈(0,σ)a(θ),
ma,π(σ) = ess-infθ∈(σ,π)a(θ).

Corollary (4.11). Given a nonnegative symbol, if either limσ→0 ma,0(σ) =
∞ or limσ→π ma,π(σ) = ∞, then the Toeplitz operator T

(λ)
a is unbounded on

each A2
λ(Π), with λ ∈ [0,∞).

For a symbol a(θ) ∈ L1(0, π) we denote by B̃(a) the set of points λ ∈ [0,∞)
for which the corresponding Toeplitz operator T

(λ)
a is bounded on A2

λ(Π). Like
in the parabolic case we have the following result, the proof of which is analogous
to one of [5].

Theorem (4.12). There exists a family of symbols aν,β(θ), where ν ∈ (0, 1),
β ∈ R, such that

a) B̃(aν,0) = [0, ν], β = 0;
b) B̃(aν,β) = [0, ν), β > 0.

5. Spectra of Toeplitz operators with symbols
depending on θ = arg z

(5.1) Continuous symbols. Let E be a subset of R having +∞ as a limit
point (typically E = (0, +∞)), and suppose that, for each λ ∈ E, we are given
a set Mλ ⊂ C. Define the set M∞ as the set of all z ∈ C for which there exists
a sequence of complex numbers {zn}n∈N such that

(i) for each n ∈ N there exists λn ∈ E such that zn ∈ Mλn ,
(ii) limn→∞ λn = +∞,
(iii) z = limn→∞ zn.

We will write
M∞ = lim

λ→+∞
Mλ,

and call M∞ the (partial) limit set of the family {Mλ}λ∈E when λ → +∞.
For the case when E is a discrete set with a unique limit point at infinity, the

above notion coincides with the partial limit set introduced in [7], Section 3.1.1.
Following the arguments of Proposition 3.5 in [7] one can show that

M∞ =
⋂

λ

clos


 ⋃

µ≥λ

Mµ


 .

Note that obviously

lim
λ→+∞

Mλ = lim
λ→+∞

Mλ = M∞.

The a priori spectral information for L∞-symbols (see, for example, [1], [2])
says that for each a ∈ L∞(Π) and each λ ≥ 0

(5.1) sp T (λ)
a ⊂ conv(ess-Range a).
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Given a symbol a = a(θ), the Toeplitz operator T
(λ)
a acting on the space A2

λ(Π)
is unitary equivalent to the multiplication operator γa,λI, where the function
γa,λ(ξ), ξ ∈ R, is given by (2.10). Thus we have obviously

spT (λ)
a = Mλ(a),

where Mλ(a) = Range γa,λ.

Theorem (5.2). Let a = a(θ) ∈ C[0, π]. Then

(5.3) lim
λ→∞

spT (λ)
a = Range a.

Proof. We find the asymptotic of the function γa,λ(ξ) when λ → ±∞ using the
Laplace method. Introduce the large parameter L =

√
λ2 + (2ξ)2 and represent

γa,λ(ξ) in the form

γa,λ(ξ) = 2λ(λ + 1)ϑ2
λ(ξ)

∫ π

0

a(θ)e−LS(θ,ϕ)dθ,

where
S(θ, ϕ) = sin ϕ ln(sin θ)−1 + (cos ϕ)θ,

sin ϕ = λ/L, cos ϕ = 2ξ/L with ϕ ∈ [0, π).
To find the point of minimum of S(θ, ϕ) calculate

S′θ(θ, ϕ) = −(sinϕ) cot θ + cos ϕ.

It is obvious that S′θ(θϕ, ϕ) = 0, for θϕ ∈ (0, π), if and only if θϕ = ϕ.
Rewrite (5.3) in the form

γa,λ(ξ)− a(ϕ) = 2λ(λ + 1)ϑ2
λ(ξ)

[ ∫

U(ϕ)∩[0,π]

(a(θ)− a(ϕ))e−LS(θ,ϕ)dθ

+
∫

[0,π]\U(ϕ)

(a(θ)− a(ϕ))e−LS(θ,ϕ)dθ

]
≡ I1(L) + I2(L)

where U(ϕ) is a neighborhood of ϕ such that supθ∈U(ϕ) |a(θ) − a(ϕ)| < ε for
sufficiently small ε. We have used

2λ(λ + 1)ϑ2
λ(ξ)

∫ π

0

a(ϕ)e−LS(θ,ϕ)dθ = a(ϕ).

Further,∣∣∣∣∣
∫

U(ϕ)

(a(θ)− a(ϕ))e−LS(θ,ϕ)dθ

∣∣∣∣∣ ≤ ε

∫

U(ϕ)

e−LS(θ,ϕ)dθ ≤ ε
(
2λ(λ + 1)ϑ2

λ(ξ)
)−1

and finally,∣∣∣∣∣
∫

[0,π]\U(ϕ)

(a(θ)− a(ϕ))e−LS(θ,ϕ)dθ

∣∣∣∣∣ ≤ 2 sup
θ∈[0,π]

|a(θ)|
∫

[0,π]\U(ϕ)

e−LS(θ,ϕ)dθ

≤ (2M sup
θ∈[0,π]

|a(θ)|e−Lσ(ε))
(
2λ(λ + 1)ϑ2

λ(ξ)
)−1

,

where σ(ε) = minθ∈[0,π]\U(ϕ)(S(θ, ϕ)− S(ϕ, ϕ)). We note that σ(ε) and M can
be taken independent on ϕ ∈ (0, π).

Since ε can be arbitrary small uniformly for ϕ ∈ (0, π), we have

(5.4) γa,λ(u) = a(ϕ)(1 + α(L))
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where lim
L→∞

α(L) = 0 uniformly for ϕ ∈ (0, π), which proves the theorem.

We illustrate the theorem on the continuous symbol (hypocycloid)

a(θ) =
3
4
e4iθ + e−2iθ,

and show the image of γa,λ for the following values of λ: 0, 5, 12, and 200.

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

The function γa,λ for λ = 0 and λ = 5.

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

The function γa,λ for λ = 12 and λ = 200.

(5.2) Piecewise continuous symbols. Let a(θ) be a piecewise continuous
function having jumps on a finite set of points {θj}m

j=1 where

θ0 = 0 < θ1 < θ2 < . . . < θm < π = θm+1,

and a(θj ± 0), j = 1, . . . , m, exist. Introduce the sets

Jj(a) := {z ∈ C : z = a(θ), θ ∈ (θj , θj+1)}



DYNAMICS OF PROPERTIES OF TOEPLITZ OPERATORS 15

where j = 0, . . . , m, and let Ij(a) be the segment with the endpoints a(θj − 0)
and a(θj + 0), j = 1, 2, . . .m. We set

R̃(a) =




m⋃

j=0

Jj(a)


 ∪




m⋃

j=1

Ij(a)


 .

Theorem (5.5). Let a(θ) be a piecewise continuous function. Then

lim
λ→∞

spT (λ)
a = M∞(a) = R̃(a).

Proof. We use the Laplace method as in Theorem 5.2. For any ε > 0 we
take δ > 0 such that for each interval I ⊂ (θj , θj+1) with length less then δ,
j = 1, 2, . . . , m, the following inequality holds

sup
s1,s2∈I

|a(s1)− a(s2)| < ε.

Suppose first that the minimum point sϕ = ϕ satisfies the condition

inf
j=1,2,...,m

|ϕ− θj | > δ.

We have

γa,λ(ξ) = a(ϕ) + 2λ(λ + 1)ϑ2
λ(ξ)

∫ ϕ+δ

ϕ−δ

(a(θ)− a(ϕ))e−LS(θ,ϕ)dθ

+ 2λ(λ + 1)ϑ2
λ(ξ)

∫

[0,π]\(ϕ−δ,ϕ+δ)

(a(θ)− a(ϕ))e−LS(θ,ϕ)dθ

= a(ϕ) + O(ε) + O(e−σL)(5.6)

where
σ = min

[0,π]\(ϕ−δ,ϕ+δ)
(S(θ, ϕ)− S(ϕ, ϕ)).

Thus varying ϕ ∈ ∪m
j=0(θj , θj+1) we have that

Jj(a) ⊂ M∞(a), j = 0, 1, . . . ,m.

Now suppose that there exist j such that |ϕ− θj | < δ. Then we have

γa,λ(ξ) = 2λ(λ + 1)ϑ2
λ(ξ)

(
a(θj − 0)

∫ θj

ϕ−δ

e−LS(θ,ϕ)dθ

+ a(θj + 0)
∫ ϕ+δ

θj

e−LS(θ,ϕ)dθ

)

+ 2λ(λ + 1)ϑ2
λ(ξ)

(∫ θj

ϕ−δ

(a(θ)− a(θj − 0))e−LS(θ,ϕ)dθ

+
∫ ϕ+δ

θj

(a(θ)− a(θj + 0))e−LS(θ,ϕ)dθ

+
∫

(0,π)\(ϕ−δ,ϕ+δ)

a(θ)e−LS(θ,ϕ)dθ

)
.
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Taking δ small enough we suppose that

θ1

2
< sϕ(= ϕ) <

π + θm

2
.

Thus the function

(S′′θ,θ(ϕ,ϕ))−1 = − sinϕ

is uniformly bounded on ϕ and the following asymptotic calculations are uniform
on ϕ:

[2λ(λ + 1)ϑ2
λ(ξ)]−1 =

∫ π

0

e−LS(θ,ϕ)dθ

= e−LS(ϕ,ϕ)

∫ π

0

e−
L
2 (sin−1 ϕ)(θ−ϕ)2dθ(1 + O(1))

= e−LS(ϕ,ϕ)

∫ π−ϕ

−ϕ

e−
L
2 (sin−1 ϕ)u2

du(1 + O(1))

=
√

2 sin ϕ
e−LS(ϕ,ϕ)

L1/2

∫ ∞

−∞
e−v2

dv(1 + O(1)).(5.7)

Analogously

(5.8)
∫ ϕ+δ

θj

e−LS(θ,ϕ)dθ =
√

2 sin ϕ
e−LS(ϕ,ϕ)

L1/2

∫ ∞

xj

e−v2
dv(1 + O(1))

and

(5.9)
∫ θj

ϕ−δ

e−LS(θ,ϕ)dθ =
√

2 sin θ
e−LS(ϕ,ϕ)

L1/2

∫ xj

−∞
e−v2

dv(1 + O(1)),

where

xj =
(

L

2 sinϕ

)1/2

(θj − ϕ).

Thus from (5.7)–(5.9) we have

(5.10) γa,λ(ξ) = (a(θj − 0)t + a(θj + 0)τ)(1 + O(1) + O(ε) + O(e−iσ)),

where

t = (
∫ xj

−∞
e−v2

dv)/(
∫ ∞

−∞
e−v2

dv) and τ = (
∫ ∞

xj

e−v2
dv)/(

∫ ∞

−∞
e−v2

dv).

Now it is evident that t, τ ∈ [0, 1] and τ + t = 1, which implies Ij(a) ⊂ M∞(a).
Thus

R̃(a) ⊂ M∞(a).

Representations (5.6) and (5.10) imply the inverse inclusion

R̃(a) ⊃ M∞(a).
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We illustrate the theorem on the following piece-wise continuous symbol which
has six jump points,

a(θ) =





exp i
[−π

6 + 2π
3 · 7θ

π

]
, θ ∈ [

0, π
7

)
1
3 exp i

[
π
6 + 2π

3 · ( 7θ
π − 1

)]
, θ ∈ [

π
7 , 2π

7

)
exp i

[−π
6 + 2π

3 · ( 7θ
π − 2

)]
, θ ∈ [

2π
7 , 3π

7

)
1
3 exp i

[−π
6 + 2π

3 · ( 7θ
π − 3

)]
, θ ∈ [

3π
7 , 4π

7

)
exp i

[−π
6 + 2π

3 · ( 7θ
π − 4

)]
, θ ∈ [

4π
7 , 5π

7

)
1
3 exp i

[−π
6 + 2π

3 · ( 7θ
π − 5

)]
, θ ∈ [

5π
7 , 6π

7

)
exp

(−iπ
6

)
, θ ∈ [

6π
7 , π

]

.

We show the image of the symbol a = a(θ), the image of γa,λ for the following
values of λ: 1, 10, 70, and 500, as well as the limit set M∞(a).
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The symbol a(θ) and the function γa,λ for λ = 1.
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The function γa,λ for λ = 10 and λ = 70.
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The function γa,λ for λ = 500 and the limit set M∞(a).
We have obviously

(5.11) lim
λ→∞

sp T (λ)
a = M∞(a) ⊂ conv(essRange a).

To illustrate the possible interrelations among these sets we can repeat the ar-
guments of Examples 5.3 - 5.6 in [5] and construct the (piecewise continuous)
symbols a = a(θ) to realize the following possibilities:

M∞(a) = Range a (= ess Range a),
M∞(a) = conv(essRange a) (= conv(Range a)),
M∞(a) ⊂ ∂ conv(Range a),
M∞(a) = ∂ conv(Range a).

(5.3) Unbounded symbols.

Theorem (5.12). Let a(θ) ∈ L1(0, π) ∩ C(0, 1). Then

Range a ⊂ M∞(a).

Proof. We apply the Laplace method as in Theorem 5.2. Fix any point ϕ ∈
(0, π) and consider for each ξ large enough the value λ = 2ξ arctanϕ. Then by
(5.4) we have

γa,λ(ξ) = a(ϕ)(1 + α(λ
√

1 + (2 arctan ϕ)−2)

where lim
L→∞

α(L) = 0. Thus if ξ →∞ then λ →∞ as well and we have

a(ϕ) ∈ M∞(a).

The next theorem, whose proof is analogous to that of Theorem 5.11 in [5],
shows that the property (5.11), previously established for bounded symbols,
remains valid for summable symbols.

Theorem (5.13). Let a(θ) ⊂ L1(0, π). Then

M∞(a) ⊂ conv(essRange a).
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Note that for functions a(θ) ∈ L1(0, π)∩C(0, π) Theorems 5.12 and 5.13 imply
that

Range a ⊂ M∞(a) ⊂ conv(Range a),
and we show that Range a can coincide with each of these extreme sets.

Example (5.14). For each j ∈ N define Ij = [j−1 − j−3, j−1] and let {ξj}j∈N =
[0, 2π]. Define the symbol as follows

a(θ) =
{

jeiξj , θ ∈ Ij , j ∈ N;
0, θ ∈ (0, π) \⋃∞

j=1 Ij .

It can be easily shown that

M∞(a) = C = conv(Range a).

Example (5.15). Given α ∈ [0, 1), introduce a(θ) = (sin θ)i−α, which is un-
bounded for α ∈ (0, 1), but bounded and oscillating for α = 0. Calculate using
[4], formula 3.892.1,

γa,λ(ξ) =

∫ π

0
(sin θ)λ+i−αe−2ξθdθ∫ π

0
(sin θ)λe−2ξθdθ

=
2α−i(λ + 1)

λ + i− α + 1
B

(
λ
2 + 1 + iξ, λ

2 + 1− iξ
)

B
(

λ+i−α
2 + 1 + iξ, λ+i−α

2 + 1− iξ
)

=
2α−i(λ + 1)

λ + i− α + 1
Γ(λ + 2 + i− α)

Γ(λ + 2)
Γ

(
λ
2 + 1 + iξ

)

Γ
(

λ+i−α
2 + 1 + iξ

)

× Γ
(

λ
2 + 1− iξ

)

Γ
(

λ+i−α
2 + 1− iξ

) .

Applying the asymptotic formulas for the Γ-function (see [4], formulas 8.327 and
8.328.2) we have

γa,λ(ξ) =

[(
(λ + 2)2

(λ + 2)2 + 4ξ2

) 1
2
]i−α (

1 + O

(
1

λ + 1

))
.

Given any v ∈ (0, π), we can take ξ and λ such that
(

(λ + 2)2

(λ + 2)2 + 4ξ2

) 1
2

= sin v.

Thus

γa,λ(ξ) = (sin v)i−α

(
1 + O

(
1

λ + 1

))
,

and in this case M∞(a) = Range a.
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07000 México, D.F.
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