
Integr. equ. oper. theory 99 (9999), 1–44
0378-620X/99000-0, DOI 10.1007/s00020-003-0000
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Abstract. In the first part [16] of this work, we described the commutative C∗-
algebras generated by Toeplitz operators on the unit ball Bn whose symbols
are invariant under the action of certain Abelian groups of biholomorphisms
of Bn. Now we study the geometric properties of these symbols. This allows
us to prove that the behavior observed in the case of the unit disk (see [3])
admits a natural generalization to the unit ball Bn. Furthermore we give a
classification result for commutative Toeplitz operator C∗-algebras in terms
of geometric and “dynamic” properties of the level sets of generating symbols.

1. Introduction.

The commutative C∗-algebras generated by Toeplitz operators on the (weighted)
Bergman spaces over the unit disk have been recently an important object of study.
In [3] such C∗-algebras are completely classified in terms of the symbols of gener-
ating Toeplitz operators. It is a remarkable fact that the smoothness properties of
such symbols do not play any essential role in this classification. The reason for the
existence of such commutative C∗-algebras lies in the geometric and “dynamic”
properties of the unit disk.

It turns out that the symbols of Toeplitz operators that generate a commuta-
tive C∗-algebra on each weighted Bergman space can be completely characterized
by the geometry of their level lines. More precisely, the results in [3] show that
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the C∗-algebra generated by Toeplitz operators is commutative on each (commonly
considered) weighted Bergman space if and only if there is a pencil of hyperbolic
geodesics such that the symbols of the Toeplitz operators are constant on the cycles
of this pencil. Here, a pencil of geodesics in the unit disk is the set of geodesics
perpendicular to a cycle, i.e. a closed curve with constant geodesic curvature. All
such cycles are in fact the orbits of one-parameter subgroups of isometries for the
hyperbolic geometry on the unit disk. This provides the following “dynamic” re-
statement of the main results in [3], as long as we assume a suitable “richness” of
the symbol set: the C∗-algebra generated by Toeplitz operators is commutative on
each (commonly considered) weighted Bergman space if and only if there is a max-
imal Abelian subgroup of the Möbius transformation group such that the symbols
of the Toeplitz operators are invariant under the action of this subgroup.

In the first part [16] of this work we started the study of the existence and
behavior of the commutative C∗-algebras generated by Toeplitz operators on the
unit ball Bn. Our approach to this problem is motivated by the above discussion
for the unit disk. In particular, in [16] we introduced a certain collection of Abelian
subgroups of the group of biholomorphisms of Bn. As in the case of the unit disk,
it turned out that, given any such Abelian subgroup, the C∗-algebra generated by
Toeplitz operators whose symbols are invariant under the action of this subgroup
is commutative. This was one of the main results of [16].

In this second part of our work on the unit ball we study the geometric
properties of symbol sets, generalizing the behavior observed in the case of the
unit disk. At the same time, we start a program to classify the commutative
C∗-algebras generated by Toeplitz operators on the unit ball. Some classification
results are already given here, and in particular they show how natural is to use
geometric methods in the study of such commutative C∗-algebras.

In [16] we considered n + 2 Abelian groups of biholomorphisms of the unit
ball Bn; these groups are listed again in Section 2 for the sake of completeness. For
n = 1 such groups coincide, as it is readily seen, with those considered for the unit
disk in [3]. Most of the groups on Bn are actually easier to describe by using the
realization of the unit ball as the Siegel domain Dn. At the same time, it turns out
that, from our geometric point of view, it is better to work with the realization
given by the n-dimensional complex hyperbolic space HnC that is described in
Section 2, and many of our results are stated for such a realization of the unit ball.

The unit ball Bn carries the natural Hermitian metric defined by the Bergman
kernel. The associated Riemannian metric turns Bn into a symmetric space. For
such Riemannian structure the connected component of the group of isometries is
precisely the group of biholomorphisms; this is a consequence of the fact that Bn

is a bounded symmetric domain (see [4]).
We recall in Section 2 that the group of biholomorphisms of the n-dimensional

complex hyperbolic space is a Lie group whose Lie algebra is su(n, 1), the skew-
Hermitian complex linear transformations of the Hermitian form of signature
(n, 1). Using this interpretation we show in Theorem 3.6 that each of the n + 2
groups listed in [16] is, in fact, a maximal Abelian subgroup (MASG for short) of
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the group of biholomorphisms. Furthermore, Theorem 3.6 proves that, up to con-
jugacy, our list contains all possible MASG’s of biholomorphisms of the unit ball.
This already constitutes a classification result for the commutative C∗-algebras
generated by Toeplitz operators on the unit ball. Indeed it shows that each MASG
of biholomorphisms of the unit ball gives rise to a commutative C∗-algebra of
Toeplitz operators, and moreover that all model cases of such algebras are already
described in [16].

Our next goal is to study the geometric properties of the orbits of MASG’s
of biholomorphisms of Bn. The importance of such goal comes from the fact that
in [16] the symbol sets that generate commutative C∗-algebras of Toeplitz opera-
tors are invariant under the action of these MASG’s, and thus the orbits of such
MASG’s correspond to the level sets of symbols. This is exactly the situation as in
the case of the unit disk. Recall that, in the unit disk, we showed (see [3]) that the
level sets of the symbols defining commuting algebras of Toeplitz operators exhaust
all curves with constant geodesic curvature. In this work, we consider the notion
of a parallel submanifold which, by Proposition 4.2, can be thought as the natural
generalization of a curve with constant geodesic curvature. At the same time one
has to be careful in the interpretation of such generalizations since the extrinsic
geometry of curves in 2-dimensional Riemannian manifolds is very restricted. In
particular, we observe that every curve in a 1-dimensional complex manifold is
trivially both flat and Lagrangian; these two very important properties are not
automatically satisfied by arbitrary higher dimensional submanifolds though.

With respect to this, we prove in Theorem 5.7 that every MASG H of biholo-
morphisms of Bn acts with (real) n-dimensional orbits on a connected open conull
subset so that each one of the orbits is a flat parallel Lagrangian submanifold of
Bn. Moreover, Theorem 5.7 also proves that all other (lower dimensional) orbits
are flat parallel Lagrangian submanifolds of a copy of some Bk embedded in Bn.
This shows that the geometric behavior of the level sets of the symbols consid-
ered in [3] for the unit disk extends to the orbits of the MASG’s for the case of
the unit ball. Furthermore, we also show in Theorem 5.9 that every flat parallel
Lagrangian submanifold of Bn is in fact an orbit of a MASG of biholomorphisms.
The last result is true even for flat parallel totally real submanifolds of Bn.

The level sets of symbols in the unit disk are more natural to study as a
whole. This turned out to be fundamental for the above mentioned classification
of the commutative C∗-algebras of Toeplitz operators in the unit disk ([3]). As
we already mentioned, for symbols that yield a commutative Toeplitz operator
algebra, the corresponding collection of level sets is given by a flow whose normal
bundle integrates to a totally geodesic flow. For a higher dimensional setup, the
natural generalization of a flow is a foliation. In Theorem 6.10 we prove that
every MASG H of biholomorphisms of the unit ball Bn defines a pair of foliations
(O, F) in a connected open conull subset, where O consists of H-orbits and F is
obtained by integrating the normal bundle to O. Moreover, we also prove that O
is Riemannian, F is totally geodesic, and both are Lagrangian. These notions are
explained in Section 6, and from the results therein it follows that the leaves of O
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are equidistant and the leaves of F are made up of geodesics in Bn. That is, such
pair of foliations (O, F) can be considered as a higher dimensional generalization
of a pencil of hyperbolic geodesics (consisting of cycles and geodesics) on the unit
disk.

Because of the geometric relevance of such pair of foliations we call any
pair of foliations satisfying the above geometric conditions a Lagrangian frame
(see Definition 6.11 for more details). We prove in Theorem 6.12 that each La-
grangian frame in Bn can always be obtained from a MASG of biholomorphisms.
This in turn allows us to give the following classification result for families of
symbols whose Toeplitz operators generate a commutative C∗-algebra. Given any
Lagrangian frame (O,F), the C∗-algebra generated by Toeplitz operators whose
symbols are constant on the leaves of the foliation O is commutative in each (com-
monly considered) weighted Bergman space on Bn.

In this work we provide most of the geometric background required to un-
derstand and obtain our results. In Section 2 we define a Hopf fibration used to
study the extrinsic geometry of submanifolds in the complex hyperbolic space;
we introduce some machinary on the geometry of pseudo-Riemannian manifolds
used further on. In Section 3, to obtain our classification of MASG’s of biholomor-
phisms of Bn, we state and use the classification of maximal Abelian subalgebras
given in [12]. In Section 4 we describe the basics of the submanifold geometry in
Riemannian manifolds; the nontrivial tools come from the classification of parallel
submanifolds in the n-dimensional complex hyperbolic space as developed in [9]
and [10]. The fundamentals of foliations required for this work are briefly described
in Section 6.

Finally we would like to mention that we call a commutative Lie group an
Abelian group, but we keep using the word commutative for operator algebras.
In doing so, we try to follow the customary terminology for both Lie theory and
operator theory.

2. The Hopf fibration of the complex hyperbolic space.

We denote by Cn+1
1 the pseudo-Hermitian vector space with the Hermitian form

given by
〈z, w〉1 7→ z∗In,1w,

where

In,1 =
(

In 0
0 −1

)
.

The group of complex linear isometries of Cn+1
1 , denoted by U(n, 1), consists of

the (n + 1)× (n + 1) complex matrices A such that A∗In,1A = In,1. The pseudo-
Hermitian space Cn+1

1 has an associated pseudo-Euclidean metric

(z, w)2 = Re(〈z, w〉1)
with signature (2n, 2).
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The subset of Cn+1 given by

H2n+1
1 R = {z ∈ Cn+1 : 〈z, z〉1 = (z, z)2 = −1},

is easily seen to be a codimension 1 smooth connected submanifold of Cn+1
1 .

Since the group U(n, 1) acts by isometries on Cn+1
1 , it preserves H2n+1

1 R. Let
us denote

Un+1(1) = {tIn+1 : t ∈ T},
which is a Lie subgroup of U(n, 1) isomorphic to T.

The n-dimensional complex hyperbolic space is defined as the space

HnC = Un+1(1)\H2n+1
1 R,

and the natural projection map

π : H2n+1
1 R→ HnC,

is called the Hopf fibration associated to HnC. We will sometimes denote points
in HnC as π(z) = [z] for z ∈ H2n+1

1 R.
The n-dimensional complex hyperbolic space so defined will play a funda-

mental role in this work. We recall now some basic and well known properties of
the Hopf fibration associated to HnC.

The Hopf fibration as a smooth fiber bundle. The subgroup Un+1(1) of U(n, 1)
acts freely on H2n+1

1 R and also properly, since it is a compact group. Hence (see
Theorem 1.95 of [1] and Example 10.7 of [6]), the quotient space HnC is a smooth
manifold and the Hopf fibration H2n+1

1 R → HnC defines a principal fiber bundle
with structure group Un+1(1) ∼= T.

The Hopf fibration induces a complex structure on HnC. From the definition of
H2n+1

1 R it follows that, for every z ∈ H2n+1
1 R, the tangent space TzH2n+1

1 R is the
orthogonal complement (with respect to (·, ·)2) in Cn+1 of the real line Rz. Let
Hz(H2n+1

1 R) be the orthogonal complement (with respect to (·, ·)2) in TzH2n+1
1 R

of the real line iRz. Then every space Hz(H2n+1
1 R) is a complex vector subspace

of Cn+1 and their union defines a smooth complex vector bundle H(H2n+1
1 R) on

H2n+1
1 R. We will call it the horizontal bundle of the Hopf fibration, and the fibers

Hz(H2n+1
1 R) just defined will be called the horizontal spaces of the Hopf fibration.
Note that for every z ∈ H2n+1

1 R the space iRz is precisely the tangent space
at z of the Un+1(1)-orbit. Also, the Hopf fibration maps the horizontal spaces
isomorphically (as real linear spaces) onto the tangent spaces of HnC, thus in-
ducing a complex structure on the latter tangent spaces. Such a structure is well
defined since the Un+1(1)-action leaves invariant the horizontal bundle preserving
the complex structure of its fibers. It turns out (see Example 10.7 of [6]) that
HnC is a complex manifold with the complex structure just defined on its tangent
bundle.

The Hopf fibration as a pseudo-Riemannian submersion. It will be very useful
to extend the previous remarks to the category of pseudo-Riemannian manifolds.
To this end we will need to consider the general notion of a pseudo-Riemannian
submersion. We refer to [14] for the definition of a pseudo-Riemannian manifold.
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We note that in this reference the pseudo-Riemannian manifolds are called semi-
Riemannian, but besides this difference in the terminology all the basic properties
listed below are as they appear in [14].

Let M and B be pseudo-Riemannian manifolds and p : M → B be a smooth
submersion. We say that p is a pseudo-Riemannian submersion if the following
conditions are satisfied:

• The fibers of p are nondegenerate submanifolds of M , i.e. for every b ∈ B the
tangent space to p−1(b) at any of its points m is a nondegenerate subspace
of TmM .

• The linear map dpm : (Tmp−1(b))⊥ → TbB is an isometry for every m ∈
M and b ∈ B such that p(m) = b. Here (Tmp−1(b))⊥ is the orthogonal
complement of Tmp−1(b) in TmM .

As we already mentioned, the tangent space TzH2n+1
1 R to H2n+1

1 R at z is
the orthogonal complement with respect to (·, ·)2 of the real line Rz. Hence, the
tangent space of H2n+1

1 R at every point is nondegenerate. In particular, the re-
striction of the pseudo-Euclidean metric (·, ·)2 of Cn+1 to the tangent bundle of
H2n+1

1 R defines a pseudo-Riemannian metric for which H2n+1
1 R is a Lorentzian

manifold of constant sectional curvature −1. The construction of H2n+1
1 R is car-

ried out in Chapter 4 of [14], and Proposition 29 of that chapter establishes the
curvature property just mentioned. We will call H2n+1

1 R the (2n + 1)-dimensional
real Lorentzian hyperbolic space.

The unitary group U(n, 1) preserves (·, ·)2 on Cn+1 and thus acts by isome-
tries on the Lorentzian manifold H2n+1

1 R. In particular, the action of the group
Un+1(1) preserves the metric (·, ·)2, and so it also preserves the horizontal bundle
H(H2n+1

1 R) as well. Then, the restriction of (·, ·)2 toH(H2n+1
1 R) defines a Un+1(1)-

invariant metric which is easily seen to be positive definite. Since the Hopf fibration
maps the horizontal spaces isomorphically onto the tangent spaces to HnC, there
is an induced Riemannian metric on HnC so that the Hopf fibration is a pseudo-
Riemannian submersion. Furthermore, the complex structure on HnC and this
Riemannian metric turn it into a Kaehler manifold with constant homolomorphic
sectional curvature −4 and sectional curvature varying in the interval [−4,−1].
We refer to Example 10.7 of [6] where a detailed account of these constructions is
presented. This yields that the n-dimensional complex hyperbolic space HnC is a
Kaehler manifold which at the same time is the base of the pseudo-Riemannian
submersion given by the Hopf fibration H2n+1

1 R→ HnC.
O’Neill’s fundamental equations of a pseudo-Riemannian submersion For a pseu-

do-Riemannian submersion p : M → B, O’Neill introduced in [13] two tensors and
a set of equations that allow to relate the geometric properties of M and B. We
now recollect some definitions and facts that will be used latter on. We refer to [13]
for further details. We observe that in [13] the results are stated for Riemannian
submersions. However, it is well known and easy to see that for our definition of
a pseudo-Riemannian submersion the results in [13] have the obvious extensions
that we will state here.
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Following the above notation, for a vector field X on M we denote by H(X)
its horizontal component. Similarly, we denote by V(X) its vertical component.
For X and Y vector fields over M we define:

TXY = H(∇V(X)V(Y )) + V(∇V(X)H(Y ))

AXY = V(∇H(X)H(Y )) +H(∇H(X)V(Y )),

where ∇ is the Levi-Civita connection of M . Then, the above expressions at a
point depend only on the values of X and Y at the given point. In particular, both
T and A define tensors of type (1,2) over M . These are called the fundamental
tensors of the pseudo-Riemannian submersion.

For u, v vector fields on either M or B we will denote:

Q(u, v) = 〈u, u〉 〈v, v〉 − 〈u, v〉2 ,

where 〈·, ·〉 is the metric on either M or B, correspondingly.
The following result relates the sectional curvatures of M and B. It appears

as Corollary 1 of [13]. As before, ∇ denotes the Levi-Civita connection of M . Also,
for any pair of tangent vectors α, β, we denote by Pα,β their linear span.

Proposition 2.1 ([13]). Let p : M → B be a pseudo-Riemannian submersion with
fundamental tensors A and T . Denote by KM , KB and Kf the sectional curvatures
of M , B and the fibers of p, respectively. If x, y are horizontal vectors and u, v are
vertical vectors at some point in M such that the linear span for both x, y and u, v
is a nondegenerate plane, then:

KM (Pu,v) = Kf (Pu,v)− 〈Tuu, Tvv〉 − 〈Tuv, Tuv〉
Q(u, v)

,

KM (Px,v) 〈x, x〉 〈v, v〉 = 〈(∇xT )vv, x〉+ 〈Axv, Axv〉 − 〈Tvx, Tvx〉 ,

KM (Px,y) = KB(Pdp(x),dp(y))−
3 〈Axy, Axy〉

Q(x, y)
.

Biholomorphisms and isometries of HnC from its Hopf fibration. As already
mentioned above, the unitary group U(n, 1) acts by isometries on the hyperbolic
space H2n+1

1 R. We also observe that the Un+1(1)-orbits in H2n+1
1 R are precisely

the fibers of the Hopf fibration. Hence, if we define the projective unitary group
of signature (n, 1) by

PU(n, 1) = U(n, 1)/Un+1(1),
then there is an induced PU(n, 1)-action on the hyperbolic space HnC. We note
that this action is easily seen to be biholomorphic and isometric as a consequence
of the definition of the complex and Riemannian structures on HnC. Moreover, the
action is faithful and such that the Hopf fibration is equivariant with respect to
the natural quotient homomorphism of Lie groups ψ : U(n, 1) → PU(n, 1). More
precisely, we have

ψ(A)π(z) = π(Az),

for every A ∈ U(n, 1) and z ∈ H2n+1
1 R.
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It turns out that the PU(n, 1)-action defines the full group of biholomor-
phisms of HnC and the connected component of the group of isometries. This
follows, for example, by proving that HnC is a Riemannian symmetric space, iden-
tifying it among all such spaces and looking at the corresponding properties (see [4]
and [6]). Another approach to obtain this fact is to relate the complex hyperbolic
space to the complex unit ball.

From now on, for a complex manifold M we will denote by Aut(M) the group
of its biholomorphisms. Hence, we just observed that Aut(HnC) = PU(n, 1).

For ease of reference, we resume the above remarks in the following statement.

Theorem 2.2. The space H2n+1
1 R is a Lorentz manifold and HnC is a Kaehler

Riemannian manifold such that the Hopf fibration

π : H2n+1
1 R→ HnC

is a pseudo-Riemannian submersion. Furthermore, if ψ : U(n, 1) → PU(n, 1) de-
notes the quotient homomorphism, then π is ψ-equivariant, i.e.,

π(Az) = ψ(A)(π(z)),

for every A ∈ U(n, 1) and z ∈ H2n+1
1 R. Also, we have that Aut(HnC) = PU(n, 1).

The unit ball Bn as a realization of HnC. Let us denote by Bn the unit ball in
the complex vector space Cn, in other words we have

Bn = {z = (z1, ..., zn) ∈ Cn : |z|2 = |z1|2 + ... + |zn|2 < 1}.
Then it is easily seen that the map:

ϕ1 : HnC→ Bn

[z] 7→ z′

zn+1
,

defines a biholomorphism that realizes the n-dimensional complex hyperbolic space
as a bounded domain in Cn. This biholomorphism allows us to attach to Bn the
above structures built for HnC. In particular, from Section 3.1 of [2] it follows that
the Hermitian metric on Bn is given by

ds2
Bn =

1
1−∑n

k=1 |zk|2




n∑

k=1

dzk ⊗ dzk +
n∑

k,l=1

zkzl dzk ⊗ dzl

1−∑n
k=1 |zk|2




which is normalized so that it has constant holomorphic sectional curvature −4.
In the rest of this work, we will use the notation z = (z′, zk), where z′ =

(z1, ..., zk−1) ∈ Ck−1 and zk ∈ C.
The Siegel domain Dn as a realization of HnC. The above constructions do not

depend on the matrix In,1 defining the Hermitian form 〈·, ·〉1, and we can replace
it with any other matrix that defines a Hermitian form with the same signature
(n, 1).
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Let B be a complex (n + 1) × (n + 1) Hermitian matrix of signature (n, 1),
i.e. such that its associated Hermitian form in Cn+1

(z, w) 7→ z∗Bw,

is a nondegenerate Hermitian form of signature (n, 1) on Cn+1. We will denote by
the same symbol B such Hermitian form. We also denote by

U(Cn+1, B) = {A ∈ C(n+1)×(n+1) : A∗BA = B},
the unitary group associated to B and observe that Un+1(1) is also a subgroup of
U(Cn+1, B). Then the projective unitary group associated to B is given by

PU(Cn+1, B) = U(Cn+1, B)/Un+1(1).

We can also define hyperbolic spaces as before by

H2n+1
B R = {z ∈ Cn+1 : B(z, z) = −1},
Hn

BC = Un+1(1)\H2n+1
B R,

with the quotient map as the corresponding Hopf fibration. Then, it is straightfor-
ward to check that we have all of the properties stated above for this new setup.
Moreover, since B has signature (n, 1), there exists a nondegenerate (n+1)×(n+1)
complex matrix A for which A∗BA = In,1. Such an A considered as a complex lin-
ear map Cn+1

1 → (Cn+1, B) defines an isometry of pseudo-Hermitian spaces. Also,
this isometry of pseudo-Hermitian spaces yields the isomorphism of Lie groups

U(n, 1) → U(Cn+1, B)

T 7→ ATA−1,

and a corresponding isomorphism of the projective unitary groups.
Then, the linear map A defines an isometry H2n+1

1 R→ H2n+1
B R of Lorentzian

manifolds that induces a corresponding biholomorphic isometry HnC → Hn
BC.

Also, such equivalences are equivariant with respect to the above isomorphisms of
the corresponding unitary and projective unitary groups. The corresponding Hopf
fibrations are equivalent as well.

Our main reason to discuss this general situation is to consider the Siegel
domain

Dn = {z = (z′, zn) ∈ Cn−1 × C : Im(zn)− |z′|2 > 0},
which is useful to study the biholomorphisms of the unit ball.

Consider the matrix

Kn =




2In−1 0 0
0 0 −i
0 i 0


 ,
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which is easily seen to have signature (n, 1). Then the map

ϕ2 : Hn
Kn
C→ Dn

[z] 7→ z′

zn+1
,

is a biholomorphism and thus realizes the n-dimensional complex hyperbolic space
Hn

Kn
C as the Siegel domain Dn. The corresponding Hermitian metric of Dn, nor-

malized to constant holomorphic sectional curvature −4, is given by

ds2
Dn

=
1

Im(zn)− |z′|2
(

dzn ⊗ dzn

4(Im(zn)− |z′|2) +
n−1∑

k=1

dzk ⊗ dzk

+
1
2i

n−1∑

k=1

zkdzk ⊗ dzn − zkdzn ⊗ dzk

Im(zn)− |z′|2 +
n−1∑

k,l=1

zkzldzk ⊗ dzl

Im(zn)− |z′|2


 .

Biholomorphisms of Bn and Dn. From the previous remarks and equivalences
we now write down explicitly the actions of the projective unitary groups on the
unit ball and on the Siegel domain. In the rest of this work, for a matrix A in
a unitary group we will denote by [A] its class in the corresponding projective
unitary group. Similarly, if we represent a unitary matrix by some array (Aij),
then its class in the projective unitary group will be represented by [Aij ].

Proposition 2.3. The group Aut(Bn) of biholomorphisms of Bn is realized by the
action

PU(n, 1)× Bn → Bn

[
A b
c d

]
· z =

Az + b

c · z + d
,

where A is an n×n matrix, d ∈ C and the other matrix entries have corresponding
sizes.

Proposition 2.4. The group Aut(Dn) of biholomorphisms of Dn is realized by the
action

PU(Cn+1,Kn)×Dn → Dn


A α β
γ a b
δ c d


 · (z′, zn) =

(Az′ + α · zn + β, γ · z′ + azn + b)
δ · z′ + czn + d

,

where A is an (n− 1)× (n− 1) matrix, a, d ∈ C and the other matrix entries have
corresponding sizes.

The realizations of HnC as the unit ball Bn and as the Siegel domain Dn,
together with the above propositions on their biholomorphisms, implies that any
result stated for either of the three of them provides immediately a corresponding
result for the other two. Thus we will always assume that we do have a desired
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property for all three realizations of the n-dimensional complex hyperbolic space
whenever we have proved it for just one of them.

As discussed in the Introduction, we will be mostly interested in actions of
Abelian subgroups of Aut(HnC). This motivates the following definition.

Definition 2.5. A subset M of HnC will be called an Abelian orbit if it is an orbit
of a connected Abelian subgroup of Aut(HnC).

We list now the following n + 2 Abelian subgroups of Aut(HnC) realized as
biholomorphic actions on either Bn or Dn. They all define Abelian orbits that
played a fundamental role in [16].

The quasi-elliptic group of biholomorphisms of the unit ball Bn is isomorphic
to Tn with the group action

t : z = (z1, ..., zn) ∈ Bn 7−→ tz = (t1z1, ..., tnzn) ∈ Bn,

for each t = (t1, ..., tn) ∈ Tn. We will denote by E(n) the group of automorphisms
for this action.

The quasi-parabolic group of biholomorphisms of the Siegel domain Dn is
isomorphic to Tn−1 × R with the group action

(t, h) : (z′, zn) ∈ Dn 7−→ (tz′, zn + h) ∈ Dn,

for each (t, h) ∈ Tn−1 × R. We will denote by P(n) the group of automorphisms
given by this action.

The quasi-hyperbolic group of biholomorphisms of the Siegel domain Dn is
isomorphic to Tn−1 × R+ with the group action

(t, r) : (z′, zn) ∈ Dn 7−→ (r1/2tz′, rzn) ∈ Dn,

for each (t, r) ∈ Tn−1 × R+. We will denote by H(n) the group of automorphisms
given by this action.

The nilpotent group of biholomorphisms of the Siegel domain Dn is isomorphic
to Rn−1 × R with the group action

(b, h) : (z′, zn) ∈ Dn 7→ (z′ + b, zn + h + 2iz′ · b + i|b|2) ∈ Dn,

for each (b, h) ∈ Rn−1 × R. We will denote by N(n) the group of automorphisms
given by this action.

The quasi-nilpotent group of biholomorphisms of the Siegel domain Dn is
isomorphic to Tk × Rn−k−1 × R, 0 < k < n− 1, with the group action

(t, b, h) : (z′, z′′, zn) ∈ Dn 7−→ (tz′, z′′ + b, zn + h + 2iz′′ · b + i|b|2) ∈ Dn,

where we have decomposed the vectors involved such that z′ ∈ Ck, z′′ ∈ Cn−k−1.
We will denote by N(n, k) the group of automorphisms given by this action. To be
more specific we will call N(n, k) the quasi-nilpotent group of index (n, k). Observe
that our restrictions on k are given to avoid repetition with the quasi-parabolic
and nilpotent types, since the above action reduces to the former for k = n − 1
and to the latter for k = 0.
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3. Classification of the Maximal Abelian subgroups of Aut(HnC).

In this section we show that the Abelian subgroups of Aut(HnC) defined at the end
of Section 2 exhaust all possibilities. For this, we will use the following definition
of maximality.

Definition 3.1. If G is a Lie group, then a maximal connected Abelian subgroup
H of G is a Lie subgroup of G that satisfies
• H is connected Abelian,
• if H1 is a connected Abelian subgroup of G and H1 ⊃ H, then H1 = H.

For brevity, we will say that such subgroup is a MASG of G.

Corresponding to this and Definition 2.5, an orbit of a MASG of Aut(HnC)
will be called a MASG orbit in HnC.

To take into account obvious identifications, i.e. HnC realized either as Bn or
Dn, we will consider the following equivalence relation.

Definition 3.2. Let M and M ′ be connected complex manifolds. If H and H ′ are
subgroups of Aut(M) and Aut(M ′), respectively, we will say that (H,M) and
(H ′,M) are analytically equivalent if there is a biholomorphism ϕ : M ′ → M such
that H ′ = ϕ−1Hϕ.

Our aim now is to determine the equivalence classes of pairs (H, HnC) for a
connected Abelian subgroup H. As it is often done in Lie group theory, we will
solve this problem by considering the corresponding problem for Lie algebras.

Definition 3.3. Let g be a Lie algebra. A Lie subalgebra h of g is called a maximal
Abelian subalgebra, or MASA for short, when
• h is Abelian,
• if h1 is an Abelian subalgebra of g and h1 ⊃ h, then h1 = h.

We say that a Lie algebra g is linear if it is a real Lie subalgebra of gl(n,C),
for some n. In such case, to understand MASA’s of g it is enough to describe
them up to changes of coordinates. More precisely, if g1 and g2 are linear Lie
algebras in gl(n,C), with Abelian subalgebras h1, h2, respectively, we say that the
pairs (h1, g1) and (h2, g2) are conjugate if there exists A ∈ GL(n,C) such that
g2 = A−1g1A and h2 = A−1h1A.

We denote by su(n, 1) the Lie algebra of traceless derivations of the Hermitian
form on Cn+1

1 , in other words, we have

su(n, 1) = {A ∈ gl(n + 1,C) : A∗In,1 + In,1A = 0, tr(A) = 0}.
More generally, if B is a complex (n + 1)× (n + 1) Hermitian matrix of signature
(n, 1), then we denote

su(Cn+1, B) = {A ∈ gl(n + 1,C) : A∗B + BA = 0, tr(A) = 0},
which is the Lie algebra of traceless derivations of the Hermitian form associated
to B given by the assignment

(z, w) 7→ z∗Bw.
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We recall that su(Cn+1, B) is the Lie algebra of both of the Lie groups
SU(Cn+1, B) and PU(Cn+1, B). In particular, su(n, 1) is the Lie algebra of the
projective unitary group PU(n, 1).

It turns out that some MASA’s of su(n, 1) are easier to describe for various
other choices of B different from In,1. Also, for this setup, we consider a stronger
form of conjugacy.

Definition 3.4. Let B and B′ be Hermitian forms on Cn+1 of signature (n, 1) and
h, h′ Abelian subalgebras of su(Cn+1, B), su(Cn+1, B′), respectively. We say that
(h, su(Cn+1, B)) and (h′, su(Cn+1, B′)) are unitarily equivalent if there exists some
A ∈ GL(n + 1,C) such that:

B′ = A∗BA

su(Cn+1, B′) = A−1su(Cn+1, B)A

h′ = A−1hA.

A classification of MASA’s of su(n, 1) up to unitary equivalence is given in
[12]. The next statement is essentially Theorem 5.1 from [12] except for a trivial
change of coordinates that we explain for the sake of completeness. In what follows
besides the matrix Kn defined before, we will consider the matrix

Ln =




0 0 1
0 In−1 0
1 0 0


 .

which is easily seen to have signature (n, 1).

Theorem 3.5 ([12]). For every k, let D(k) be the space of k × k diagonal matrices
with imaginary entries. Let h be a Lie subalgebra of su(n, 1). Then h is a MASA
of su(n, 1) if and only if the pair (h, su(n, 1)) is unitarily equivalent to one of the
following pairs. Furthermore, no two of these pairs are unitarily equivalent.

1. (e(n, 1), su(n, 1)), where e(n, 1) = D(n + 1)∩ su(n, 1) is the Lie subalgebra of
diagonal matrices in su(n, 1).

2. (h(n), su(Cn+1,Kn)), for the Lie algebra h(n) of matrices of the form:



D 0 0
0 z 0
0 0 −z


 ,

where z ∈ C, D ∈ D(n− 1) and tr(D) + 2iIm(z) = 0.
3. (p(n), su(Cn+1,Kn)), for the Lie algebra p(n) of matrices of the form:




D 0 0
0 iy a
0 0 iy


 ,

where a, y ∈ R, D ∈ D(k) and tr(D) + 2iy = 0.
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4. (n(n), su(Cn+1, Kn)), for the Lie algebra n(n) of matrices of the form:



0 0 bt

2ib 0 a
0 0 0


 ,

where a ∈ R, b ∈ Rn−1.
5. (n(n, k), su(Cn+1,Kn)), for some k such that 1 ≤ k ≤ n− 2, and for the Lie

algebra n(n, k) of matrices of the form:



D 0 0 0
0 iyIn−k−1 0 bt

0 2ib iy a
0 0 0 iy


 ,

where a, y ∈ R, b ∈ Rn−1, D ∈ D(k) and tr(D) + iy(n− k + 1) = 0.

Proof. From the discussion found in Theorem 5.1 of [12] it follows that, up to
unitary equivalence, all MASA’s of su(n, 1) are given by e(n, 1), the Lie subalgebra
g′ of su(Cn+1, Ln) defined as:

g′ =








z 0 0
0 D 0
0 0 −z


 : z ∈ C, D ∈ D(n− 1), tr(D) + 2iIm(z) = 0



 ,

and the Lie subalgebras gk of su(Cn+1, Ln) (0 ≤ k ≤ n − 1) consisting of all
matrices of the form 



iy 0 b ia
0 D 0 0
0 0 iyIn−k−1 −bt

0 0 0 iy


 ,

where a, y ∈ R, b ∈ Rn−k−1, D ∈ D(k) and iy(n− k + 1) + tr(D) = 0.
Let us consider the matrix

Ak =




1 0 0 0
0 Ik 0 0
0 0 iIn−k−1 0
0 0 0 1




Then it is immediate to check that A∗kLnAk = Ln. From this it follows that, for
every k as above, the Lie algebra g′k = A−1

k gkAk is a Lie subalgebra of su(Cn+1, Ln)
in the same class of unitary equivalence as that of gk. A simple computation shows
that g′k is the set of matrices of the form




iy 0 ib ia
0 D 0 0
0 0 iyIn−k−1 ibt

0 0 0 iy


 ,

where a, y ∈ R, b ∈ Rn−k−1, D ∈ D(k) and iy(n− k + 1) + tr(D) = 0.
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Let us now consider the matrix

A =




0 i 0
−√2iIn−1 0 0

0 0 1


 ,

it is a simple matter to check that Kn = A∗LnA. Then the result follows from the
following identities obtained by explicit computation:

h(n) = A−1g′A

p(n) = A−1g′n−1A

n(n) = A−1g′0A

n(n, k) = A−1g′kA,

for 1 ≤ k ≤ n− 2. Here we use that

A−1 =




0 1√
2
iIn−1 0

−i 0 0
0 0 1


 .

¤
Based on the above, the next result provides a complete description, up to

analytic equivalence, of the MASG’s in Aut(HnC).

Theorem 3.6. Let H be a connected subgroup of Aut(HnC). Then H is a MASG of
Aut(HnC) if and only if (H, HnC) is analytically equivalent to one of the following
pairs:

1. (E(n),Bn) for n ≥ 1,
2. (H(n), Dn) for n ≥ 1,
3. (P(n), Dn) for n ≥ 1,
4. (N(n), Dn) for n ≥ 2
5. (N(n, k), Dn) for 1 ≤ k ≤ n− 2.

In particular, any subgroup H from the above list is a MASG in either Aut(Bn)
or Aut(Dn), according to which of these two contains H. Furthermore, no two of
these pairs are analytically equivalent.

Proof. Let H be a MASG of Aut(HnC). By Theorem 2.2, the group of biholo-
morphisms is realized by the projective unitary group PU(n, 1) whose Lie algebra
is su(n, 1). Hence, if h is the Lie algebra of H, then it can be considered as a
Lie subalgebra of su(n, 1). Moreover, by the correspondence between Lie subal-
gebras and connected Lie subgroups, it follows that h is a MASA in su(n, 1). By
Theorem 3.5 the pair (h, su(n, 1)) is unitarily equivalent to one of the pairs in its
statement. We now prove that (H, Aut(HnC)) is analytically equivalent to groups
of biholomorphisms of either Bn or Dn considering the following cases.

(h, su(n, 1)) is unitarily equivalent to (e(n, 1), su(n, 1)). Let A ∈ U(n, 1) be
such that A∗In,1A = In,1 and h = A−1e(n, 1)A. In particular, [A] ∈ PU(n, 1). Since
e(n, 1) is the Lie algebra of the subgroup E(n, 1) of PU(n, 1) with diagonal matrices
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as representatives (in the Un+1(1) class), we have that [A]−1E(n, 1)[A] = H.
Clearly, the action of E(n, 1) on Bn defines the MASG E(n) of Aut(Bn), and so
[A] is a biholomorphism of Bn with respect to which (H, Aut(Bn)) and (E(n),Bn)
are analytically equivalent.

(h, su(n, 1)) is unitarily equivalent to (h(n), su(Cn+1,Kn)). First we replace
(H,Bn) by an analytically equivalent pair (H1, Dn). Thus the pair of Lie algebras
(Lie(H1), su(Cn+1, Kn)) is unitarily equivalent to (h(n), su(Cn+1,Kn)) as well.
Hence, we can choose A ∈ U(Cn+1,Kn) such that A∗KnA = Kn and Lie(H1) =
A−1h(n)A. From Proposition 2.4 it follows that [A] ∈ Aut(Dn). By exponentiating
matrices, it is easy to see that the connected Lie subgroup of PU(Cn+1,Kn) with
Lie algebra h(n) consists of those classes (modulo Un+1(1)) whose representative
matrices are of the form

t




D 0 0
0 r 0
0 0 r−1


 ,

where r ∈ R+, t ∈ T and D is an (n− 1)× (n− 1) diagonal matrix with diagonal
entries in T such that tn+1 det(D) = 1. According to Proposition 2.4, this last
group of matrices acts on Dn realizing the group H(n). We have that

Aut(Dn) = [A]−1Aut(Dn)[A]

H1 = [A]−1H(n)[A],

which implies that (H1,Aut(Dn)) is analytically equivalent to (H(n), Dn). Hence,
(H,Aut(Bn)) is analytically equivalent to (H(n), Dn) as well.

(h, su(n, 1)) is unitarily equivalent to (p(n), su(Cn+1,Kn)). As above, we first
replace (H,Bn) by an analytically equivalent pair (H1, Dn). Hence, the pair
(Lie(H1), su(Cn+1, Kn)) is unitarily equivalent to (p(n), su(Cn+1,Kn)), and we can
choose A ∈ U(Cn+1,Kn) such that A∗KnA = Kn and Lie(H1) = A−1p(n, k)A.
We have again that [A] ∈ Aut(Dn). In this case, the connected Lie subgroup of
PU(Cn+1,Kn) with Lie algebra p(n) is the set of classes with matrix representa-
tives of the form

t




D 0 0
0 1 a
0 0 1


 ,

where a ∈ R, t ∈ T and D is a (n− 1)× (n− 1) diagonal matrix with entries in T
such that tn+1 det(D) = 1. Now, according to Proposition 2.4, this last group of
matrices acts on Dn realizing the group P(n). And so it follows that

Aut(Dn) = [A]−1Aut(Dn)[A]

H1 = [A]−1P(n)[A].

As before, this implies that (H, Aut(Bn)) is analytically equivalent to the pair
(P(n), Dn).

(h, su(n, 1)) is unitarily equivalent to (n(n), su(Cn+1, Kn)). Again, we first re-
place (H,Bn) by an analytically equivalent pair (H1, Dn), so that the pair of Lie
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algebras
(Lie(H1), su(Cn+1, Kn)) is unitarily equivalent to (n(n), su(Cn+1,Kn)). Then we
choose A ∈ U(Cn+1, Kn) such that A∗KnA = Kn and Lie(H1) = A−1n(n)A. We
also have [A] ∈ Aut(Dn). In this case, the connected Lie subgroup of PU(Cn+1,Kn)
with Lie algebra n(n) is the set of classes of matrices of the form


In−1 0 bt

2ib 1 a + i|b|2
0 0 1


 ,

where b ∈ Rn−1 and a ∈ R. Using Proposition 2.4, this last group of matrices acts
on Dn realizing the group N(n). We now obtain the relations:

Aut(Dn) = [A]−1Aut(Dn)[A]

H1 = [A]−1N(n)[A].

This implies that (H,Aut(Bn)) is analytically equivalent to (N(n), Dn).
(h, su(n, 1)) is unitarily equivalent to (n(n, k), su(Cn+1,Kn)). For this case we

are considering 1 ≤ k ≤ n−2. Then, we replace (H,Bn) by an analytically equiva-
lent pair (H1, Dn), and obtain a pair of Lie algebras (Lie(H1), su(Cn+1,Kn)) that is
unitarily equivalent to (n(n, k), su(Cn+1,Kn)). Then we choose A ∈ U(Cn+1,Kn)
such that A∗KnA = Kn and Lie(H1) = A−1n(n, k)A. In particular, [A] ∈ Aut(Dn).
In this case, the connected Lie subgroup of PU(Cn+1,Kn) with Lie algebra n(n, k)
is the set of classes with representatives of the form

t




D 0 0 0
0 In−k−1 0 bt

0 2ib 1 a + i|b|2
0 0 0 1


 ,

where b ∈ Rn−k−1, a ∈ R, t ∈ T and D is a k × k diagonal matrix with entries in
T such that tn+1 det(D) = 1. Using Proposition 2.4 once more, this last group of
matrices acts on Dn realizing the group N(n, k). And so we obtain the relations

Aut(Dn) = [A]−1Aut(Dn)[A]

H1 = [A]−1N(n, k)[A].

As before, this implies that (H, Aut(Bn)) is analytically equivalent to the pair
(N(n, k), Dn).

For the converse, note that the above arguments have shown that the pairs
listed in the statement are given by Lie subgroups whose Lie subalgebras are
conjugate to MASA’s of su(n, 1). Also, we recall that for connected Lie subgroups
H1 and H2 of any Lie group we have H1 ⊂ H2 if and only if Lie(H1) ⊂ Lie(H2).
From these remarks it follows that the Lie subgroups coming from the pairs listed
in the statement are indeed MASG’s.

To prove the last claim, we observe that if (H, Aut(HnC)) is analytically
equivalent to (H ′, Aut(M ′)), then H and H ′ are isomorphic. From this it follows
that, for the above restrictions on the values of n and k given above, none of the
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pairs in the statement can be analytically equivalent except for (H(n), Dn) and
(P(n), Dn), which correspond to actions of Tn−1×R+ and Tn−1×R, respectively.
To see that these two pairs are not analytically equivalent it is enough to observe
that H(n) has exactly two fixed points in the boundary of Dn, whereas P(n) has
just one fixed point in the boundary of Dn. ¤

4. Geometry of the submanifolds of HnC.

We start with the basic notions and notations of the extrinsic geometry of a sub-
manifold in a pseudo-Riemannian manifold. We refer to [14] and [6] for further
details.

Let M be a pseudo-Riemannian manifold and let M be a pseudo-Riemannian
submanifold of M . In other words, M is a submanifold so that TxM is a nondegen-
erate subspace of TxM for every x ∈ M . In particular, the pseudo-Riemannian met-
ric on M when restricted to the tangent bundle of M defines a pseudo-Riemannian
metric on M . We denote by TM⊥ the vector bundle over M whose fibers TxM⊥

are the orthogonal complements of TxM in TxM . In particular, we have a direct
sum of vector bundles TM = TM ⊕ TM⊥.

Let us denote by ∇ and ∇ the Levi-Civita connections for M and M , respec-
tively. Suppose that X and Y are vector fields tangent to M defined in an open
subset of some point x ∈ M . We can extend X and Y to vector fields X and Y ,
respectively, defined in an open neighborhood of x in M . If we compute (∇XY )x,
then by Lemma 1 in page 99 of [14] it follows that the value obtained depends only
on X and Y . Hence, we will write ∇XY to denote the vector field thus obtained
that is tangent to M but only defined in some open subset of M . Since we have
a direct sum TM = TM ⊕ TM⊥, we can decompose ∇XY into its component
tangent to M and its component orthogonal to M . In other words we have

∇XY = (∇XY )> + (∇XY )⊥,

where (·)> and (·)⊥ denote the orthogonal projections of TM onto TM and TM⊥,
respectively. It is well known (see Lemma 3 in page 99 of [14]) that the component
tangent to M is the Levi-Civita of M . More precisely, we have

(∇XY )> = ∇XY

for every pair of vector fields X and Y tangent to M and defined in an open subset
of M . On the other hand, the orthogonal component of ∇XY depends at every
given point only on the values of X and Y at such point, thus defining a tensor
field on the manifold M (see Lemma 4 in page 100 of [14]). Such tensor is called
the second fundamental form of M in M and we will denote it with α. Hence we
have

α(X, Y ) = (∇XY )⊥,

for every pair of vector fields X and Y tangent to M and defined in an open subset
of M . Note that the second fundamental form of M takes values in the bundle
TM⊥.
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From the previous remarks, we have the following basic equation that relates
the Levi-Civita connections of M and of M and the second fundamental form of
the latter in the former

∇XY = ∇XY + α(X, Y ), (4.1)

where X, Y are vector fields tangent to M defined in an open subset of M .
We are interested in those pseudo-Riemannian manifolds whose second fun-

damental form is invariant under covariant derivation, and thus we describe now
how to compute it.

Let X and ξ be a tangent and a normal vector fields to M , respectively, both
defined in an open subset of M . In other words, X and ξ are smooth sections of
TM and TM⊥, respectively, defined in an open subset of M . Following the same
sort of arguments as used above, we can compute ∇Xξ as a vector field tangent to
M defined on an open subset of M and depending only on X and ξ. Furthermore,
we can also decompose ∇Xξ into a component tangent to M and one orthogonal
to M . We will denote by Sξ(X) the component of ∇Xξ tangent to M and with
∇⊥Xξ the component of ∇Xξ orthogonal to M . This yields the expression

∇Xξ = Sξ(X) +∇⊥Xξ, (4.2)

It is known that the value of Sξ(X) at some x depends only on Xx (see Re-
mark 39(3) in page 119 of [14]). Hence, for every normal vector field ξ to M and x
in the domain of ξ we have a linear map Sξ : TxM → TxM . This defines a tensor
Sξ that is called the shape operator of M in M with respect to ξ. On the other
hand, the assignment

(X, ξ) 7→ ∇⊥Xξ,

is a connection on the vector bundle TM⊥, that is called the normal connection
of M (see Definition 31 in page 114 of [14]).

The covariant derivative of the second fundamental form α is defined as
follows

(∇Xα)(Y, Z) = ∇⊥X(α(Y,Z))− α(∇XY, Z)− α(Y,∇XZ),

where X, Y, Z are vector fields tangent to M . The value of (∇Xα)(Y, Z) at x
depends only on Xx, Yx, Zx, and so it defines a tensor ∇α.

Definition 4.1. A pseudo-Riemannian submanifold M of a pseudo-Riemannian
manifold M is called a parallel submanifold if its second fundamental form α is
parallel, i.e. if ∇α = 0.

We recall that any parallel tensor (i.e. a tensor T such that ∇T = 0) is
invariant under parallel translation. Hence, a parallel tensor can be recovered from
its value at a single point by parallel transport of such value. In particular, if M is
a connected parallel submanifold, the second fundamental form of M is completely
determined by its value at a single point.
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Proposition 4.2. Let C : I → M be a curve parametrized by arc-length in a 2-
dimensional Riemannian manifold M . If κ : I → R denotes the geodesic curvature
of C, then we have

α(C ′(t), C ′(t)) = κ(t)N(t),

for every t ∈ I, where α is the second fundamental form of C in M and N is
the unit normal to C in the direction of C ′′. In particular, C defines a parallel
submanifold of M if and only if κ is constant.

Proof. The formula that relates α with κ is an easy consequence of the definitions
of both of them. The last claim also follows easily by using the elementary fact
that N is parallel with respect to ∇⊥. ¤

Our main interest lies in the study of parallel Lagrangian submanifolds of
complex hyperbolic spaces. These submanifolds have been completely classified
in [9] and [10]. An important tool to study parallel Lagrangian submanifolds of
complex hyperbolic spaces turns out to be their pull back under the Hopf fibration.

Definition 4.3. Let M be a Lagrangian submanifold of HnC. The complete inverse
of M is defined as M̂ = π−1(M), where π : H2n+1

1 R→ HnC is the Hopf fibration
associated to HnC.

By Proposition 4.1 and Lemma 1.1 of [9] and the fact that H2n+1
1 R is to-

tally umbilical in Cn+1
1 , it follows that a Lagrangian submanifold of HnC and its

complete inverse satisfy the following properties.

Theorem 4.4 ([9]). Let M be a Lagrangian submanifold of HnC and M̂ its complete
inverse in H2n+1

1 R. Then,

1. M̂ is Lagrangian as a submanifold of Cn+1
1 .

2. M is complete if and only if M̂ is complete.
3. M is parallel in HnC if and only if M̂ is parallel in H2n+1

1 R.
4. M̂ is parallel as a submanifold of H2n+1

1 R if and only if it is parallel as a
submanifold of Cn+1

1 .

If M̂ is the complete inverse of a Lagrangian submanifold M of HnC, then we
denote by α̂ the second fundamental form of M̂ in Cn+1

1 . In particular, the above
implies that α is parallel (i.e. M is parallel in HnC) if and only if α̂ is parallel
(i.e. M̂ is parallel in Cn+1

1 ).
We say that two submanifolds M1,M2 of HnC are holomorphically (isomet-

rically) congruent if there is a biholomorphism (respectively, an isometry) of HnC
that maps M1 onto M2. Since any biholomorphism of HnC is an isometry, we have
that any pair of holomorphically congruent submanifolds of HnC are also con-
gruent as Riemannian submanifolds. In particular, two holomorphically congruent
submanifolds have the same second fundamental form at corresponding points.
More precisely, we have the following result.
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Proposition 4.5. If f ∈ Aut(HnC) is a holomorphic congruence between two sub-
manifolds M1 and M2, then for every x ∈ M1 the map dfx : TxHnC → Tf(x)HnC
induces linear isometries TxM1 → Tf(x)M2 and TxM⊥

1 → Tf(x)M
⊥
2 such that

α2(dfx(u), dfx(v)) = dfx(α1(u, v)),

for every u, v ∈ TxM1, where α1 and α2 denote the second fundamental forms of
M1 at x and M2 at f(x), respectively.

A remarkable fact proved in [9] and [10] is that for parallel Lagrangian sub-
manifolds of HnC the converse of the above result is also true. To state such
result, we consider first a certain replacement for the second fundamental form for
Lagrangian submanifolds.

If M is a Lagrangian submanifold of a Kaehler manifold M , then for every
x ∈ M the map:

TxM → TxM⊥

u 7→ iu,

is a linear isometry. In particular, if α is the second fundamental form of M in M
and J denotes the complex structure on M , then σ = Jα is a tensor of type (1, 2)
(i.e. 2-covariant and 1-contravariant, see [14] for further details on this notation).
From the fact that the complex structure is parallel for a Kaehler manifold we
obtain the following result.

Proposition 4.6. Let M be Lagrangian submanifold of a Kaehler manifold M . For
α the second fundamental form of M in M , let σ = Jα. Then

∇σ = J∇α.

In particular, M is a parallel submanifold of M if and only if σ is a tensor parallel
in M .

Proof. Note that for tangent vector fields X, Y, Z on M we have

(∇σ)(X,Y, Z) = ∇X(Jα(Y, Z))− Jα(∇XY, Z)− Jα(Y,∇XZ)

J(∇α)(X,Y, Z) = J∇⊥X(α(Y, Z))− Jα(∇XY, Z)− Jα(Y,∇XZ).

Hence, it suffices to show that

J∇⊥Xξ = ∇X(Jξ),

for vector fields X and ξ tangent and normal to M , respectively. Since M is
Kaehler, then with respect to its connection ∇ and for the above X and ξ we have

J∇X(ξ) = ∇X(Jξ),

and from equations (4.1) and (4.2) we obtain

J(Sξ(X) +∇⊥Xξ) = ∇X(Jξ) + α(X, Jξ).

Finally, using the fact that J reverses the tangent and normal directions to M and
comparing such directions, we get J∇⊥Xξ = ∇X(Jξ), as desired. ¤
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We now state the converse of Proposition 4.5 in terms of the tensor σ con-
sidered in Proposition 4.6. This result is essentially contained in [9] and [10]. The
proof is basically an explanation of how to obtain it from the results of [9] and
[10], which we include for the sake of completeness.

Theorem 4.7. Let M1 and M2 be connected complete parallel Lagrangian subman-
ifolds of HnC with complete inverses M̂1 and M̂2. For j = 1, 2, choose points
zj ∈ Mj, ẑj ∈ M̂j and denote by σj, σ̂j the value of the tensor obtained from the
second fundamental form for Mj, M̂j as submanifold of HnC, Cn+1

1 , respectively,
as considered in Proposition 4.6. Then the following conditions are equivalent.

1. M1 and M2 are holomorphically congruent in HnC.
2. There exists a linear isometry L : Tz1M1 → Tz2M2 for which we have L ◦

σ1(·, ·) = σ2(L(·), L(·)).
3. M̂1 and M̂2 are holomorphically congruent in Cn+1

1 with respect to a complex
linear map on Cn+1

1 .
4. There exists a linear isometry L : Tz1M̂1 → Tz2M̂2 for which we have L ◦

σ̂1(·, ·) = σ̂2(L(·), L(·))

Proof. Lemma 6.1 of [10] proves that the bilinear form σ̂j and the inner product
from Cn+1

1 define a structure of an orthogonal Jordan algebra (OJA) on Tzj M̂j .
We denote by Aj such an OJA.

The equivalence of (1) and (4) above follows from parts (1) and (3) of Theo-
rem 6.3 from [10] using the fact that our condition (4) is equivalent to the statement
that the OJA’s A1 and A2 are isomorphic.

The equivalence of (3) and (4) above is explicitly stated in Remark 6.5 of
[10]. Here again, (4) is stated in [10] in the language of OJA’s.

For the equivalence of (2) and (4) we observe some geometric relations be-
tween a Lagrangian submanifold of HnC and its complete inverse. Let M be such
a Lagrangian submanifold with complete inverse M̂ ; and let us choose ẑ ∈ M̂ .
Further, let σ̂ and σ be the values at ẑ and z, respectively, of the tensor obtained
as in Proposition 4.6 from the second fundamental form of M̂ and M , respectively.
For such choices and as before, we consider M̂ as a submanifold of Cn+1

1 . Observe
that the restriction of the Hopf fibration gives a map π : M̂ → M that is still
a principal fibration with structure group Un+1(1). As observed on page 97 of
[9], such restriction is a pseudo-Riemannian submersion. If we denote by Hbz(M̂)
the horizontal subspace at ẑ with respect to this submersion, then we have the
following properties obtained from equation (4.6) in [9]:

If u, v ∈ Hbz(M̂), then σ̂(u, v) ∈ Hbz(M̂) and dπbz(σ̂(u, v)) = σ(dπbz(u), dπbz(u)).

σ̂(u, iẑ) = 2iu for every u ∈ Hbz(M̂).

σ̂(iẑ, iẑ) = 0.
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Since the vector iẑ spans (over R) the vertical subspace complementary to Hbz(M̂),
it follows that σ determines the values of σ̂ in such a way that the equivalence of
(2) and (4) is now clear. ¤

5. Curvature properties of the MASG orbits in HnC.

We start this section with the following basic observation.

Proposition 5.1. Let G be a connected Lie group acting smoothly on a manifold M .
Then, for every x ∈ M , the orbit Gx is a smooth submanifold of M . Moreover, if
G is Abelian and preserves a pseudo-Riemannian metric in M , and TxGx is non-
degenerate in TxM (e.g. if M is Riemannian), then Gx is a pseudo-Riemannian
submanifold and it is flat with the respect to the induced metric.

Proof. If we denote by Gx the stabilizer of x in G, and we let

f : G → M

x 7→ gx,

be the orbit map at x, then there is an induced continuous and injective map
f̃ : G/Gx → M such that f = f̃ ◦ p, where p : G → G/Gx is the quotient map.
Since p defines a smooth fiber bundle (see Example 5.1 in page 55 of [5]), then
there are smooth local sections of p in a neighborhood of every point of G/Gx. If s

is any such section, then f̃ = f ◦ s in the domain of s. This proves the smoothness
of f̃ .

Next, we observe that the kernel of dfe is gx, the Lie algebra of Gx. Since
gx is the kernel of dpe, it follows that df̃eGx is injective. On the other hand,
the map f̃ is clearly G-equivariant, and so it follows that f̃ has everywhere an
injective differential. This implies that f̃ is an immersion and so its image Gx is a
submanifold of M .

We now assume that G is Abelian and preserves a metric on M . Hence,
G/Gx is a connected Abelian Lie group itself. Also, for TxGx nondegenerate, the
G-equivariance of f̃ and the G-invariance of the metric on M implies that the
tangent space of Gx at every other point is nondegenerate as well. In particular,
G/Gx is a pseudo-Riemannian submanifold of M . Moreover, there is a pseudo-
Riemannian metric on G/Gx so that the map f̃ is an isometry of G/Gx onto
the orbit Gx. Again, the G-equivariance of f̃ implies that the metric on G/Gx is
invariant under the group translations.

On the other hand, being a connected Abelian group, the universal covering
space of G/Gx is Rk, for some k. The invariant metric on G/Gx thus lifts to a
metric on Rk that is translation invariant. But any such metric on Rk is clearly
flat and so the metric on both G/Gx and the orbit Gx is flat. ¤

By Theorem 3.6 we obtain the following complete description of Abelian
orbits in HnC.
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Theorem 5.2. Let M be an Abelian orbit in HnC, then there exists a biholomor-
phism ϕ from HnC onto either Bn or Dn such that ϕ(M) is an orbit of a subgroup
of one of the groups listed in Theorem 3.6.

Proof. Let H be an Abelian subgroup of Aut(HnC) such that M is an H-orbit.
Let H1 be MASG of Aut(HnC) that contains H. Hence, there is a biholomorphism
ϕ onto either Bn or Dn with respect to which H1 determines a pair analytically
equivalent to a pair in the statement of Theorem 3.6. Denote by H ′

1 the subgroup
for the latter pair. With respect to the homomorphism

H1 → H ′
1

h 7→ ϕhϕ−1

let H ′ be the image of H. Then, we observe that ϕ(M) is an H ′-orbit. ¤

We need the following well known results.

Lemma 5.3. Let G be a connected Lie group acting smoothly on a manifold M . If
M is a G-orbit, then for every x ∈ M we have

TxM = {X∗
x : X ∈ g},

where X∗ is the vector field defined by

X∗
x =

d

dt

∣∣∣∣
t=0

(exp(tX)x),

for every X ∈ g. In particular, if the G-orbit M has trivial stabilizers, then TxM
and g are isomorphic as vector spaces.

Proof. It is an immediate consequence of Proposition 5.1. ¤

Lemma 5.4. For k < n, the natural inclusion maps

Bk → Bn, Dk → Dn

w 7→ (0, w), w 7→ (0, w)

define totally geodesic holomorphic embeddings.

Proof. We will explain the proof for the embedding Bk ↪→ Bn. The proof for the
embedding of Siegel domains is similar.

As bounded symmetric domains and according to Table V in page 518 of [4],
we have the realizations

Bk = SU(k, 1)/U(k),

Bn = SU(n, 1)/U(n).

With respect to these, the embedding Bk ↪→ Bn from the statement corresponds
to an embedding of Lie groups that induces the following embedding of their Lie
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algebras

su(k, 1) ↪→ su(n, 1)

A 7→
(

0 0
0 A

)
.

The structure of bounded symmetric domains in both Bk and Bn is determined by
Cartan decompositions of su(k, 1) and su(n, 1), respectively, with fixed compact
subalgebras given by u(k) and u(n), respectively (see Chapters VI and VIII of
[4]). It is easy to see that the above embedding su(k, 1) ↪→ su(n, 1) preserves the
corresponding Cartan decompositions, and so it follows that the (−1)-eigenspace
of the Cartan decomposition of su(k, 1) embeds into the (−1)-eigenspace of the
Cartan decomposition of su(n, 1). Hence, the result is a consequence of Theorem 7.2
of [4]. ¤

We now prove that all MASG orbits in HnC are Lagrangian in an appropiate
submanifold.

Theorem 5.5. Let M be a MASG orbit in HnC with real dimension k. Then there
exists a totally geodesic Kaehler submanifold N of HnC that contains M as a
Lagrangian submanifold. Furthermore, N is biholomorphic to HkC.

Proof. By taking the real part of the Hermitian metric in Dn as shown in Section 2,
we obtain the following corresponding Riemannian metric for Dn

hDn =
1

Im(zn)− |z′|2
[

dx2
n + dy2

n

4(Im(zn)− |z′|2) +
n−1∑

k=1

(dx2
k + dy2

k) (5.1)

+
1

Im(zn)− |z′|2
n−1∑

k=1

Re(zk)(dyk ¯ dxn − dxk ¯ dyn)

− 1
Im(zn)− |z′|2

n−1∑

k=1

Im(zk)(dxk ¯ dxn + dyk ¯ dyn)

+
1

Im(zn)− |z′|2
n−1∑

k,l=1

Re(zkzl)(dxk ⊗ dxl + dyk ⊗ dyl)

− 1
Im(zn)− |z′|2

n−1∑

k,l=1

Im(zkzl)(dyk ⊗ dxl − dxk ⊗ dyl)


 ,

where α¯ β = 1
2 (α⊗ β + β ⊗ α). We will use this expression below.

Let M be a MASG orbit in HnC. By Theorem 5.2 there exists a biholomor-
phism ϕ from HnC onto either Bn or Dn such that ϕ(M) is a MASG orbit of
one of the subgroups enumerated in Theorem 3.6. Since such a biholomorphism
preserves the Kaehlerian structures involved we can replace HnC with either Bn

or Dn and M with an orbit of one of the subgroups listed in Theorem 3.6. We now
proceed to consider each case separately.



26 R. Quiroga-Barranco and N. Vasilevski IEOT

M is a E(n)-orbit. We choose z ∈ M , then there exists k ∈ {0, 1, . . . , n}
and indices j1, . . . , jk such that zj 6= 0 precisely when j ∈ {j1, . . . , jk}. Note
that the number k and the indices j1, . . . , jk do not depend on our choice of z.
This is easily seen from the expression of the E(n)-action. Moreover, since any
permutation of coordinates defines a biholomorphism in Bn, we can assume that
{j1, . . . , jk} = {n− k + 1, . . . , n}, i.e. the last k coordinate indices of Bn. Then M
is a submanifold of Bk embedded in Bn by the map from Lemma 5.4. Hence, it is
enough to show that M is a Lagrangian submanifold of Bk, and so we will restrict
the following discussion to the last k coordinates given by Bk. In particular, M
can be considered as a E(k)-orbit for the E(k)-action on Bk.

Since for z ∈ M ⊂ Bk we have zj 6= 0 for every j, then the E(k)-action
has trivial stabilizers at every point in M . By Lemma 5.3, the orbit M is a (real)
k-dimensional submanifold of Bk. Hence, we need to show that TzM and iTzM
are orthogonal for every z ∈ M . But since M , the complex structure, and the
Hermitian metric are all invariant under the E(k)-action, it is enough to check
such orthogonality at a single point. We now observe that M has some point x
lying in Rk

+ and a direct computation using Lemma 5.3 shows that

TxM = iRk, iTxM = Rk,

and these are easily seen to be orthogonal for the Riemannian metric of Bk. We
recall that this Riemannian metric is a multiple of the real part of the Hermitian
metric whose expression is given in Section 2.

M is a P(n)-orbit. Choose z ∈ M with coordinates z = (z′, zn) corresponding
to those in the Seigel domain Dn. We now look at z′ and use the above arguments
to single out the nonvanishing coordinates of z′. By doing so, we can consider that
M is a submanifold of Dk embedded in Dn by the map in Lemma 5.4, in such a
way that M is a P(k)-orbit in Dk. Using the expression of the P(k)-action on Dk

we also conclude that the stabilizers of such action on M are trivial, thus implying
that M is a k-dimensional submanifold of Dk.

Hence, we need to prove that TzM and iTzM are orthogonal for every z ∈ M .
But again, since the involved structures are P(k)-invariant we only have to check
this at a single point. Now observe that in M there is some point of the form
(x′, iyk) where x′ ∈ Rk−1

+ and yk ∈ R. For such a choice, applying Lemma 5.3 to
the P(k)-action we obtain:

T(x′,iyk)M = iRk−1 ⊕ R
iT(x′,iyk)M = Rk−1 ⊕ iR.

Let us now choose u ∈ iRk−1 ⊕ R and v ∈ Rk−1 ⊕ iR, that are then of the form:

u = (iu1, . . . , iuk−1, uk)

v = (v1, . . . , vk−1, ivk),

where uj , vj ∈ R for every j.
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The following analysis of the terms inside the brackets of equation (5.1) prove
that hDk

(u, v) = 0.

• The first and second terms inside the brackets of equation (5.1) vanish when
evaluated at (u, v) by the orthogonality of R and iR in C with the usual flat
Riemannian metric.

• We observe that by the choice of u, v we have dxk(v) = dyk(u) = dxj(u) =
dyj(v) = 0 for every j = 1, . . . , k − 1. From this it follows easily that dyj ¯
dxk(u, v) = dxj ¯ dyk(u, v) = 0, for every j = 1, . . . , k − 1. This implies that
the third term in equation (5.1) vanishes at (u, v).

• The fourth and sixth terms in equation (5.1) vanish because Im(zr) =
Im(zrzs) = 0 for every r, s = 1, . . . , k− 1, since zj = xj ∈ R if 1 ≤ j ≤ k− 1.

• Finally the fifth term in equation (5.1) vanishes at (u, v) since one can check
directly that dxr⊗dxs(u, v) = dyr⊗dys(u, v) = 0, for every r, s = 1, . . . , k−1.

This analysis shows that M is Lagrangian in Dk.

M is a H(n)-orbit. The same sort of argument used above for the parabolic
case allows us to assume that M is a submanifold of Dk embedded in Dn by the
map in Lemma 5.4, in such a way that it is a (real) k-dimensional H(k)-orbit in Dk

for which the stabilizers are trivial. We now have to show that M is Lagrangian
in such Dk and, as before, we only need to check the orthogonality condition at a
single point.

We now claim that M has a point of the form (x′, zk) with x′ ∈ Rk−1
+ and

Im(zk) − |x′|2 = 1. First we note that by our assumptions, z ∈ M implies that
zj 6= 0 for every j = 1, . . . , k − 1. If we choose z = (z′, zk) ∈ M , then there is
some t ∈ Tk−1 such that (t, 1)(z′, zk) = (x′, zk), where x′ ∈ Rk−1

+ . On the other
hand, r = Im(zk)− |x′|2 > 0, and the element (1, r−1/2)(x′, zk) = (r−1/2x′, r−1zk)
is easily seen to satisfy the required properties.

At (x′, zk) given as above we have

T(x′,zk)M = iRk−1 ⊕ R(x′, 2zk)

iT(x′,zk)M = Rk−1 ⊕ R(ix′, 2izk).

Let us consider vectors

u = (akx′ + ia′, 2akzk) ∈ T(x′,zk)M

v = (b′ + ibkx′, 2ibkzk) ∈ iT(x′,zk)M
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where (a′, ak), (b′, bk) ∈ Rk−1 × R. By using equation (5.1) and the fact that
Im(zk)− |x′|2 = 1 we obtain

hDk
(u, v) =

1
4
(−4akxkbkyk + 4akykbkxk) + ak(b′ · x′) + bk(a′ · x′)

+
k−1∑

j=1

xj(−ajbkyk + akxkbkxj − (akxjbkxk + akbjyk))

+
k−1∑

r,s=1

xrxs(akbsxr + arbkxs)

= ak(b′ · x′) + bk(a′ · x′)− yk

k−1∑

j=1

xj(ajbk + akbj)

+
k−1∑

r,s=1

xrxs(akbsxr + arbkxs)

= ak(b′ · x′) + bk(a′ · x′)− ykbk(a′ · x′)− ykak(b′ · x′)
+ ak(b′ · x′)|x′|2 + bk(a′ · x′)|x′|2
= bk(a′ · x′)(1− yk + |x′|2) + ak(b′ · x′)(1− yk + |x′|2),

which vanishes since yk − |x′|2 = 1. This implies that M is Lagrangian in Dk.
M is a N(n)-orbit. In this case the action N(n) has trivial stabilizers on all of

Dn. This implies that M is a (real) n-dimensional submanifold of Dn. As before
we only need to check the required orthogonality condition at some point. It is
easy to check that M has a point of the form (iy′, iyn) ∈ iRn and at such a point
we obtain using Lemma 5.3

T(iy′,iyn)O = Rn

iT(iy′,iyn)O = iRn.

Let us now choose u ∈ Rn and v ∈ iRn, that can be written as

u = (u1, . . . , un)

v = (iv1, . . . , ivn),

where uk, vk ∈ R for every k.
The following analysis of the terms inside the brackets of equation (5.1) prove

that hDn(u, v) = 0.

• The first and second terms inside the brackets of equation (5.1) vanish when
evaluated at (u, v) by the orthogonality of R and iR in C with the usual flat
Riemannian metric.

• The third and sixth terms in equation (5.1) vanish because Re(zk) =
Im(zkzl) = 0 for every k, l, since zk = iyk ∈ iR for every k.
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• We observe that by the choice of u, v we have dxk(v) = dyk(u) = 0 for every
k. From this it follows that dxk ¯ dxn(u, v) = dyk ¯ dyn(u, v) = 0, for every
k. This implies that the fourth term in equation (5.1) vanishes at (u, v).

• Finally the fifth term in equation (5.1) vanishes at (u, v) since one can check
directly that dxk ⊗ dxl(u, v) = dyk ⊗ dyl(u, v) = 0, for every k, l.

Again, we conclude that M is Lagrangian in Dn.
M is a N(n, k)-orbit. For this case, we decompose the points z ∈ Dn with

the expression z = (z′, w′, zn) ∈ Ck × Cn−k−1 × C. As in the cases before the
nilpotent group action, we have to look at the first k coordinates that are acted
upon by the torus Tk. If j of such coordinates are non zero for some (and hence
any) point in M , then we may assume that they are precisely the last j coordinates
among those of z′ in the expression (z′, w′, zn). In this case, by applying the same
reductions as before we can assume that M is a submanifold of Dn−k+j and that
it is also a N(n− k + j, j)-orbit with trivial stabilizers. In particular, M is a (real)
(n− k + j)-submanifold of Dn−k+j . For simplicity we will denote m = n− k + j.

Again, we will check the required orthogonality property at a single point. In
this case, we observe that M has a point of the form (x′, iy′, iym) ∈ Rj×iRm−j−1×
iR, and at such a point

T(x′,iy′,iym)M = iRj ⊕ Rm−j

iT(x′,iy′,iym)M = Rj ⊕ iRm−j .

Let us now choose u ∈ iRj ⊕ Rm−j and v ∈ Rj ⊕ iRm−j , that can be written as

u = (iu1, . . . , iuj , uj+1, . . . , um)

v = (v1, . . . , vj , ivj+1, . . . , ivm),

where ur, vr ∈ R for every r.
The following analysis of the terms inside the brackets of equation (5.1) prove

that hDn(u, v) = 0. To apply equation (5.1) we will refer to r and s as the sum-
mation indices.
• The first and second terms inside the brackets of equation (5.1) vanish when

evaluated at (u, v) by the orthogonality of R and iR in C with the usual flat
Riemannian metric.

• For the third term we have two cases to consider according to the value of
the summation index r

– The terms corresponding to r ≥ j + 1 vanish since in this case we have
Re(zr) = Re(iyr) = 0.

– For the terms corresponding to r ≤ j, we observe that dxm(v) =
dym(u) = dxr(u) = dyr(v) = 0. From this it follows easily that dyr ¯
dxm(u, v) = dxr ¯ dym(u, v) = 0, for r ≤ j. Hence, the corresponding
term vanish at (u, v).

• For the fourth term we have a similar situation according to the values of the
summation index r.

– If r ≤ j, then Im(zr) = Im(xr) = 0, and the corresponding terms vanish.
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– For the terms corresponding to r ≥ j+1, we now observe that dxm(v) =
dym(u) = dxr(v) = dyr(u) = 0. From this it follows easily that dxr ¯
dxm(u, v) = dyr¯dym(u, v) = 0, for r ≥ j+1. Hence, the corresponding
term vanish at (u, v).

• For the fifth term, let r, s be the summation indices for equation (5.1). We
now have two cases according to whether or not r, s both belong to the same
of the two intervals {1, . . . , j} and {j + 1, . . . , m}.

– If r, s do not belong to the same interval, then zrzs is pure imaginary
and so the corresponding terms vanish.

– If r, s belong to the same interval, then one can directly verify that by
the choices of u, v we have dxr ⊗ dxs(u, v) = dyr ⊗ dys(u, v) = 0.

• Finally, for the sixth term in equation (5.1) we also have two cases according
to whether or not r, s belong to the same intervals as above.

– If r, s belong to the same interval, then zrzs is real and the corresponding
terms vanish.

– If r, s do not belong to the same interval, then one can directly verify
that dyr ⊗ dxs(u, v) = dxr ⊗ dys(u, v) = 0, for our choices of u, v.

Then M is a Lagrangian submanifold of Dm. ¤

Using the previous result it is now easy to conclude that MASG orbits in the
complex hyperbolic space are parallel.

Theorem 5.6. Every MASG orbit in HnC is a complete parallel submanifold.

Proof. Let M be an orbit in HnC of a MASG H of Aut(HnC). The complete-
ness of M follows from homogeneity and the well known fact that a homogeneous
Riemannian manifold is complete. By Theorem 5.5, there is a totally geodesic sub-
manifold N of HnC biholomorphic to some HkC that contains M as a Lagrangian
submanifold. Furthermore, by the proof of Theorem 5.5, M is still a MASG orbit
in the corresponding HkC. Then, since the property of being parallel does not
change when we pass to a totally geodesic submanifold (see Lemma 1.1 of [9]), we
can assume that k = n, i.e. that M is Lagrangian in HnC. This implies that, if
α is the second fundamental form of M , then we can consider σ = iα, which is
a tensor of type (1, 2) on M . By Proposition 4.6, it is enough to show that σ is
parallel as a tensor in M .

Since H acts by isometries on HnC and preserves M , it also preserves its
second fundamental form M . But H also preserves the complex structure and so
it preserves the tensor σ on M .

On the other hand, by Proposition 5.1 and the proof of Theorem 5.5, the
orbit map

H → M

h 7→ hz,

is an H-equivariant diffeomorphism. From the proof of Proposition 5.1 it is also
an isometry for some H-invariant metric on H. The pull-back of σ with respect to
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such orbit map thus defines an H-invariant tensor, which is then parallel in H. This
last claim follows from the fact that in an Abelian Lie group with invariant metric
a tensor is parallel if and only if it is (translation) invariant (see Exercise 6(ii) in
Chapter II of [4]). Hence, the fact that the above orbit map is an isometry onto
M implies that σ is parallel in M . ¤

The properties obtained from Proposition 5.1 and Theorems 5.5 and 5.6 allow
us to conclude the following result.

Theorem 5.7. Let H be a MASG of Aut(HnC). Then for every H-orbit M with
real dimension k there exists a totally geodesic Kaehler submanifold N of HnC
biholomorphic to HkC containing M as a flat parallel Lagrangian submanifold.
Moreover, if we denote by HnCH the set of points in HnC where the H-action
is free, then HnCH is a connected open conull H-invariant subset of HnC where
the real dimension of the H-orbits is n and, in particular, in this open subset the
H-orbits are flat parallel Lagrangian submanifolds of HnC.

Proof. All but the last claim is a consequence of the previous results. To obtain
the last claim, by Theorem 3.6 we can assume that H is one of the groups listed
in its statement. From this, it is easy to see that HnCH is an open conull subset of
HnC by considering each case separately. In fact, for each case the action fails to be
free in a union of a finite number of proper complex subspaces of Cn+1 intersected
with either Bn or Dn. ¤

By Naitoh’s classification of parallel totally real submanifolds of HnC ([9] and
[10]) it follows that the converse is also true. In other words, every flat parallel
totally real submanifold of HnC is a MASG orbit. This is essentially contained in
[9] and [10] and their references. In the next theorem we state the result and in its
proof we explain how to obtain it from these previous works. For this, we will use
the following result.

Lemma 5.8. Let M be a complete parallel Lagrangian submanifold of HnC and M̂

its complete inverse. Denote by π : M̂ → M the pseudo-Riemannian submersion
obtained by restricting the Hopf fibration of HnC. Then, the fundamental tensors
of π : M̂ → M are both zero. In particular, M is flat if and only if M̂ is flat.

Proof. Let us denote by ∇̂ and ∇ the Levi-Civita connections of M̂ and M , re-
spectively. Also, denote by V the vertical vector field whose flow is given by the
Un+1(1)-action. Then by equation (4.6) in page 98 of [9] we have for X and Y

horizontal vector fields on M̂ the identities

∇̂XY = h(∇dπ(X)dπ(Y ))

∇̂XV = V(∇N
XV )

∇̂V X = ∇̂V V = 0,

where ∇N denotes the Levi-Civita connection of H2n+1
1 R and h(∇dπ(X)dπ(Y ))

denotes the horizontal lift of ∇dπ(X)dπ(Y ). If T and A denote the fundamental
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tensors of the pseudo-Riemannian submersion π : M̂ → M , then by its definition as
given in Section 2 it follows that T = A = 0. The last claim is now a consequence of
Proposition 2.1 and the fact that the fibers are flat since they are one-dimensional.

¤

Theorem 5.9. Let M be a complete flat parallel totally real submanifold of HnC.
Then there exists an Abelian subgroup H of Aut(HnC) such that M is an H-orbit.
In particular, every flat parallel Lagrangian submanifold of HnC is a MASG orbit.

Proof. Given the first part of the statement, the last claim is an easy consequence
of the fact that the MASG’s of Aut(HnC) are n-dimensional.

Let M be a flat parallel totally real submanifold of HnC. By Theorem 2.4
of [9] it follows that M is a Lagrangian submanifold of a Kaehler totally geodesic
submanifold N of HnC biholomorphic to HkC where k is the real dimension of M .
We recall from the theory of symmetric spaces (see Sections 5 and 7 in Chapter
IV of [4]) that for a totally geodesic isometric embedding ϕ : X ↪→ X of sym-
metric spaces, there is a homomorphism ρ : Iso0(X) → Iso0(X) of the connected
components of their groups of isometries with respect to which ϕ is ρ-equivariant.
In particular, the elements of every Abelian group of isometries of X extend to
isometries of X to form an Abelian group. From this it follows that every Abelian
group of biholomorphisms of N extends to an Abelian group of biholomorphisms
of HnC. This is a consequence that the group of biholomorphisms of a complex
hyperbolic space is precisely the connected component of its group of isometries.
In particular, if we prove that M is an Abelian orbit in N , then it will follow that
it is an Abelian orbit in HnC. From this discussion it follows that we can assume
that M is a Lagrangian submanifold of HnC.

As before, let us denote by M̂ the complete inverse of M . As observed in
Lemma 5.8, the Hopf fibration above HnC restricts to a pseudo-Riemannian sub-
mersion M̂ → M with a one-dimensional fiber. Theorem 2.2 also implies that the
linear action of U(n, 1) on Cn+1

1 descends to the action of PU(n, 1) on HnC that
defines the group of biholomorphisms of HnC. It follows that if M̂ is an orbit of
an Abelian subgroup of U(n, 1), then M is an orbit of an Abelian subgroup of
Aut(HnC). In other words, it suffices to show that M̂ is an orbit of an Abelian
group of unitary complex linear transformations of Cn+1

1 .
Naitoh’s classification of complete parallel submanifolds of HnC ([9] and [10])

is based in associating to the corresponding complete inverses certain algebraic
objects. More precisely, such classification associates to any parallel Lagrangian
submanifold an orthogonal Jordan algebra (OJA as in the proof Theorem 4.7) and
a Hermitian symmetric graded Lie algebra (HSGLA) satisfying suitable axioms. In
fact, it is proved in [9] and [10] that there is a one-to-one correspondence between
parallel Lagrangian submanifolds and a family of such algebraic objects satisfying
a certain set of axioms. We will use some features of this correspondence and refer
to [9] and [10] for further details. Nevertheless, while doing this, we will be careful
to provide precise references to the results in Naitoh’s work.
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Following [10], we call a complete inverse of a parallel Lagrangian submanifold
of HnC indecomposable if and only if its associated OJA in the above mentioned
correspondence is indecomposable in the sense of Section 7 from [10]. Then by
Remark 7.6 from [10] it follows that M̂ given above is, up to a unitary linear
congruence, a product of indecomposable complete inverses. More precisely, there
exist complete parallel Lagrangian submanifolds M̂j ⊂ Ckj

εj , where j = 1 . . . , l,
such that n + 1 = k1 + · · · + kl and for which there is a unitary complex linear
transformation

T : Cn+1
1 → Ck1

ε1 × · · · × Ckl
εl

that maps M̂ onto M̂1 × · · · × M̂l. Here, and according to our previous notation,
εj ∈ {0, 1} and Ck

0 is the k-dimensional complex vector space with the usual
Hermitian form while Ck

1 is the same vector space with the Hermitian form with
signature (k − 1, 1). Also, the target of the unitary map T carries the product
Hermitian structure.

Furthermore, by Remark 7.11 of [10] we can assume that the following prop-
erties are satisfied

• εj = 1 for just one j,
• M̂j is the complete inverse of a parallel Lagrangian submanifold Mj of either

Hkj−1C or Pkj−1C,
• M̂j is indecomposable.

We note here that the correspondence between OJA’s and HSGLA’s with parallel
submanifolds of HnC mentioned above is in fact considered in [9] and [10] in such
a way that it includes parallel submanifolds of PnC. This is actually needed to
complete the classification of parallel submanifolds in HnC, and with this respect
the results found in [11] play an important role.

By the previous discussion, it is enough to show that each submanifold M̂j

is an orbit of an Abelian group of unitary transformations of Ckj
εj . To achieve this

we observe that by Lemma 5.8 the flatness of M implies that M̂ is flat as well.
But then, since each M̂j is a factor of M̂ , we also have that M̂j is flat. Hence, one
more application of Lemma 5.8 allows us to assume that each Mj is flat.

In other words, each M̂j is indecomposable and the complete inverse of a flat
parallel Lagrangian submanifold of either Hkj−1C or Pkj−1C. The classification of
parallel submanifolds from [9] and [10] is stated by providing a fairly complete de-
scription of all such complete inverses. This description also uses the constructions
considered in [11]. Hence, the above conditions on the submanifolds M̂j together
with Remark 7.11, Theorem 8.5(4) and Lemma 9.1 of [10] and Theorem 2.1(5) of
[11] we find that each M̂j is given by one of the following possibilities.

Case 1: The complete inverse M̂ ⊂ C2
1 of a closed curve in H1C with constant

geodesic curvature.
Case 2: The complete inverse M̂ ⊂ C1

1 of the one point trivial space H0C.



34 R. Quiroga-Barranco and N. Vasilevski IEOT

Case 3: The complete inverse M̂ ⊂ Ck+1
1 of a parallel submanifold of HkC, where

the associated HSGLA is almost nilpotent as defined in page 135 of [10].
Case 4: The complete inverse M̂ ⊂ C2

0 of a closed curve in P1C with constant
geodesic curvature.

We now proceed to consider these possibilities and show that each one defines
a complete inverse that is the orbit of an Abelian group of unitary complex linear
transformations.

Case 1: It was proved in [3] that the closed curves in H1C with constant
geodesic curvature are all given as orbits of one-parameter subgroups of PU(1, 1).
Such subgroups are conjugate to either the subgroups of Aut(D1) given by

{[
1 a
0 1

]
: a ∈ R

}
,

{[
r 0
0 r−1

]
: r ∈ R+

}
,

or the subgroup of Aut(B1) given by
{[

t 0
0 t−1

]
: t ∈ T

}
.

From this and Theorem 2.2 it follows that M̂ is an orbit of one of the following
subgroups of U(1, 1)

{(
t a
0 t

)
: a ∈ R, t ∈ T

}
,

{(
tr 0
0 tr−1

)
: r ∈ R+, t ∈ T

}
,

{(
t1 0
0 t2

)
: t1, t2 ∈ T

}
,

all of which are Abelian.
Case 2: This is rather a trivial case. It is enough to observe that H1

1R is simply
the circle in C1

1 and the complete inverse M̂ coincides with such circle. Hence, M̂
is clearly an orbit of U(1) which is Abelian.

Case 3: This requires to understand the corresponding construction from [10].
The HSGLA that one associates to this case has a decomposition g = k⊕ p, where
k is a Lie subalgebra and p is an ad(k)-invariant subspace. As explained in [9] and
[10], the subspace p has a Hermitian structure preserved by the group K = Adp(k)
and such that the manifold M̂ is equivalent to a K-orbit K(ν) in p for some ν ∈ p.
More precisely, there is a unitary complex linear map Ck+1

1 → p that maps M̂
onto K(ν) (see Section 5 from [9] and Section 6 from [10]). Hence, it suffices to
show that K is Abelian in this case. We will do so by proving that k is an Abelian
Lie algebra.

By the remarks in page 103 from [9], it follows that there is a real vector space
V and a bilinear map L : V × V → End(V ) such that g is a subset of V ⊕ L̃⊕ V ,
where L̃ is the real vector space generated by the maps of the form L(u, v) with
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u, v ∈ V . Furthermore, the Lie brackets are given by the formula

[(u1, F, u2), (v1, G, v2)] =

(F (v1)−G(u1), [F, G]− 1
2
L(u1, v2) +

1
2
L(v1, u2), Gt(u2)− F t(v2)), (5.2)

where At denotes the transpose of A ∈ End(V ) with respect to a suitably defined
inner product in V .

By Lemma 5.1 from [9], the Lie subalgebra k is generated by the subset of
triples of the form (u, L(v1, v2) − L(v2, v1), u) for u, v1, v2 ∈ V . From the corre-
spondences considered in [10], V admits a Jordan algebra structure with product
(u,w) 7→ u · w such that

L(u, v) = Tu·v + [Tu, Tv]

for every u, v ∈ V , where Tu denotes the map w 7→ u · w (see equation (5.12) in
page 112 of [9] and the proof of Lemma 6.1 from [10]). In fact, with such structure,
V turns out to be the OJA associated to M̂ . From the above relations it follows
that

L(u, v)− L(v, u) = Tu·v + [Tu, Tv]− Tv·u − [Tv, Tu] = 2[Tu, Tv].
At this point Lemma 8.2(2) from [10] implies that the latter vanishes. In other
words, L(u, v) − L(v, u) = 0 for every u, v ∈ V . Hence, by the above remarks we
conclude that

k = {(u, 0, u) : u ∈ V },
and so formula (5.2) implies that k is Abelian.

Case 4: By following arguments similar to those from [3] one can show that
the closed curves in P1C with constant geodesic curvature are precisely the orbits
of subgroups conjugate to the group{[

t 0
0 t−1

]
: t ∈ T

}
.

Then, using the Hopf fibration for P1C we conclude that M̂ is the orbit of a
subgroup of U(2) conjugate to the one given by{(

t1 0
0 t2

)
: t1, t2 ∈ T

}
,

which is Abelian. ¤

6. Foliations defined by MASG’s of Aut(HnC).

Our main goal in this section is to prove that every MASG of Aut(HnC) defines
a pair of foliations with distinguished geometry. We show as well that the inverse
statement is also true, i.e., that each pair of foliations possessing this distinguished
geometry is originated from a MASG of Aut(HnC). To do so, we briefly discuss
first some notions of foliations and their geometry. We refer to [15] and [7] for
further details. We also obtain some results on isometric actions of Lie groups.
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A foliation on a manifold M is a partition of M into connected submanifolds
of the same dimension that can locally be given by the fibers of a submersion. The
precise definition is as follows.

On a smooth manifold M a codimension q foliated chart is a pair (ϕ,U) given
by an open subset U of M and a smooth submersion ϕ : U → V , where V is an
open subset of Rq. For a foliated chart (ϕ,U) the connected components of the
fibers of ϕ are called the plaques of the foliated chart. Two codimension q foliated
charts (ϕ1, U1) and (ϕ2, U2) are called compatible if there exists a diffeomorphism
ψ12 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) such that the following diagram commutes

U1 ∩ U2

ϕ1

xxppppppppppp
ϕ2

&&NNNNNNNNNNN

ϕ1(U1 ∩ U2)
ψ12 // ϕ2(U1 ∩ U2)

(6.1)

A foliated atlas on a manifold M is a collection {(ϕα, Uα)}α of foliated charts that
are mutually compatible and such that M =

⋃
α Uα.

The compatibility of two foliated charts (ϕ1, U1) and (ϕ2, U2) is defined so
that it ensures that, when restricted to U1 ∩U2, both submersions ϕ1 and ϕ2 have
the same plaques. This implies that the following is an equivalence relation in M .

x ∼ y ⇐⇒ there is a sequence of plaques (Pk)l
k=0 for foliated charts

(ϕk, Uk)l
k=0, respectively, of the foliated atlas, such that x ∈ P0,

y ∈ Pl, and Pk−1 ∩ Pk 6= φ for every k = 1, . . . , l

The equivalence classes are submanifolds of M of dimension dim(M)− q, where q
is the codimension of the foliated charts.

Definition 6.1. A foliation F on a manifold M is a partition of M that is given by
the family of equivalence classes of the relation of a foliated atlas. The classes are
called the leaves of the foliation.

For a manifold M carrying a smooth foliation F we denote by TF the vector
subbundle of TM that consists of elements tangent to the leaves of F. Then, we
also denote the associated quotient vector bundle by T tF = TM/TF. The latter
will be referred to as the transverse vector bundle of the foliation F. Since T tF
is a smooth vector bundle, we can consider the associated linear frame bundle,
which we will denote by LT (F). In particular, LT (F) is a principal fiber bundle
with structure group GLq(R). The principal bundle LT (F) is called the transverse
frame bundle since it allows us to study the geometry transverse to the foliation F.

The study of the transverse geometry of a foliation F is based on a natural
foliation in LT (F), that is defined as follows.

Suppose that for a foliation F on a manifold M we choose a foliated atlas
{(ϕα, Uα)}α that determines the foliation as in Definition 6.1. For any foliated
chart (ϕα, Uα) and every x ∈ Uα we have a linear map d(ϕα)x : TxM → Rq whose
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kernel is TxF. This induces a linear isomorphism d(ϕα)t
x : T t

xF = TxM/TxF → Rq.
The latter allows us to define the smooth map

ϕ(1)
α : LT (F|Uα

) → L(Vα)
A 7→ d(ϕα)t

x ◦A,

where LT (F|Uα) is the open subset of LT (F) given by inverse image of Uα under
the natural projection LT (F) → M , A is mapped to x under such projection and
Vα is the target of ϕα. Next we observe that, since Vα is open in Rq, the manifold
L(Vα) is open in Rq × GLq(R) and so it is open in Rq+q2

as well. Furthermore,
from our choices it is easy to check that the commutative diagram (6.1) and the
compatibility of charts in a foliated atlas induce a corresponding commutative
diagram given by

LT (F|U1∩U2)
ϕ(1)

α1

vvmmmmmmmmmmmmm ϕ(1)
α2

((QQQQQQQQQQQQQ

L(ϕα1(U1 ∩ U2))
ψ(1)

α1α2 // L(ϕα2(U1 ∩ U2))

where ψ
(1)
α1α2 is defined as above for the diffeomorphism ψα1α2 for which we have

ϕα2 = ψα1α2◦ϕα1 , as in diagram (6.1). This shows that the set {(ϕ(1)
α , LT (F|Uα))}α

defines a foliated atlas. The corresponding foliation in LT (F) is called the lifted
foliation. We now have the following fundamental result (see [7]).

Proposition 6.2. Let F be a foliation on a smooth manifold M . Then, the natural
projection LT (F) → M maps the leaves of the lifted foliation of LT (F) locally
diffeomorphically onto the leaves of F.

In order to define transverse geometric structures for a given foliation F we
consider reductions of LT (F) compatible with the lifted foliation. More precisely,
we have the following definition which also introduces the notion of a Riemannian
foliation.

Definition 6.3. Let M be a manifold carrying a smooth foliation F of codimension
q, and let G be a Lie subgroup of GLq(R). A transverse geometric G-structure is
a reduction Q of LT (F) to the subgroup G that is saturated with respect to the
lifted foliation, i.e. such that Q∩L 6= φ implies L ⊂ Q for every leaf L of the lifted
foliation. A transverse geometric O(q)-structure is also called a transverse Rie-
mannian structure. A foliation endowed with a transverse Riemannian structure
is called a Riemannian foliation.

Hence, a transverse Riemannian structure defines a Riemannian metric on
the bundle TM/TF = T tF. However, a transverse Riemannian structure is more
than a simple Riemannian metric on T tF. Since the O(q)-reduction that defines a
transverse Riemannian structure is saturated with respect to the lifted foliation, as
in Definition 6.3, then the metric is left invariant as we move along the leaves in M .
This is a well known property of Riemannian foliations whose further discussion
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can be found in [7] and other books on the subject. Here we observe that, since a
Riemannian metric on a manifold defines a distance, the invariance of a transverse
Riemannian structure as we move along the leaves can be interpreted as the leaves
of the foliation in M are equidistant while we move along them. Again, this sort
of remark is well known in the theory of foliations and shows that a Riemannian
foliation has a distinguished geometry. In particular, not every foliation admits a
Riemannian structure, a standard example is given by the Reeb foliation of the
sphere S3 (see [7]).

A fundamental way to construct transverse Riemannian structures for a foli-
ation is to consider suitable Riemannian metrics on the manifold that carries the
foliation. To describe such construction we need some additional notions.

For a smooth foliation F on a manifold M , a vector field X on M is called
foliate if for every vector field Y tangent to the leaves of F the vector field [X, Y ]
is tangent to the leaves as well. In other words, the set of foliate vector fields is the
normalizer of the fields tangent to the leaves of F in the Lie algebra of all vector
fields on M . A Riemannian metric h in M is called bundle-like for the foliation F
if the real-valued function h(X,Y ) is constant along the leaves of F for every pair
of vector fields X, Y that are foliate and perpendicular to TF with respect to h.

Suppose that h is a Riemannian metric on a manifold M and that F is a
foliation on M . Then, the canonical projection TM → T tF allows us to induce a
Riemannian metric on the bundle T tF, that in turn provides an O(q)-reduction of
the transverse frame bundle LT (F) (where q is the codimension of F). Nevertheless,
such reduction does not necessarily define a transverse Riemannian structure. The
next result states that bundle-like metrics are precisely those that define transverse
Riemannian structures. The proof of this theorem can be found in [7].

Proposition 6.4. Let M be a manifold carrying a smooth foliation F of codimension
q. For every Riemannian metric h on M , denote by OT (M,h) the O(q)-reduction
of LT (F) given by the Riemannian metric on T t(F) coming from h and the natu-
ral projection TM → T tF. If h is a bundle-like metric, then OT (M, h) defines a
transverse Riemannian structure on F. Conversely, for every transverse Riemann-
ian structure given by a reduction Q as in Definition 6.3, there is a bundle-like
metric h on M such that Q = OT (M, h).

We say that a bundle-like metric h on M is compatible with the Riemannian
foliation if OT (M, h) is the reduction that defines the corresponding transverse
Riemannian structure.

A fundamental property of Riemannian foliations is that, with respect to
compatible bundle-like metrics, geodesics that start perpendicular to a leaf of the
foliation stay perpendicular to all leaves.

Proposition 6.5. Let F be a Riemannian foliation on a manifold M and let h be a
compatible bundle-like metric. If γ is a geodesic of h such that γ′(t0) ∈ (Tγ(t0)F)⊥,
for some t0, then γ′(t) ∈ (Tγ(t)F)⊥ for every t.
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This result is fundamental in the theory of Riemannian foliations and its proof
can be found in [7]. We can provide its geometric interpretation as follows. Let M ,
F and h be as in Proposition 6.5, and denote by TF⊥ the orthogonal complement
of TF in TM ; in particular, TM = TF⊕ TF⊥. Hence, Proposition 6.5 states that
every geodesic with an initial velocity vector in TF⊥ has velocity vectors contained
in TF⊥ for all time.

In a sense, the above states that the orthogonal complement TF⊥ contains
all geodesics perpendicular to TF. If the codimension of F is 1, then TF⊥ is one-
dimensional and it can be integrated to a smooth one-dimensional foliation F⊥

whose leaves are perpendicular to those of F. In such case, Proposition 6.5 ensures
that the leaves of F⊥ are geodesics with respect to the bundle-like metric h.

If F has codimension greater than 1, then we can still consider the possibility
of TF⊥ being integrable, e.g. to satisfy the hypothesis of Frobenius theorem. If
TF⊥ is indeed integrable, we do have a foliation F⊥ whose leaves are orthogonal
to those of F. Again, in this case, Proposition 6.5 implies that the leaves of F⊥

are totally geodesic. More precisely, we have the following well known result in the
theory of foliations.

Proposition 6.6. Let F be a Riemannian foliation on a manifold M and let h be
a compatible bundle-like metric. If the vector bundle TF⊥ is integrable, then its
integral submanifolds define a totally geodesic foliation, i.e. a foliation for which
every leaf is a totally geodesic submanifold of M with respect to the metric h.

Our interest in the geometry of foliations comes from our study of actions of
Lie groups, where an action of the group partitions the manifold on orbits. We will
see that such partitions define foliations with distinguished geometry for suitable
actions. In what follows M will denote a smooth manifold and G a connected Lie
group acting smoothly on the left on M . For such a G-action, we will denote the
stabilizer of a point x ∈ M by Gx. Then, the action of G on M is called free
(locally free) if for every x ∈ M the stabilizer Gx is trivial (respectively discrete).

A straightforward application of Frobenius theorem on the integrability of
vector subbundles of a tangent bundle allows us to obtain the following result (see
[15] for a proof). We recall that a parallelism for a vector bundle is a collection of
sections whose restriction to every point yields a basis for the fiber at such point.

Proposition 6.7. If G acts locally freely on M , then the G-orbits define a smooth
foliation on M . Furthermore, if X1, . . . , Xk is a basis for the Lie algebra of G,
then X∗

1 , . . . , X∗
k define a parallelism for the tangent bundle to the G-orbits.

We now consider the case where G acts locally freely preserving a Riemannian
metric on M . A proof of the following well known result can be found in [15].

Proposition 6.8. If G acts locally freely on M preserving a Riemannian metric h,
then the G-orbits define a smooth Riemannian foliation for which h is a compatible
bundle-like metric.

From this and Propositions 6.5 and 6.6 we obtain the following consequence.
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Proposition 6.9. If G acts locally freely on M preserving a Riemannian metric h
and γ is a geodesic (with respect to h) perpendicular at some point to a G-orbit,
then γ intersects every G-orbit perpendicularly. In particular, if the normal bundle
to the G-orbits is integrable, then the integral submanifolds of such normal bundle
define a totally geodesic foliation everywhere perpendicular to the G-orbits.

We now prove the main result of this section: the MASG’s of Aut(HnC)
provide a pair of foliations with distinguished geometry in the sense discussed
above.

Theorem 6.10. Let H be a MASG in Aut(HnC) and denote by HnCH the set of
points with trivial stabilizer. Then, HnCH is a connected open conull H-invariant
subset of HnC on which the collection of H-orbits defines a smooth foliation O
that satisfies the following properties

1. O is a Lagrangian and Riemannian foliation with complete flat parallel leaves.
2. The orthogonal complement TO⊥ of the tangent bundle to O is integrable

and thus defines a foliation F.
3. The foliation F is Lagrangian and totally geodesic.

Also, at every point of HnCH there is a local coordinate system (x1, . . . , xn,
y1, . . . , yn) such that the restriction of (x1, . . . , xn) (of (y1, . . . , yn), respectively)
to a leaf of O (to a leaf of F, respectively) defines a coordinate system on such a
leaf.

Proof. The claim about the properties of the subset HnCH follows from the last
claim in Theorem 5.7.

By Theorem 5.5 and Proposition 6.8 we have that O is both Lagrangian and
Riemannian. The statement that the leaves of O are flat and parallel follows from
Proposition 5.1 and Theorem 5.6, respectively. The completeness of the leaves
follows from their homogeneity.

To prove the integrability of TO⊥, let X1, . . . , Xn be a basis for the Lie
algebra of H. By Theorem 6.7, the vector fields X∗

1 , . . . , X∗
n define a parallelism

of the vector bundle TO. Since TO⊥ = iTO, it follows that iX∗
1 , . . . , iX∗

n is a
parallelism for TO⊥. The vector fields Xj commute with each other because H is
Abelian, and from this one can easily see that the vector fields iX∗

j commute with
each other as well. We thus have concluded the existence of a parallelism for TO⊥
consisting of commuting vector fields. Hence the integrability of TO⊥ follows from
Frobenius theorem.

Once we know that TO⊥ is integrable to a foliation F, it follows that such
F is a Lagrangian foliation by the corresponding property of O. Also, F is totally
geodesic as a consequence of Proposition 6.9.

Finally, the existence of the required coordinate system is obtained from the
vector fields X∗

j and iX∗
k as follows. By the proof of Frobenius theorem as found in

[17] it follows that if Z1, . . . , Zl is a parallelism of a vector subbundle (of the tangent
bundle of a manifold) such that [Zj , Zk] = 0 for all j, k, then not just the vector
subbundle is integrable, but one can find functions (x1, . . . , xl) (locally defined
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on the ambient manifold) whose restriction to each integral submanifold defines
a coordinate system in it that satisfies Zj = ∂

∂xj
. The last claim is thus obtained

from this remark by using that the vector fields X∗
j and iX∗

k , for j, k = 1, . . . , n
commute with each other. ¤

The previous result shows that from an action of a MASG of Aut(HnC) we
obtain a pair of mutually orthogonal foliations (O, F) that have distinguished geo-
metric properties. We can think of each such pair as providing a sort of Lagrangian
frame on the complex hyperbolic space HnC. Such frame yields the geometric
foundation for the symbols that define the commutative C∗-algebras of Toeplitz
operators introduced in the first part of this work [16]. This frame even comes
with local coordinates that are thus adapted to the corresponding symbols. Fur-
thermore, from the definition of such symbols, the leaves of the foliation O play
the role of their level sets and the leaves of the foliation F thus play the role of the
corresponding gradient sets, so to speak.

Given the relevance of the properties of the pair of foliations obtained in
Theorem 6.10 we consider the following definition.

Definition 6.11. A Lagrangian frame in HnC is a pair of foliations (F1,F2) defined
in a connected open conull subset U of HnC that satisfies the following conditions

1. Both F1 and F2 are Lagrangian foliations and perpendicular to each other
wherever they meet.

2. The foliation F1 is Riemannian with complete flat parallel leaves.
3. The foliation F2 is totally geodesic.

In this case, we say that the Lagrangian frame is defined in U .

From our results up to this point it is possible to show that every Lagrangian
frame is in fact always essentially given by a MASG of Aut(HnC). More precisely,
we have the next result. We recall that the restriction of a foliation F defined on
a manifold M to an open subset U is the foliation whose leaves are the connected
components of the intersection with U of the leaves of F.

Theorem 6.12. Let (F1, F2) be a Lagrangian frame defined in U , a connected open
conull subset of HnC. Then there is a MASG H of Aut(HnC) such that if we
denote by (OH , FH) the Lagrangian frame defined by H from Theorem 6.10, the
following are satisfied

1. The subset U is contained in HnCH (as defined in Theorem 6.10).
2. The foliation F1 is the restriction of OH to U .
3. The foliation F2 is the restriction of FH to U .

Proof. Let L be a leaf of F1. Then, Theorem 5.9 implies that there is a MASG
H of Aut(HnC) such that L is an H-orbit. As above, let us denote by (OH , FH)
the Lagrangian frame defined by H. By Theorem 6.10 and the definition of a
Lagrangian frame, both FH and F2 are totally geodesic and perpendicular to L
at the intersection points with it. Hence, the leaves of both FH and F2 are given
in a neighborhood of L as the images under the exponential map of the fibers
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of the normal bundle to L. We conclude that the leaves of FH and F2 coincide
in a neighborhood of L, and this neighborhood is contained in U ∩ HnCH . To
complete the proof, we consider the set of points x ∈ U that belong to a leaf of F1

which is an H-orbit. We note that the H-orbits in U ∩HnCH are characterized as
(real) n-dimensional submanifolds perpendicular to F2. Using this fact, a standard
argument implies that, by the connectedness of U , the foliation F1 consists of H-
orbits and so it is the restriction of OH . Moreover, the H-action is necessarily free
on U and so U ⊂ HnCH . Finally, F2 is the restriction of FH since the leaves of
both are integral submanifolds of the normal bundle to the H-orbits. ¤

We note that in some deep sense a Lagrangian frame, as a pair of foliations
with certain specific properties, is an appropriate multidimensional analog of a
pencil of hyperbolic geodesics, consisting of cycles and geodesics, on the unit disk
as considered in [3].

7. Commutative algebras of Toeplitz operators and
Lagrangian frames.

In the preceding sections we have shown that the MASG’s of Aut(HnC) define,
through their orbits, geometric objects with distinguished properties. As the fol-
lowing result shows such study of the geometry of the MASG’s of Aut(HnC) is
fundamental to understand the structure of the commutative C∗-algebras gener-
ated by Toeplitz operators.

Theorem 7.1. For a subspace A of L∞(Bn)∩C∞(Bn) the following conditions are
equivalent.

1. There is a Lagrangian frame (F1, F2) defined in a connected open conull subset
U of Bn such that if a ∈ A, then every level set of a is saturated with respect
to the foliation F1, i.e., every such level set is a union of leaves of F1.

2. There is an Abelian subgroup H of either Aut(Bn) or Aut(Dn) listed in Sec-
tion 2 and a biholomorphism ϕ from Bn onto either Bn or Dn, correspond-
ingly, such that A ⊂ ϕ∗(AH) = {a ◦ ϕ : a ∈ AH}, where AH is the subspace
of either L∞(Bn) or L∞(Dn), correspondingly, consisting of all H-invariant
functions.

Proof. That (2) implies (1) is the content of Theorem 6.10 together with the
classification of MASG of Aut(HnC) given in Theorem 3.6.

To prove that (1) implies (2) we use again the classification from Theorem
3.6 as well as Theorem 6.12. From these two results it follows that there is a
subgroup H of either Aut(Bn) or Aut(Dn) listed in Section 2 such that, up to
a biholomorphism, the Lagrangian frame (F1, F2) is a restriction of (OH , FH) as
defined in Theorem 6.12. Hence, on the subset U every level subset of every a ∈ A
is saturated with respect to the foliation OH . This implies that every a ∈ A is
H-invariant in U . Hence, the result follows by the density of U that comes from
the fact that it is conull. ¤



Vol. 99 (9999) Toeplitz operators on the unit ball 43

Corollary 7.2. Given any Lagrangian frame F = (F1, F2) on the unit ball Bn,
denote by AF the set of all L∞(Bn)-functions constant on leaves of F1. Then the
C∗-algebra generated by Toeplitz operators with symbols from AF is commutative
on each weighted Bergman space A2

λ(Bn), λ ∈ (−1,∞), considered in [16].
Furthermore, each such commutative Toeplitz operator algebra is unitary

equivalent to one considered in [16].
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