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Preface

This book is a detailed introduction to the theory of finite type (Vassiliev)
knot invariants, with a stress on its combinatorial aspects. It is intended
to serve both as a textbook for readers with no or little background in this
area, and as a guide to some of the more advanced material. Our aim is
to lead the reader to understanding by means of pictures and calculations,
and for this reason we often prefer to convey the idea of the proof on an
instructive example rather than give a complete argument. While we have
made an effort to make the text reasonably self-contained, an advanced
reader is sometimes referred to the original papers for the technical details
of the proofs.

Historical remarks. The notion of a finite type knot invariant was in-
troduced by Victor Vassiliev (Moscow) in the end of the 1980’s and first
appeared in print in his paper [Va1] (1990). Vassiliev, at the time, was not
specifically interested in low-dimensional topology. His main concern was
the general theory of discriminants in the spaces of smooth maps, and his
description of the space of knots was just one, though the most spectacu-
lar, application of a machinery that worked in many seemingly unrelated
contexts. It was V. I. Arnold [Ar2] who understood the importance of fi-
nite type invariants, coined the name “Vassiliev invariants” and popularized
the concept; since that time, the term “Vassiliev invariants” has become
standard.

A different perspective on the finite type invariants was developed by
Mikhail Goussarov (St. Petersburg). His notion of n-equivalence, which first
appeared in print in [G2] (1993), turned out to be useful in different situa-
tions, for example, in the study of the finite type invariants of 3-manifolds.1

Nowadays some people use the expression “Vassiliev-Goussarov invariants”
for the finite type invariants.

Vassiliev’s definition of finite type invariants is based on the observation
that knots form a topological space and the knot invariants can be thought
of as the locally constant functions on this space. Indeed, the space of knots
is an open subspace of the space M of all smooth maps from S1 to R3; its
complement is the so-called discriminant Σ which consists of all maps that
fail to be embeddings. Two knots are isotopic if and only if they can be
connected in M by a path that does not cross Σ.

1Goussarov cites Vassiliev’s works in his earliest paper [G1]. Nevertheless, according to

O. Viro, Goussarov first mentioned finite type invariants in a talk at the Leningrad topological
seminar as early as in 1987.
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Using simplicial resolutions, Vassiliev constructs a spectral sequence for
the homology of Σ. After applying the Alexander duality this spectral se-
quence produces cohomology classes for the space of knots M − Σ; in di-
mension zero these are precisely the Vassiliev knot invariants.

Vassiliev’s approach, which is technically rather demanding, was sim-
plified by J. Birman and X.-S. Lin in [BL]. They explained the relation
between the Jones polynomial and finite type invariants2 and emphasized
the role of the algebra of chord diagrams. M. Kontsevich showed that the
study of real-valued Vassiliev invariants can, in fact, be reduced entirely to
the combinatorics of chord diagrams [Kon1]. His proof used an analytic
tool (the Kontsevich integral) which is, essentially, a power series encoding
all the finite type invariants of a knot. Kontsevich also defined a coproduct
on the algebra of chord diagrams which turns it into a Hopf algebra.

D. Bar-Natan was the first to give a comprehensive treatment of Vassiliev
knot and link invariants. In his preprint [BN0] and PhD thesis [BNt] he
found the relationship between finite type invariants and the topological
quantum field theory developed by his thesis advisor E. Witten [Wit]. Bar-
Natan’s paper [BN1] (whose preprint edition [BN1a] appeared in 1992)
is still the most authoritative source on the fundamentals of the theory of
Vassiliev invariants. About the same time, T. Le and J. Murakami [LM2],
relying on V. Drinfeld’s work [Dr1, Dr2], proved the rationality of the
Kontsevich integral.

Among further developments in the area of finite type knot invariants
let us mention:

• The existence of non-Lie-algebraic weight systems (P. Vogel [Vo1],
J. Lieberum [Lieb]) and an interpretation of all weight systems
as Lie algebraic weight systems in a suitable category (V. Hinich,
A. Vaintrob [HV]);

• J. Kneissler’s analysis [Kn1, Kn2, Kn3] of the structure of the
algebra Λ introduced by P. Vogel [Vo1];

• The proof by Goussarov [G5] that Vassiliev invariants are polyno-
mials in the gleams for a fixed Turaev shadow;

• Gauss diagram formulae of M. Polyak and O. Viro [PV1] and the
proof by M. Goussarov [G3] that all finite type invariants can be
expressed by such formulae;

• Habiro’s theory of claspers [Ha2] (see also [G4]);

2independently from Goussarov who was the first to discover this relation in the late 1980’s
(published in [G1]).
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• V. Vassiliev’s papers [Va4, Va5] where a general technique for de-
riving combinatorial formulae for cohomology classes in the comple-
ments to discriminants, and in particular, for finite type invariants,
is proposed;

• Explicit formulae for the Kontsevich integral of some knots and
links [BLT, BNL, Roz2, Kri2, Mar, GK];

• The interpretation of the Vassiliev spectral sequence in terms of the
Hochschild homology of the Poisson operad by V. Turchin [Tu1];

• The alternative approaches to the topology of the space of knots
via configuration spaces and the Goodwillie calculus [Sin2].

One serious omission in this book is the connection between the Vassiliev
invariants and the Chern-Simons theory. This connection motivates much
of the interest in finite-type invariants and gives better understanding of the
nature of the Kontsevich integral. Moreover, it suggests another form of
the universal Vassiliev invariant, namely, the configuration space integral.
There are many texts that explain this connection with great clarity; the
reader may start, for instance, with [Lab], [Saw] or [Po2]. The original
paper of Witten [Wit] has not lost its relevance and, while it does not deal
directly with the Vassiliev invariants (it dates from 1989), it still is one of
the indispensable references.

An important source of information on finite type invariants is the online
Bibliography of Vassiliev invariants started by D. Bar-Natan and currently
living at

http://www.pdmi.ras.ru/~duzhin/VasBib/

In March, 2011 it contained 644 entries, and this number is increasing. The
study of finite type invariants is going on. However, notwithstanding all
efforts, the most important question put forward in 1990:

Is it true that Vassiliev invariants distinguish knots?

is still open. At the moment is is not even known whether the Vassiliev
invariants can detect knot orientation. A number of open problems related
to finite-type invariants are listed in [Oht3].

Prerequisites. We assume that the reader has a basic knowledge of calcu-
lus on manifolds (vector fields, differential forms, Stokes’ theorem), general
algebra (groups, rings, modules, Lie algebras, fundamentals of homological
algebra), linear algebra (vector spaces, linear operators, tensor algebra, ele-
mentary facts about representations) and topology (topological spaces, ho-
motopy, homology, Euler characteristic). Some of this and more advanced
algebraic material (bialgebras, free algebras, universal enveloping algebras
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etc.) which is of primary importance in this book, can be found in the Ap-
pendix at the end of the book. No knowledge of knot theory is presupposed,
although it may be useful.

Contents. The book consists of fifteen chapters, which can logically be
divided into four parts.

Chapter dependence

N
A

I
B

M
O

C

T
O

R
C

I
S

ORT
N

U C T I
D

I
O

N

Lie algebra
weight systems

Algebra of
3−graphs

Gauss diagramsCh.13 MiscellanyCh.14

LAO T OP I
N

C S
ITIDDA

The Kontsevich 
integral

Ch.8

A
T

Y
C

S
I

L
N

A

Ch.11
Kontsevich integral:
advanced features

Ch.12 Braids and string links

Ch.2

Ch.7

Ch.6

Ch.5

diagrams
  Jacobi

Ch.4

Finite type invariants

Knot invariants

Chord diagrams

Ch.3

Ch.15 The space of all knots

Ch.1 Knots and their relatives

and cabling operations

Ch.9 Framed knots

associator
The DrinfeldCh.10

The first part opens with a short introduction into the theory of knots
and their classical polynomial invariants and closes with the definition of
Vassiliev invariants.

In part 2, “Combinatorics”, we systematically study the graded Hopf
algebra naturally associated with the filtered space of Vassiliev invariants,
which appears in three different guises: as the algebra of framed chord
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diagrams Afr, as the algebra of closed Jacobi diagrams C, and as the algebra
of open Jacobi diagrams B. After that, we study the auxiliary algebra Γ
generated by regular trivalent graphs and closely related to the algebras A,
B, C as well as to Vogel’s algebra Λ. In the last chapter we discuss the
weight systems defined by Lie algebras, both universal and depending on a
chosen representation.

Part 3, “Analytics”, is dedicated to a detailed exposition of the Kont-
sevich integral; it contains the proof of the main theorem of the theory of
Vassiliev knot invariants that reduces their study to combinatorics of chord
diagrams and related algebras. Chapters 8 and 9 treat the Kontsevich inte-
gral from the analytic point of view. Chapter 10 is dedicated to the Drinfeld
associator and the combinatorial construction of the Kontsevich integral.
Chapter 11 contains some additional material on the Kontsevich integral:
the wheels formula, the Rozansky rationality conjecture etc.

The last part of the book is devoted to various topics left out in the pre-
vious exposition, such as the Vassiliev invariants for braids, Gauss diagram
formulae, the Melvin–Morton conjecture, the Goussarov–Habiro theory, the
size of the space of Vassiliev invariants etc. The book closes with a descrip-
tion of Vassiliev’s original construction for the finite type invariants.

The book is intended to be a textbook, so we have included many ex-
ercises. Some exercises are embedded in the text; the others appear in a
separate section at the end of each chapter. Open problems are marked
with an asterisk.

Acknowledgements. The work of the first two authors on this book ac-
tually began in August 1992, when our colleague Inna Scherbak returned to
Pereslavl-Zalessky from the First European Mathematical Congress in Paris
and brought a photocopy of Arnold’s lecture notes about the newborn theory
of Vassiliev knot invariants. We spent several months filling our waste-paper
baskets with pictures of chord diagrams, before the first joint article [CD1]
was ready.

In the preparation of the present text, we have extensively used our pa-
pers (joint, single-authored and with other coauthors, see bibliography) and
in particular, lecture notes of the course “Vassiliev invariants and combina-
torial structures” that one of us (S. D.) delivered at the Graduate School
of Mathematics, University of Tokyo, in Spring 1999. It is our pleasure to
thank V. I. Arnold, D. Bar-Natan, J. Birman, C. De Concini, O. Dasbach,
A. Durfee, F. Duzhin, V. Goryunov, O. Karpenkov, T. Kerler, T. Kohno,
S. Lando, M. Polyak, I. Scherbak, A. Sossinsky, A. Vaintrob, A. Varchenko,
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V. Vassiliev, and S. Willerton for many useful comments concerning the sub-
jects touched upon in the book. We are likewise indebted to the anonymous
referees whose criticism and suggestions helped us to improve the text.

Our work was supported by several grants: INTAS 00-0259, NWO
047.008.005, NSh-709.20018.1, NSh-8462.2010.1, RFFI-05-01-01012 and 08-
01-00379 (S. D.), Professional Development Grants of OSU, Mansfield (2002,
2004, S. Ch.), CONACyT CO2-44100 (J. M.) Part of the work was accom-
plished when the first author was visiting MSRI (summer 2004), the second
author was visiting the Ohio State University (autumn quarter 2003) and
all the three authors, at various times, visited the Max-Planck-Institut für
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Chapter 1

Knots and their
relatives

This book is about knots. It is, however, hardly possible to speak about
knots without mentioning other one-dimensional topological objects embed-
ded into the three-dimensional space. Therefore, in this introductory chap-
ter we give basic definitions and constructions pertaining to knots and their
relatives: links, braids and tangles.

The table of knots at the end of this chapter (page 26) will be used
throughout the book as a source of examples and exercises.

1.1. Definitions and examples

A knot is a closed non-self-intersecting curve in 3-space. In this book, we
shall mainly study smooth oriented knots. A precise definition can be given
as follows.

1.1.1. Definition. A parametrized knot is an embedding of the circle S1

into the Euclidean space R3.

Recall that an embedding is a smooth map which is injective and whose
differential is nowhere zero. In our case, the non-vanishing of the differen-
tial means that the tangent vector to the curve is non-zero. In the above
definition and everywhere in the sequel, the word smooth means infinitely
differentiable.

A choice of an orientation for the parametrizing circle

S1 = {(cos t, sin t) | t ∈ R} ⊂ R2

17
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gives an orientation to all the knots simultaneously. We shall always assume
that S1 is oriented counterclockwise. We shall also fix an orientation of the
3-space; each time we pick a basis for R3 we shall assume that it is consistent
with the orientation.

If coordinates x, y, z are chosen in R3, a knot can be given by three
smooth periodic functions of one variable x(t), y(t), z(t).

1.1.2. Example. The simplest knot is represented by a plane circle:

x = cos t,
y = sin t,
z = 0.

x

yz

1.1.3. Example. The curve that goes 3 times around and 2 times across a
standard torus in R3 is called the trefoil knot, or the (2, 3)-torus knot:

x = (2 + cos 3t) cos 2t,
y = (2 + cos 3t) sin 2t,
z = sin 3t.

(Actually, this figure shows a left trefoil; see p. 20 for the pictures of
both a left and a right trefoils.

1.1.4. Exercise. Give the definition of a (p, q)-torus knot. What are the
appropriate values of p and q for this definition?

It will be convenient to identify knots that only differ by a change of a
parametrization. An oriented knot is an equivalence class of parametrized
knots under orientation-preserving diffeomorphisms of the parametrizing cir-
cle. Allowing all diffeomorphisms of S1 in this definition, we obtain unori-
ented knots. Alternatively, an unoriented knot can be defined as the image
of an embedding of S1 into R3; an oriented knot is then an image of such
an embedding together with the choice of one of the two possible directions
on it.

We shall distinguish oriented/unoriented knots from parametrized knots
in the notation: oriented and unoriented knots will be usually denoted by
capital letters, while for the individual embeddings lowercase letters will be
used. As a rule, the word “knot” will mean “oriented knot”, unless it is clear
from the context that we deal with unoriented knots, or consider a specific
choice of parametrization.

1.2. Isotopy

The study of parametrized knots falls within the scope of differential geom-
etry. The topological study of knots requires an equivalence relation which
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would not only discard the specific choice of parametrization, but also model
the physical transformations of a closed piece of rope in space.

By a smooth family of maps, or a map smoothly depending on a param-
eter, we understand a smooth map F : S1 × I → R3, where I ⊂ R is an
interval. Assigning a fixed value a to the second argument of F , we get a
map fa : S1 → R3.

1.2.1. Definition. A smooth isotopy of a knot f : S1 → R3, is a smooth
family of knots fu, with u a real parameter, such that for some value u = a
we have fa = f .

For example, the formulae

x = (u+ cos 3t) cos 2t,
y = (u+ cos 3t) sin 2t,
z = sin 3t,

where u ∈ (1,+∞), represent a smooth isotopy of the trefoil knot 1.1.3,
which corresponds to u = 2. In the pictures below the space curves are
shown by their projection to the (x, y) plane:

u = 2 u = 1.5 u = 1.2 u = 1

For any u > 1 the resulting curve is smooth and has no self-intersections,
but as soon as the value u = 1 is reached we get a singular curve with three
coinciding cusps1 corresponding to the values t = π/3, t = π and t = 5π/3.
This curve is not a knot.

1.2.2. Definition. Two parametrized knots are said to be isotopic if one
can be transformed into another by means of a smooth isotopy. Two oriented
knots are isotopic if they represent the classes of isotopic parametrized knots;
the same definition is valid for unoriented knots.

Example. This picture shows an isotopy of the figure eight knot into its
mirror image:

1A cusp of a spatial curve is a point where the curve can be represented as x = s2, y = s3,
z = 0 in some local coordinates.
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1.2.3. There are other notions of knot equivalence, namely, ambient equiv-
alence and ambient isotopy, which, for smooth knots, are the same thing as
isotopy. Here are the definitions. A proof that they are equivalent to our
definition of isotopy can be found in [BZ].

Definition. Two parametrized knots, f and g, are ambient equivalent if
there is a commutative diagram

S1 f−−−−→ R3

ϕ

y yψ
S1 g−−−−→ R3

where ϕ and ψ are orientation preserving diffeomorphisms of the circle and
the 3-space, respectively.

Definition. Two parametrized knots, f and g, are ambient isotopic if there
is a smooth family of diffeomorphisms of the 3-space ψt : R3 → R3 with
ψ0 = id and ψ1 ◦ f = g.

1.2.4. A knot, equivalent to the plane circle of Example 1.1.2 is referred to
as a trivial knot, or an unknot.

Sometimes, it is not immediately clear from a diagram of a trivial knot
that it is indeed trivial:

Trivial knots

There are algorithmic procedures to detect whether a given knot dia-
gram represents an unknot. One of them, based on W. Thurston’s ideas, is
implemented in J. Weeks’ computer program SnapPea, see [Wee]; another
algorithm, due to I. Dynnikov, is described in [Dyn].

Here are several other examples of knots.

Left trefoil Right trefoil Figure 8 knot Granny knot Square knot

Knots are a special case of links.

1.2.5. Definition. A link is a smooth embedding S1t· · ·tS1 → R3, where
S1 t · · · t S1 is the disjoint union of several circles.
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Trivial 2-component link Hopf link Whitehead link Borromean rings

Equivalence of links is defined in the same way as for knots — with the
exception that now one may choose whether to distinguish or not between
the components of a link and thus speak about the equivalence of links with
numbered or unnumbered components.

In the future, we shall often say “knot (link)” instead of “equivalence
class”, or “topological type of knots (links)”.

1.3. Plane knot diagrams

Knots are best represented graphically by means of knot diagrams. A knot
diagram is a plane curve whose only singularities are transversal double
points (crossings), together with the choice of one branch of the curve at each
crossing. The chosen branch is called an overcrossing; the other branch is
referred to as an undercrossing. A knot diagram is thought of as a projection
of a knot along some “vertical” direction; overcrossings and undercrossings
indicate which branch is “higher” and which is “lower”. To indicate the
orientation, an arrow is added to the knot diagram.

1.3.1. Theorem (Reidemeister [Rei], proofs can be found in [PS, BZ,
Mur2]). Two unoriented knots K1 and K2, are equivalent if and only if a
diagram of K1 can be transformed into a diagram of K2 by a sequence of
ambient isotopies of the plane and local moves of the following three types:

Ω1 Ω2 Ω3

Reidemeister moves

To adjust the assertion of this theorem to the oriented case, each of
the three Reidemeister moves has to be equipped with orientations in all
possible ways. Smaller sufficient sets of oriented moves exist; one such set
will be given later in terms of Gauss diagrams (see p. 35).

Exercise. Determine the sequence of Reidemeister moves that relates
the two diagrams of the trefoil knot below:
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1.3.2. Local writhe. Crossing points on a diagram come in two species,
positive and negative:

Positive crossing Negative crossing

Although this sign is defined in terms of the knot orientation, it is easy
to check that it does not change if the orientation is reversed. For links with
more than one component, the choice of orientation is essential.

The local writhe of a crossing is defined as +1 or −1 for positive or nega-
tive points, respectively. The writhe (or total writhe) of a diagram is the sum
of the writhes of all crossing points, or, equivalently, the difference between
the number of positive and negative crossings. Of course, the same knot
may be represented by diagrams with different total writhes. In Chapter 2
we shall see how the writhe can be used to produce knot invariants.

1.3.3. Alternating knots. A knot diagram is called alternating if its over-
crossings and undercrossing alternate as we travel along the knot. A knot is
called alternating if it has an alternating diagram. A knot diagram is called
reducible if it becomes disconnected after the removal of a small neighbour-
hood of some crossing.

The number of crossings in a reducible diagram can be decreased by a
move shown in the picture:

small neighbourhood

reducible diagram reduction

A diagram which is not reducible is called reduced. As there is no imme-
diate way to simplify a reduced diagram, the following conjecture naturally
arises (P. G. Tait, 1898).

The Tait conjecture. A reduced alternating diagram has the minimal
number of crossings among all diagrams of the given knot.
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This conjecture stood open for almost 100 years. It was proved only in
1986 (using the newly invented Jones polynomial) simultaneously and inde-
pendently by L. Kauffman [Ka6], K. Murasugi [Mur1], and M. Thistleth-
waite [Th] (see Exercise (27) in Chapter 2).

1.4. Inverses and mirror images

Change of orientation (taking the inverse) and taking the mirror image are
two basic operations on knots which are induced by orientation reversing
smooth involutions on S1 and R3 respectively. Every such involution on S1

is conjugate to the reversal of the parametrization; on R3 it is conjugate to
a reflection in a plane mirror.

Let K be a knot. Composing the parametrization reversal of S1 with
the map f : S1 → R3 representing K, we obtain the inverse K∗ of K. The
mirror image of K, denoted by K, is a composition of the map f : S1 → R3

with a reflection in R3. Both change of orientation and taking the mirror
image are involutions on the set of (equivalence classes of) knots. They
generate a group isomorphic to Z2 ⊕Z2; the symmetry properties of a knot
K depend on the subgroup that leaves it invariant. The group Z2 ⊕ Z2 has
5 (not necessarily proper) subgroups, which give rise to 5 symmetry classes
of knots.

1.4.1. Definition. A knot is called:

• invertible, if K∗ = K,

• plus-amphicheiral, if K = K,

• minus-amphicheiral, if K = K∗,

• fully symmetric, if K = K∗ = K = K
∗
,

• totally asymmetric, if all knots K, K∗, K, K
∗

are different.

The word amphicheiral means either plus- or minus-amphicheiral. For
invertible knots, this is the same. Amphicheiral and non-amphicheiral knots
are also referred to as achiral and chiral knots, respectively.

The 5 symmetry classes of knots are summarized in the following table.
The word “minimal” means “with the minimal number of crossings”; σ
and τ denote the involutions of taking the mirror image and the inverse
respectively.
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Stabiliser Orbit Symmetry type Min example

{1} {K,K,K∗,K∗} totally asymmetric 932, 933

{1, σ} {K,K∗} +amphicheiral, non-inv 12a427

{1, τ} {K,K} invertible, chiral 31

{1, στ} {K,K∗} −amphicheiral, non-inv 817

{1, σ, τ, στ} {K} fully symmetric 41

Example. The trefoil knots are invertible, because the rotation through
180◦ around an axis in R3 changes the direction of the arrow on the knot.

The existence of non-invertible knots was first proved by H. Trotter [Tro]
in 1964. The simplest instance of Trotter’s theorem is a pretzel knot with
parameters (3, 5, 7):

Among the knots with up to 8 crossings (see Table 1.5.1 on page 26) there is
only one non-invertible knot: 817, which is, moreover, minus-amphicheiral.
These facts were proved in 1979 by A. Kawauchi [Ka1].

Example. The trefoil knots are not amphicheiral, hence the distinction
between the left and the right trefoil. A proof of this fact, based on the
calculation of the Jones polynomial, will be given in Sec. 2.4.

Remark. Knot tables only list knots up to taking inverses and mirror im-
ages. In particular, there is only one entry for the trefoil knots. Either of
them is often referred to as the trefoil.

Example. The figure eight knot is amphicheiral. The isotopy between this
knot and its mirror image is shown on page 19.

Among the 35 knots with up to 8 crossings shown in Table 1.5.1, there
are exactly 7 amphicheiral knots: 41, 63, 83, 89, 812, 817, 818, out of which
817 is minus-amphicheiral, the rest, as they are invertible, are both plus-
and minus-amphicheiral.

The simplest totally asymmetric knots appear in 9 crossings, they are
932 and 933. The following are all non-equivalent:
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933 9∗33 933 9
∗
33

Here is the simplest plus-amphicheiral non-invertible knot, together with
its inverse:

12a427 12a∗427

In practice, the easiest way to find the symmetry type of a given knot or
link is by using the computer program Knotscape [HT], which can handle
link diagrams with up to 49 crossings.

1.5. Knot tables

1.5.1. Connected sum. There is a natural way to fuse two knots into one:
cut each of the two knots at some point, then connect the two pairs of loose
ends. This must be done with some caution: first, by a smooth isotopy,
both knots should be deformed so that for a certain plane projection they
look as shown in the picture below on the left, then they should be changed
inside the dashed disk as shown on the right:

The connected sum makes sense only for oriented knots. It is well-defined
and commutative on the equivalence classes of knots. The connected sum
of knots K1 and K2 is denoted by K1#K2.

1.5.2. Definition. A knot is called prime if it cannot be represented as the
connected sum of two nontrivial knots.

Each knot is a connected sum of prime knots, and this decomposition
is unique (see [CrF] for a proof). In particular, this means that a trivial
knot cannot be decomposed into a sum of two nontrivial knots. Therefore,
in order to classify all knots, it is enough to have a table of all prime knots.



26 1. Knots and their relatives

Prime knots are tabulated according to the minimal number of crossings
that their diagrams can have. Within each group of knots with the same
crossing number, knots are numbered in some, usually rather arbitrary, way.
In Table 1.5.1, we use the widely adopted numbering that goes back to the
table compiled by Alexander and Briggs in 1927 [AB], then repeated (in
an extended and modified way) by D. Rolfsen in [Rol]. We also follow
Rolfsen’s conventions in the choice of the version of non-amphicheiral knots:
for example, our 31 is the left, not the right, trefoil.

31 41(a) 51 52 61 62 63(a)

71 72 73 74 75 76 77

81 82 83(a) 84 85 86 87

88 89(a) 810 811 812(a) 813 814

815 816 817(na−) 818(a) 819 820 821

Table 1.5.1. Prime knots, up to orientation and mirror images, with
at most 8 crossings. Amphicheiral knots are marked by ‘a’, the (only)
non-invertible minus-amphicheiral knot by ‘na-’.
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Rolfsen’s table of knots, authoritative as it is, contained an error. It is
the famous Perko pair (knots 10161 and 10162 in Rolfsen) — two equivalent
knots that were thought to be different for 75 years since 1899:

The equivalence of these two knots was established in 1973 by K. A. Perko
[Per1], a lawyer from New York who studied mathematics at Princeton in
1960–1964 [Per2] but later chose jurisprudence to be his profession.2

Complete tables of knots are currently known up to crossing number 16
[HTW]. For knots with 11 through 16 crossings it is nowadays customary
to use the numbering of Knotscape [HT] where the tables are built into
the software. For each crossing number, Knotscape has a separate list of
alternating and non-alternating knots. For example, the notation 12a427 used
in Section 1.4, refers to the item number 427 in the list of alternating knots
with 12 crossings.

1.6. Algebra of knots

Denote by K the set of the equivalence classes of knots. It forms a commuta-
tive monoid (semigroup with a unit) under the connected sum of knots, and,
therefore we can construct the monoid algebra ZK of K. By definition, ele-
ments of ZK are formal finite linear combinations

∑
λiKi, λi ∈ Z, Ki ∈ K,

the product is defined by (K1,K2) 7→ K1#K2 on knots and then extended
by linearity to the entire space ZK. This algebra ZK will be referred to as
the algebra of knots.

The algebra of knots provides a convenient language for the study of
knot invariants (see the next chapter): in these terms, a knot invariant is
nothing but a linear functional on ZK. Ring homomorphisms from ZK to
some ring are referred to as multiplicative invariants; later, in Section 4.3,
we shall see the importance of this notion.

In the sequel, we shall introduce more operations in this algebra, as well
as in the dual algebra of knot invariants. We shall also study a filtration on
ZK that will give us the notion of a finite type knot invariant.

2The combination of a professional lawyer and an amateur mathematician in one person is
not new in the history of mathematics (think of Pierre Fermat!).
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1.7. Tangles, string links and braids

A tangle is a generalization of a knot which at the same time is simpler and
more complicated than a knot: on one hand, knots are a particular case
of tangles, on the other hand, knots can be represented as combinations of
(simple) tangles.

1.7.1. Definition. A (parametrized) tangle is a smooth embedding of a one-
dimensional compact oriented manifold, X, possibly with boundary, into a
box

{(x, y, z) | w0 6 x 6 w1 , −1 6 y 6 1 , h0 6 z 6 h1} ⊂ R3,

where w0, w1, h0, h1 ∈ R, such that the boundary of X is sent into the
intersection of the (open) upper and lower faces of the box with the plane
y = 0. An oriented tangle is a tangle considered up to an orientation-
preserving change of parametrization; an unoriented tangle is the image of
a parametrized tangle.

The boundary points of X are divided into the top and the bottom part;
within each of these groups the points are ordered, say, from the left to the
right. The manifold X, with the set of its boundary points divided into two
ordered subsets, is called the skeleton of the tangle.

The number w1 −w0 is called the width, and the number h1 − h0 is the
height of the tangle.

Speaking of embeddings of manifolds with boundary, we mean that such
embedding send boundaries to boundaries and interiors — to interiors. Here
is an example of a tangle, shown together with its box:

Usually the boxes will be omitted in the pictures.

We shall always identify tangles obtained by translations of boxes. Fur-
ther, it will be convenient to have two notions of equivalences for tangles.
Two tangles will be called fixed-end isotopic if one can be transformed into
the other by a boundary-fixing isotopy of its box. We shall say that two
tangles are simply isotopic, or equivalent if they become fixed-end isotopic
after a suitable re-scaling of their boxes of the form

(x, y, z)→ (f(x), y, g(z)),

where f and g are strictly increasing functions.
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1.7.2. Operations. In the case when the bottom of a tangle T1 coincides
with the top of another tangle T2 of the same width (for oriented tangles
we require the consistency of orientations, too), one can define the product
T1 · T2 by putting T1 on top of T2 (and, if necessary, smoothing out the
corners at the joining points):

T1 = ; T2 = ; T1 ·T2 = .

Another operation, tensor product, is defined by placing one tangle next
to the other tangle of the same height:

T1 ⊗ T2 = .

Both operations give rise to products on equivalence classes of tangles.
The product of two equivalence classes is defined whenever the bottom of one
tangle and the top of the other consist of the same number of points (with
matching orientations in the case of oriented tangles), the tensor product is
defined for any pair of equivalence classes.

1.7.3. Special types of tangles. Knots, links and braids are particular
cases of tangles. For example, an n-component link is just a tangle whose
skeleton is a union of n circles (and whose box is disregarded).

Let us fix n distinct points pi on the top boundary of a box of unit width
and let qi be the projections of the pi to the bottom boundary of the box.
We choose the points pi (and, hence, the qi) to lie in the plane y = 0.

Definition. A string link on n strings (or strands) is an (oriented or un-
oriented) tangle whose skeleton consists of n intervals, the ith interval con-
necting pi with qi. A string link on one string is called a long knot .

Definition. An unoriented string link on n strings whose tangent vector is
never horizontal is called a pure braid on n strands.

One difference between pure braids and string links is that the compo-
nents of a string link can be knotted. However, there are string links with
unknotted strands that are not equivalent to braids.

Let σ be a permutation of the set of n elements.

Definition. A braid on n strands is an (unoriented) tangle whose skeleton
consists of n intervals, the ith interval connecting pi with qσ(i), with the
property that the tangent vector to it is never horizontal.
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Pure braids are a specific case of braids with σ the identity permutation.
Note that with our definition of equivalence, an isotopy between two braids
can pass through tangles with points where the tangent vector is horizontal.
Often, in the definition of the equivalence for braids it is required that that
an isotopy consist entirely of braids; the two approaches are equivalent.

The above definitions are illustrated by the following pictures:

A linkA braid A knotA string linkA tangle

1.7.4. Braids. Braids are useful in the study of links, because any link can
be represented as a closure of a braid (Alexander’s theorem [Al1]):

Braids are in many respects easier to work with, as they form groups
under tangle multiplication: the set of equivalence classes of braids on n
strands is the braid group denoted by Bn. A convenient set of generators for
the group Bn consists of the elements σi, i = 1, . . . , n− 1:

...

1i

...

i+

which satisfy the following complete set of relations.

Far commutativity, σiσj = σjσi, for |i− j| > 1.

Braiding relation, σiσi+1σi = σi+1σiσi+1, for i = 1, 2, . . . , n− 2.

Assigning to each braid in Bn the corresponding permutation σ, we get
an epimorphism π : Bn → Sn of the braid group on n strands onto the
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symmetric group on n letters. The kernel of π consists of pure braids and
is denoted by Pn.

Theorem (Markov [Mark, Bir1]). Two closed braids are equivalent (as
links) if and only if the braids are related by a finite sequence of the following
Markov moves:

(M1) b←→ aba−1 for any a, b ∈ Bn;

(M2) Bn 3
...

b ←→
...

b ∈ Bn+1 ,
...

b ←→
...

b .

1.7.5. Elementary tangles. A link can be cut into several simple tangles
by a finite set of horizontal planes, and the link is equal to the product of
all such tangles. Every simple tangle is a tensor product of the following
elementary tangles.

Unoriented case:

id := , X+ := , X− := , max := , min := .

Oriented case:

id := , id∗ := , X+ := , X− := ,

−→
max := ,

←−
max := , min−→ := , min←− := .

For example, the generator σi ∈ Bn of the braid group is a simple tangle
represented as the tensor product, σi = id⊗(i−1) ⊗X+ ⊗ id⊗(n−i−1).

1.7.6. Exercise. Decompose the tangle into elementary tangles.

1.7.7. The Turaev moves. Having presented a tangle as a product of
simple tangles it is natural to ask for an analogue of Reidemeister’s (1.3.1)
and Markov’s (1.7.4) theorems, that is, a criterion for two such presentations
to give isotopic tangles. Here is the answer.

Theorem ([Tur3]). Two products of simple tangles are isotopic if and only
if they are related by a finite sequence of the following Turaev moves.

Unoriented case:

(T0)
...

...

T1

T2
←→

...

...

T1

T2 Note that the number of strands at top or bottom of
either tangle T1 or T2, or both might be zero.

(T1) ←→ ←→ (id⊗max)·(X+⊗id)·(id⊗min)=id=

=(id⊗max)·(X−⊗id)·(id⊗min)

(T2) ←→ ←→ X+·X−=id⊗id=X−·X+
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(T3) ←→ (X+⊗id)·(id⊗X+)·(X+⊗id)=(id⊗X+)·(X+⊗id)·(id⊗X+)

(T4) ←→ ←→ (max⊗id)·(id⊗min)=id=(id⊗max)·(min⊗id)

(T5) ←→ (id⊗max)·(X+⊗id)=(max⊗id)·(id⊗X−)

(T5′) ←→ (id⊗max)·(X−⊗id)=(max⊗id)·(id⊗X+)

Oriented case:

(T0) Same as in the unoriented case with arbitrary orientations of par-
ticipating strings.

(T1 — T3) Same as in the unoriented case with orientations of all strings
from bottom to top.

(T4) ←→ ←→ (
−→
max⊗id)·(id⊗min−→)=id=(id⊗←−max)·(min←−⊗id)

(T4′) ←→ ←→ (
←−
max⊗id∗)·(id∗⊗min←−)=id∗=(id∗⊗−→max)·(min−→⊗id∗)

(T5) ←→
(
←−
max⊗id⊗id∗)·(id∗⊗X−⊗id∗)·(id∗⊗id⊗min←−)·

·(id∗⊗id⊗−→max)·(id∗⊗X+⊗id∗)·(min−→⊗id⊗id∗)=id⊗id∗

(T5′) ←→
(id∗⊗id⊗−→max)·(id∗⊗X+⊗id∗)·(min−→⊗id⊗id∗)·

·(←−max⊗id⊗id∗)·(id∗⊗X−⊗id∗)·(id∗⊗id⊗min←−)=id∗⊗id

(T6) ←→
(
←−
max⊗id∗⊗id∗)·(id∗⊗←−max⊗id⊗id∗⊗id∗)·
·(id∗⊗id∗⊗X±⊗id∗⊗id∗)·
·(id∗⊗id∗⊗id⊗min←−⊗id∗)·(id∗⊗id∗⊗min←−) =

= (id∗⊗id∗⊗−→max)·(id∗⊗id∗⊗id⊗−→max⊗id∗)·
·(id∗⊗id∗⊗X±⊗id∗⊗id∗)·
·(id∗⊗min−→⊗id⊗id∗⊗id∗)·(min−→⊗id∗⊗id∗)

(T6′) ←→

1.8. Variations

1.8.1. Framed knots. A framed knot is a knot equipped with a framing,
that is, a smooth family of non-zero vectors perpendicular to the knot. Two
framings are considered as equivalent, if one can be transformed to another
by a smooth deformation. Up to this equivalence relation, a framing is
uniquely determined by one integer: the linking number between the knot
itself and the curve formed by a small shift of the knot in the direction of
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the framing. This integer, called the self-linking number, can be arbitrary.
The framing with self-linking number n will be called the n-framing and a
knot with the n-framing will be referred to as n-framed.

One way to choose a framing is to use the blackboard framing, defined
by a plane knot projection, with the vector field everywhere parallel to the
projection plane, for example

A framed knot can also be visualized as a ribbon knot, that is, a narrow
knotted strip (see the right picture above).

An arbitrary framed knot can be represented by a plane diagram with
the blackboard framing. This is achieved by choosing an arbitrary projection
and then performing local moves to straighten out the twisted band:

,

For framed knots (with blackboard framing) the Reidemeister theorem 1.3.1
does not hold since the first Reidemeister move Ω1 changes the blackboard
framing. Here is an appropriate substitute.

1.8.2. Theorem (framed Reidemeister theorem). Two knot dia-
grams with blackboard framing D1 and D2 are equivalent if and only if D1

can be transformed into D2 by a sequence of plane isotopies and local moves
of three types FΩ1, Ω2, and Ω3, where

FΩ1 :

while Ω2 and Ω3 are usual Reidemeister moves defined in 1.3.1.

One may also consider framed tangles. These are defined in the same
manner as framed knots, with the additional requirement that at each
boundary point of the tangle the normal vector is equal to (ε, 0, 0) for some
ε > 0. Framed tangles can be represented by tangle diagrams with black-
board framing. For such tangles there is an analogue of Theorem 1.7.7 —
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the Turaev move (T1) should be replaced by its framed version that mimics
the move FΩ1.

1.8.3. Long knots. Recall that a long knot is a string link on one string.
A long knot can be converted into a usual knot by joining the top and the
bottom points by an arc of a sufficiently big circle. It is easy to prove that
this construction provides a one-to-one correspondence between the sets of
equivalence classes of long knots and knots (both in the oriented and in the
unoriented sace), and, therefore the two theories are isomorphic.

Some constructions on knots look more natural in the context of long
knots. For example, the cut and paste procedure for the connected sum
becomes a simple concatenation.

1.8.4. Gauss diagrams and virtual knots. Plane knot diagrams are
convenient for presenting knots graphically, but for other purposes, such as
coding knots in a computer-recognizable form, Gauss diagrams are suited
better.

Definition. A Gauss diagram is an oriented circle with a distinguished set
of distinct points divided into ordered pairs, each pair carrying a sign ±1.

Graphically, an ordered pair of points on a circle can be represented by
a chord with an arrow connecting them and pointing, say, to the second
point. Gauss diagrams are considered up to orientation-preserving homeo-
morphisms of the circle. Sometimes, an additional basepoint is marked on
the circle and the diagrams are considered up to homeomorphisms that keep
the basepoint fixed. In this case, we speak of based Gauss diagrams.

To a plane knot diagram one can associate a Gauss diagram as follows.
Pairs of points on the circle correspond to the values of the parameter where
the diagram has a self-intersection, each arrow points from the overcrossing
to the undercrossing and its sign is equal to the local writhe at the crossing.

Here is an example of a plane knot diagram and the corresponding Gauss
diagram:

1

2

43

+

+

1

1
2

2

3

3

4

4

−

−

1.8.5. Exercise. What happens to a Gauss diagram, if (a) the knot is
mirrored, (b) the knot is reversed?

A knot diagram can be uniquely reconstructed from the corresponding
Gauss diagram. We call a Gauss diagram realizable, if it comes from a knot.
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Not every Gauss diagram is realizable, the simplest example being

.

As we know, two oriented knot diagrams give the same knot type if and
only if they are related by a sequence of oriented Reidemeister moves. The
corresponding moves translated into the language of Gauss diagrams look
as follows:

V Ω1 :
ε −ε

V Ω2 : ε −ε −ε ε

V Ω3 :

In fact, the two moves V Ω3 do not exhaust all the possibilities for repre-
senting the third Reidemeister move on Gauss diagrams. It can be shown,
however, that all the other versions of the third move are combinations of
the moves V Ω2 and V Ω3, see Exercises 24 – 26 on page 39 for examples and
[Öll] for a proof.

These moves, of course, have a geometric meaning only for realizable
diagrams. However, they make sense for all Gauss diagrams, whether re-
alizable or not. In particular, a realizable diagram may be equivalent to
non-realizable one:

∼ − + .

Definition. A virtual knot is a Gauss diagram considered up to the Rei-
demeister moves V Ω1, V Ω2, V Ω3. A long, or based virtual knot is a based
Gauss diagram, considered up to Reidemeister moves that do not involve
segments with the basepoint on them. Contrary to the case of usual knots,
the theories of circular and long virtual knots differ.

It can be shown that the isotopy classes of knots form a subset of the set
of virtual knots. In other words, if there is a chain of Reidemeister moves
connecting two realizable Gauss diagrams, we can always modify it so that
it goes only though realizable diagrams.
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Virtual knots were introduced by L. Kauffman [Ka5]. Almost at the
same time, they turned up in the work of M. Goussarov, M. Polyak, O. Viro
[GPV]. There are various geometric interpretations of virtual knots. Many
knot invariants are known to extend to invariants of virtual knots.

1.8.6. Knots in arbitrary manifolds. We have defined knots as embed-
dings of the circle into the Euclidean space R3. In this definition R3 can be
replaced by the 3-sphere S3, since the one-point compactification R3 → S3

establishes a one-to-one correspondence between the equivalence classes of
knots in both manifolds. Going further and replacing R3 by an arbitrary
3-manifold M , we can arrive to a theory of knots in M which may well be
different from the usual case of knots in R3; see, for instance, [Kal, Va6].

If the dimension of the manifold M is bigger than 3, then all knots in
M that represent the same element of the fundamental group π1(M), are
isotopic. It does not mean, however, that the theory of knots in M is trivial:
the space of all embeddings S1 →M may have non-trivial higher homology
groups. These homology groups are certainly of interest in dimension 3
too; see [Va6]. Another way of doing knot theory in higher-dimensional
manifolds is studying multidimensional knots, like embeddings S2 → R4, see,
for example, [Rol]. An analogue of knot theory for 2-manifolds is Arnold’s
theory of immersed curves [Ar3].

Exercises

(1) Find the following knots in the knot table (page 26):

(a) (b) (c)

(2) Can you find the following links in the picture on page 21?

(3) Borromean rings (see page 21) have the property that after deleting any
component the remaining two-component link becomes trivial. Links
with such property are called Brunnian. Find a Brunnian link with 4
components.
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(4) Table 1.5.1 shows 35 topological types of knots up to change of orienta-
tion and taking the mirror images. How many distinct knots do these
represent?

(5) Find an isotopy that transforms the knot 63 into its mirror image 63.

(6) Repeat Perko’s achievement: find an isotopy that transforms one of the
knots of the Perko pair into another one.

(7) Let Gn be the Goeritz diagram [Goer] with 2n + 5 crossings, as in the
figure below.

(a) Show that Gn represents a
trivial knot. Gn =

n crossings n+1 crossings

(b) Prove that for n > 3 in any
sequence of the Reidemeister moves
transforming Gn into the plane circle there is an intermediate knot
diagram with more than 2n+ 5 crossings.

(c) Find a sequence of 23 Reidemeister moves (containing the Ω1 move
5 times, the Ω2 move 7 times, and the Ω3 move 11 times) trans-
forming G3 into the plane circle. See the picture of G3 in 1.2.4 on
page 20.

(8) Decompose the knot on the right into a connected
sum of prime knots.

(9) Show that by changing some crossings from overcrossing to undercross-
ing or vice versa, any knot diagram can be transformed into a diagram
of the unknot.

(10) (C. Adams [AdC]) Show that by changing some crossings from over-
crossing to undercrossing or vice versa, any knot diagram can be made
alternating.

(11) Represent the knots 41, 51, 52 as closed braids.

(12) Analogously to the braid closure, one can define the closure of a string
link. Represent the Whitehead link and the Borromean rings from Sec-
tion 1.2.5 (page 20) as closures of string links on 2 and 3 strands respec-
tively.

(13) Find a sequence of Markov moves that transforms the closure of the
braid σ2

1σ
3
2σ

4
1σ2 into the closure of the braid σ2

1σ2σ
4
1σ

3
2.

(14) Garside’s fundamental braid ∆ ∈ Bn is defined as
∆ := (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)(σ1) .

∆ =

(a) Prove that σi∆ = ∆σn−i for every standard generator σi ∈ Bn.
(b) Prove that ∆2 = (σ1σ2 . . . σn−1)n.
(c) Check that ∆2 belongs to the centre Z(Bn) of the braid group.
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(d) Show that any braid can be represented as a product of a certain
power (possibly negative) of ∆ and a positive braid, that is, a braid
that contains only positive powers of standard generators σi.

In fact, for n > 3, the centre Z(Bn) is the infinite cyclic group generated
by ∆2. The word and conjugacy problems in the braid group were solved
by F. Garside [Gar]. The structure of positive braids that occur in the
last statement was studied in [Adya, ElMo].

(15) (a) Prove that the sign of the permutation corresponding to a braid b is

equal to the parity of the number of crossings of b, that is (−1)`(b),
where `(b) is the length of b as a word in generators σ1, . . . , σn−1.

(b) Prove that the subgroup Pn of pure braids is gen-
erated by the braids Aij linking the ith and jth
strands with each other behind all other strands.

Aij =

i j

i

...

j

...

...

(16) Let V be a vector space of dimension n with a distinguished basis
e1, . . . , en, and let Ξi be the counterclockwise 90◦ rotation in the plane
〈ei, ei+1〉: Ξi(ei) = ei+1, Ξi(ei+1) = −ei, Ξi(ej) = ej for j 6= i, i + 1.
Prove that sending each elementary generator σi ∈ Bn to Ξi we get a
representation Bn → GLn(R) of the braid group.

(17) Burau representation. Consider the free module over the ring of
Laurent polynomials Z[x±1] with a basis e1, . . . , en. The Burau repre-
sentation Bn → GLn(Z[x±1]) sends σi ∈ Bn to the linear operator that
transforms ei into (1− x)ei + ei+1, and ei+1 into xei.
(a) Prove that it is indeed a representation of the braid group.
(b) The Burau representation is reducible. It splits into the trivial one-

dimensional representation and an (n − 1)-dimensional irreducible
representation which is called the reduced Burau representation.
Find a basis of the reduced Burau representation where the matrices
have the form

σ1 7→

(−x x ... 0
0 1 ... 0...

...
. . .

...
0 0 ... 1

)
, σi 7→


1. . .

1 0 0
1 −x x
0 0 1. . .

1

 , σn−1 7→

(
1 ... 0 0...

. . .
...

...
0 ... 1 0
0 ... 1 −x

)

Answer. {xe1 − e2, xe2 − e3, . . . , xen−1 − en}
The Burau representation is faithful for n 6 3 [Bir1], and not faithful
for n > 5 [Big1]. The case n = 4 remains open.

(18) Lawrence–Krammer–Bigelow representation. Let V be a free
Z[q±1, t±1] module of dimension n(n− 1)/2 with a basis ei,j for 1 6 i <
j 6 n. The Lawrence–Krammer–Bigelow representation can be defined
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via the action of σk ∈ Bn on V :

σk(ei,j) =



ei,j if k < i− 1 or k > j,

ei−1,j + (1− q)ei,j if k = i− 1,

tq(q − 1)ei,i+1 + qei+1,j if k = i < j − 1,

tq2ei,j if k = i = j − 1,

ei,j + tqk−i(q − 1)2ek,k+1 if i < k < j − 1,

ei,j−1 + tqj−i(q − 1)ej−1,j if i < k = j − 1,

(1− q)ei,j + qei,j+1 if k = j.

Prove that this assignment determines a representation of the braid
group. It was shown in [Big2, Kram] that this representation is faithful
for any n > 1. Therefore the braid group is a linear group.

(19) Represent the knots 41, 51, 52 as products of simple tangles.

(20) Consider the following two knots given as products of simple tangles:

(
←−
max⊗−→max )·(id∗⊗X+⊗id∗)·(id∗⊗X+⊗id∗)·(id∗⊗X+⊗id∗)·(min−→⊗min←−)

and

−→
max ·(id⊗−→max⊗id∗)·(X+⊗id∗⊗id∗)·(X+⊗id∗⊗id∗)·(X+⊗id∗⊗id∗)·(id⊗min←−⊗id∗)·min←−

(a) Show that these two knots are equivalent.
(b) Indicate a sequence of the Turaev moves that transforms one prod-

uct into another.
(c) Forget about the orientations and consider the corresponding un-

oriented tangles. Find a sequence of unoriented Turaev moves that
transforms one product into another.

(21) Represent the oriented tangle move on the
right as a sequence of oriented Turaev moves
from page 32.

←→

(22) Whitney trick. Show that the move FΩ1 in
the framed Reidemeister Theorem 1.8.2 can be
replaced by the move shown on the right.

(23) The group Zk+1
2 acts on oriented k-component links, changing the orien-

tation of each component and taking the mirror image of the link. How
many different links are there in the orbit of an oriented Whitehead link
under this action?

(24) Show that each of the moves V Ω3 can be obtained as a combination of
the moves V Ω2 with the moves V Ω′3 below:

V Ω′3 : .
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Conversely, show that the moves V Ω′3 can be obtained as combinations
of the moves V Ω2 and V Ω3.

(25) Show that the following moves are equivalent modulo V Ω2.

.

This means that either one can be obtained as a combination of another
one with the V Ω2 moves.

(26) (O.-P. Östlund [Öll]) Show that the second version of V Ω2:

−ε ε

is redundant. It can be obtained as a combination of the first version,

ε −ε ,

with the moves V Ω1 and V Ω3.

(27) (M.Polyak [Po3]) Show that the following moves

V Ω1 :
ε −ε

V Ω↑↓2 : ε −ε V Ω+++
3 :

are sufficient to generate all Reidemeister moves V Ω1, V Ω2, V Ω3.



Chapter 2

Knot invariants

Knot invariants are functions of knots that do not change under isotopies.
The study of knot invariants is at the core of knot theory; indeed, the isotopy
class of a knot is, tautologically, a knot invariant.

2.1. Definition and first examples

Let K be the set of all equivalence classes of knots.

Definition. A knot invariant with values in a set S is a map from K to S.

In the same way one can speak of invariants of links, framed knots, etc.

2.1.1. Crossing number. Any knot can be represented by a plane dia-
gram in infinitely many ways.

Definition. The crossing number c(K) of a knot K is the minimal number
of crossing points in a plane diagram of K.

Exercise. Prove that if c(K) 6 2, then the knot K is trivial.

It follows that the minimal number of crossings required to draw a di-
agram of a nontrivial knot is at least 3. A little later we shall see that the
trefoil knot is indeed nontrivial.

Obviously, c(K) is a knot invariant taking values in the set of non-
negative integers.

2.1.2. Unknotting number. Another integer-valued invariant of knots
which admits a simple definition is the unknotting number.

Represent a knot by a plane diagram. The diagram can be transformed
by plane isotopies, Reidemeister moves and crossing changes:

41
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As we know, modifications of the first two kinds preserve the topological
type of the knot, and only crossing switches can change it.

Definition. The unknotting number u(K) of a knot K is the minimal num-
ber of crossing changes in a plane diagram of K that convert it to a trivial
knot, provided that any number of plane isotopies and Reidemeister moves
is also allowed.

Exercise. What is the unknotting number of the knots 31 and 83?

Finding the unknotting number, if it is greater than 1, is a difficult task;
for example, the second question of the previous exercise was answered only
in 1986 (by T. Kanenobu and H. Murakami [KM]).

2.1.3. Knot group. The knot group is the fundamental group of the com-
plement to the knot in the ambient space: π(K) = π1(R3 \K). The knot
group is a very strong invariant. For example, a knot is trivial if and only if
its group is infinite cyclic. More generally, two prime knots with isomorphic
fundamental groups are isotopic. For a detailed discussion of knot groups
see [Lik].

Exercise. Prove that

(1) the group of the trefoil is generated by two elements x, y with one
relation x2 = y3;

(2) this group is isomorphic to the braid group B3 (in terms of x, y find
another pair of generators a, b that satisfy aba = bab).

2.2. Linking number

The linking number is an example of a Vassiliev invariant of two-component
links; it has an analog for framed knots, called self-linking number.

Intuitively, the linking number lk(A,B) of two oriented spatial curves
A and B is the number of times A winds around B. To give a precise
definition, choose an oriented disk DA immersed in space so that its oriented
boundary is the curve A (this means that the ordered pair consisting of an
outward-looking normal vector to A and the orienting tangent vector to A
gives a positive basis in the tangent space to DA). The linking number
lk(A,B) is then defined as the intersection number of DA and B. To find
the intersection number, if necessary, make a small perturbation of DA so
as to make it meet the curve B only at finitely many points of transversal
intersection. At each intersection point, define the sign to be equal to ±1



2.2. Linking number 43

depending on the orientations of DA and B at this point. More specifically,
let (e1, e2) be a positive pair of tangent vectors to DA, while e3 a positively
directed tangent vector to B at the intersection point; the sign is set to +1
if and only if the frame (e1, e2, e3) defines a positive orientation of R3. Then
the linking number lk(A,B) is the sum of these signs over all intersection
points p ∈ DA ∩ B. One can prove that the result does not depend on the
choice of the surface DA and that lk(A,B) = lk(B,A).

Example. The two curves shown in the picture

have their linking number equal to −1.

Given a plane diagram of a two-component link, there is a simple combi-
natorial formula for the linking number. Let I be the set of crossing points
involving branches of both components A and B (crossing points involving
branches of only one component are irrelevant here). Then I is the disjoint
union of two subsets IAB (points where A passes over B) and IBA (where B
passes over A).

2.2.1. Proposition.

lk(A,B) =
∑
p∈IAB

w(p) =
∑
p∈IBA

w(p) =
1

2

∑
p∈I

w(p)

where w(p) = ±1 is the local writhe of the crossing point.

Proof. Crossing changes at all points p ∈ IBA make the two components
unlinked. Call the new curves A′ and B′, then lk(A′, B′) = 0. It is clear
from the pictures below that each crossing switch changes the linking number
by −w where w is the local writhe:
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Therefore, lk(A,B)−
∑

p∈IBA
w(p) = 0, and the assertion follows. �

Example. For the two curves below both ways to compute the linking
number give +1:

A

B

2.2.2. Integral formulae. There are various integral formulae for the link-
ing number. The most famous formula was found by Gauss (see [Spi] for a
proof).

Theorem. Let A and B be two non-intersecting curves in R3, parameter-
ized, respectively, by the smooth functions α, β : S1 → R3. Then

lk(A,B) =
1

4π

∫
S1×S1

(β(v)− α(u), du, dv)

|β(v)− α(u)|3
,

where the parentheses in the numerator stand for the mixed product of 3
vectors.

Geometrically, this formula computes the degree of the Gauss map from
A × B = S1 × S1 to the 2-sphere S2, that is, the number of times the
normalized vector connecting a point on A to a point on B goes around the
sphere.

A different integral formula for the linking number will be stated and
proved in Chapter 8, see page 227. It represents the simplest term of the
Kontsevich integral, which encodes all Vassiliev invariants.

2.2.3. Self-linking. Let K be a framed knot and let K ′ be the knot ob-
tained from K by a small shift in the direction of the framing.

Definition. The self-linking number of K is the linking number of K and
K ′.

Note, by the way, that the linking number is the same if K is shifted in
the direction, opposite to the framing.

Proposition. The self-linking number of a framed knot given by a diagram
D with blackboard framing is equal to the total writhe of the diagram D.

Proof. Indeed, in the case of blackboard framing, the only crossings of K
with K ′ occur near the crossing points of K. The neighbourhood of each
crossing point looks like
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K

K’K

K’

The local writhe of the crossing where K passes over K ′ is the same as
the local writhe of the crossing point of the knot K with itself. Therefore,
the claim follows from the combinatorial formula for the linking number
(Proposition 2.2.1). �

2.3. The Conway polynomial

In what follows we shall usually consider invariants with values in a com-
mutative ring. Of special importance in knot theory are polynomial knot
invariants taking values in the rings of polynomials (or Laurent polynomi-
als1) in one or several variables, usually with integer coefficients.

Historically, the first polynomial invariant for knots was the Alexander
polynomial A(K) introduced in 1928 [Al2]. See [CrF, Lik, Rol] for a
discussion of the beautiful topological theory related to the Alexander poly-
nomial. In 1970 J. Conway [Con] found a simple recursive construction of
a polynomial invariant C(K) which differs from the Alexander polynomial
only by a change of variable, namely, A(K) = C(K) |t7→x1/2−x−1/2 . In this
book, we only use Conway’s normalization. Conway’s definition, given in
terms of plane diagrams, relies on crossing point resolutions that may take
a knot diagram into a link diagram; therefore, we shall speak of links rather
than knots.

2.3.1. Definition. The Conway polynomial C is an invariant of oriented
links (and, in particular, an invariant of oriented knots) taking values in the
ring Z[t] and defined by the two properties:

C
( )

= 1,

C
( )

− C
( )

= tC
( )

.

Here stands for the unknot (trivial knot) while the three pictures
in the second line stand for three diagrams that are identical everywhere ex-
cept for the fragments shown. The second relation is referred to as Conway’s

1A Laurent polynomial in x is a polynomial in x and x−1.
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skein relation. Skein relations are equations on the values of some functions
on knots (links, etc.) represented by diagrams that differ from each other by
local changes near a crossing point. These relations often give a convenient
way to work with knot invariants.

It is not quite trivial to prove the existence of an invariant satisfying
this definition, but as soon as this fact is established, the computation of
the Conway polynomial becomes fairly easy.

2.3.2. Example.

(i) C
( )

=
1

t
C
( )

− 1

t
C
( )

= 0,

because the two knots on the right are equivalent (both are trivial).

(ii) C
( )

= C
( )

− tC
( )

= C
( )

− tC
( )

= −t .

(iii) C
( )

= C
( )

− tC
( )

= C
( )

− tC
( )

= 1 + t2 .

2.3.3. The values of the Conway polynomial on knots with up to 8 crossings
are given in Table 2.3.1. Note that the Conway polynomials of the inverse
knot K∗ and the mirror knot K coincide with that of knot K.

For every n, the coefficient cn of tn in C is a numerical invariant of the
knot.

2.3.4. The behaviour of the Conway polynomial under the change of orien-
tation of one component of a link does not follow any known rules. Here is
an example.

− t3 − 2t 2t t3 + 2t −2t
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K C(K) K C(K) K C(K)

31 1 + t2 76 1 + t2 − t4 811 1− t2 − 2t4

41 1− t2 77 1− t2 + t4 812 1− 3t2 + t4

51 1 + 3t2 + t4 81 1− 3t2 813 1 + t2 + 2t4

52 1 + 2t2 82 1− 3t4 − t6 814 1− 2t4

61 1− 2t2 83 1− 4t2 815 1 + 4t2 + 3t4

62 1− t2 − t4 84 1− 3t2 − 2t4 816 1 + t2 + 2t4 + t6

63 1 + t2 + t4 85 1− t2 − 3t4 − t6 817 1− t2 − 2t4 − t6
71 1 + 6t2 + 5t4 + t6 86 1− 2t2 − 2t4 818 1 + t2 − t4 − t6
72 1 + 3t2 87 1 + 2t2 + 3t4 + t6 819 1 + 5t2 + 5t4 + t6

73 1 + 5t2 + 2t4 88 1 + 2t2 + 2t4 820 1 + 2t2 + t4

74 1 + 4t2 89 1− 2t2 − 3t4 − t6 821 1− t4
75 1 + 4t2 + 2t4 810 1 + 3t2 + 3t4 + t6

Table 2.3.1. Conway polynomials of knots with up to 8 crossings

2.4. The Jones polynomial

The invention of the Jones polynomial [Jo1] in 1985 produced a genuine
revolution in knot theory. The original construction of V. Jones was given
in terms of state sums and von Neumann algebras. It was soon noted,
however, that the Jones polynomial can be defined by skein relations, in the
spirit of Conway’s definition 2.3.1.

Instead of simply giving the corresponding formal equations, we explain,
following L. Kauffman [Ka6], how this definition could be invented. As
with the Conway polynomial, the construction given below requires that we
consider invariants on the totality of all links, not only knots, because the
transformations used may turn a knot diagram into a link diagram with
several components.

Suppose that we are looking for an invariant of unoriented links, denoted
by angular brackets, that has a prescribed behaviour with respect to the
resolution of diagram crossings and the addition of a disjoint copy of the
unknot:

〈 〉 = a 〈 〉+ b 〈 〉,

〈L t 〉 = c 〈L 〉,

where a, b and c are certain fixed coefficients.

For the bracket 〈 , 〉 to be a link invariant, it must be stable under the
three Reidemeister moves Ω1, Ω2, Ω3 (see Section 1.3).
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2.4.1. Exercise. Show that the bracket 〈 , 〉 is Ω2-invariant if and only if
b = a−1 and c = −a2 − a−2. Prove that Ω2-invariance in this case implies
Ω3-invariance.

2.4.2. Exercise. Suppose that b = a−1 and c = −a2 − a−2. Check that
the behaviour of the bracket with respect to the first Reidemeister move is
described by the equations

〈 〉 = −a−3 〈 〉,

〈 〉 = −a3 〈 〉.

In the assumptions b = a−1 and c = −a2 − a−2, the bracket polynomial
〈L〉 normalized by the initial condition

〈 〉 = 1

is referred to as the Kauffman bracket of L. We see that the Kauffman
bracket changes only under the addition (or deletion) of a small loop, and
this change depends on the local writhe of the corresponding crossing. It
is easy, therefore, to write a formula for a quantity that would be invariant
under all three Reidemeister moves:

J(L) = (−a)−3w〈L〉,

where w is the total writhe of the diagram (the difference between the num-
ber of positive and negative crossings).

The invariant J(L) is a Laurent polynomial called the Jones polynomial
(in a-normalization). The more standard t-normalization is obtained by the

substitution a = t−1/4. Note that the Jones polynomial is an invariant of an
oriented link, although in its definition we use the Kauffman bracket which
is determined by a diagram without orientation.

2.4.3. Exercise. Check that the Jones polynomial is uniquely determined
by the skein relation

t−1J( )− tJ( ) = (t1/2 − t−1/2)J( ) (1)

and the initial condition

J( ) = 1. (2)

2.4.4. Example. Let us compute the value of the Jones polynomial on the
left trefoil 31. The calculation requires several steps, each consisting of one
application of the rule (1) and some applications of rule (2) and/or using
the results of the previous steps. We leave the details to the reader.
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(i) J
( )

= −t1/2 − t−1/2.

(ii) J
( )

= −t1/2 − t5/2.

(iii) J
( )

= −t−5/2 − t−1/2.

(iv) J

( )
= −t−4 + t−3 + t−1.

2.4.5. Exercise. Repeat the previous calculation for the right trefoil and
prove that J(31) = t+ t3 − t4.

We see that the Jones polynomial J can tell apart two knots which the
Conway polynomial C cannot. This does not mean, however, that J is
stronger than C. There are pairs of knots, for example, K1 = 1071, K2 =
10104 such that J(K1) = J(K2), but C(K1) 6= C(K2) (see, for instance,
[Sto2, KnA]).

2.4.6. The values of the Jones polynomial on standard knots with up to 8
crossings are given in Table 2.4.1. The Jones polynomial does not change
when the knot is inverted (this is no longer true for links), see Exercise 25.
The behaviour of the Jones polynomial under mirror reflection is described
in Exercise 24.

2.5. Algebra of knot invariants

Knot invariants with values in a given commutative ring R form an algebra
I over that ring with respect to usual pointwise operations on functions

(f + g)(K) = f(K) + g(K),

(fg)(K) = f(K)g(K).

Extending knot invariants by linearity to the whole algebra of knots we
see that

I = HomZ(ZK,R).

In particular, as an R-module (or a vector space, if R is a field) I is dual to
the algebra RK := ZK⊗R, where ZK is the algebra of knots introduced in
Section 1.6. It turns out (see page 103) that the product on I corresponds
under this duality to the coproduct on the algebra RK of knots.

2.6. Quantum invariants

The subject of this section is not entirely elementary. However, we are not
going to develop here a full theory of quantum groups and corresponding
invariants, confining ourselves to some basic ideas which can be understood
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31 −t−4 + t−3 + t−1

41 t−2 − t−1 + 1− t+ t2

51 −t−7 + t−6 − t−5 + t−4 + t−2

52 −t−6 + t−5 − t−4 + 2t−3 − t−2 + t−1

61 t−4 − t−3 + t−2 − 2t−1 + 2− t+ t2

62 t−5 − 2t−4 + 2t−3 − 2t−2 + 2t−1 − 1 + t
63 −t−3 + 2t−2 − 2t−1 + 3− 2t+ 2t2 − t3
71 −t−10 + t−9 − t−8 + t−7 − t−6 + t−5 + t−3

72 −t−8 + t−7 − t−6 + 2t−5 − 2t−4 + 2t−3 − t−2 + t−1

73 t2 − t3 + 2t4 − 2t5 + 3t6 − 2t7 + t8 − t9
74 t− 2t2 + 3t3 − 2t4 + 3t5 − 2t6 + t7 − t8
75 −t−9 + 2t−8 − 3t−7 + 3t−6 − 3t−5 + 3t−4 − t−3 + t−2

76 −t−6 + 2t−5 − 3t−4 + 4t−3 − 3t−2 + 3t−1 − 2 + t
77 −t−3 + 3t−2 − 3t−1 + 4− 4t+ 3t2 − 2t3 + t4

81 t−6 − t−5 + t−4 − 2t−3 + 2t−2 − 2t−1 + 2− t+ t2

82 t−8 − 2t−7 + 2t−6 − 3t−5 + 3t−4 − 2t−3 + 2t−2 − t−1 + 1
83 t−4 − t−3 + 2t−2 − 3t−1 + 3− 3t+ 2t2 − t3 + t4

84 t−5 − 2t−4 + 3t−3 − 3t−2 + 3t−1 − 3 + 2t− t2 + t3

85 1− t+ 3t2 − 3t3 + 3t4 − 4t5 + 3t6 − 2t7 + t8

86 t−7 − 2t−6 + 3t−5 − 4t−4 + 4t−3 − 4t−2 + 3t−1 − 1 + t
87 −t−2 + 2t−1 − 2 + 4t− 4t2 + 4t3 − 3t4 + 2t5 − t6
88 −t−3 + 2t−2 − 3t−1 + 5− 4t+ 4t2 − 3t3 + 2t4 − t5
89 t−4 − 2t−3 + 3t−2 − 4t−1 + 5− 4t+ 3t2 − 2t3 + t4

810 −t−2 + 2t−1 − 3 + 5t− 4t2 + 5t3 − 4t4 + 2t5 − t6
811 t−7 − 2t−6 + 3t−5 − 5t−4 + 5t−3 − 4t−2 + 4t−1 − 2 + t
812 t−4 − 2t−3 + 4t−2 − 5t−1 + 5− 5t+ 4t2 − 2t3 + t4

813 −t−3 + 3t−2 − 4t−1 + 5− 5t+ 5t2 − 3t3 + 2t4 − t5
814 t−7 − 3t−6 + 4t−5 − 5t−4 + 6t−3 − 5t−2 + 4t−1 − 2 + t
815 t−10 − 3t−9 + 4t−8 − 6t−7 + 6t−6 − 5t−5 + 5t−4 − 2t−3 + t−2

816 −t−6 + 3t−5 − 5t−4 + 6t−3 − 6t−2 + 6t−1 − 4 + 3t− t2
817 t−4 − 3t−3 + 5t−2 − 6t−1 + 7− 6t+ 5t2 − 3t3 + t4

818 t−4 − 4t−3 + 6t−2 − 7t−1 + 9− 7t+ 6t2 − 4t3 + t4

819 t3 + t5 − t8
820 −t−5 + t−4 − t−3 + 2t−2 − t−1 + 2− t
821 t−7 − 2t−6 + 2t−5 − 3t−4 + 3t−3 − 2t−2 + 2t−1

Table 2.4.1. Jones polynomials of knots with up to 8 crossings

without going deep into complicated details. The reader will see that it is
possible to use quantum invariants without even knowing what a quantum
group is!
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2.6.1. The discovery of the Jones polynomial inspired many people to search
for other skein relations compatible with Reidemeister moves and thus defin-
ing knot polynomials. This lead to the introduction of the HOMFLY ([HOM,
PT]) and Kauffman’s ([Ka3, Ka4]) polynomials. It soon became clear that
all these polynomials are the first members of a vast family of knot invariants
called quantum invariants.

The original idea of quantum invariants (in the case of 3-manifolds) was
proposed by E. Witten in the famous paper [Wit]. Witten’s approach com-
ing from physics was not completely justified from the mathematical view-
point. The first mathematically impeccable definition of quantum invariants
of links and 3-manifolds was given by Reshetikhin and Turaev [Tur2, RT1],
who used in their construction the notion of quantum groups introduced
shortly before that by V. Drinfeld in [Dr4] (see also [Dr3]) and M. Jimbo in
[Jimb]. In fact, a quantum group is not a group at all. Instead, it is a family
of algebras, more precisely, of Hopf algebras (see Appendix A.2.9), depend-
ing on a complex parameter q and satisfying certain axioms. The quantum
group Uqg of a semisimple Lie algebra g is a remarkable deformation of the
universal enveloping algebra (see Appendix A.1.6) of g (corresponding to
the value q = 1) in the class of Hopf algebras.

In this section, we show how the Jones polynomial J can be obtained
by the techniques of quantum groups, following the approach of Reshetikhin
and Turaev. It turns out that J coincides, up to normalization, with the
quantum invariant corresponding to the Lie algebra g = sl2 in its standard
two-dimensional representation (see Appendix A.1.4). Later in the book,
we shall sometimes refer to the ideas illustrated in this section. For detailed
expositions of quantum groups, we refer the interested reader to [Jan, Kas,
KRT].

2.6.2. Let g be a semisimple Lie algebra and let V be its finite-dimensional
representation. One can view V as a representation of the universal en-
veloping algebra U(g) (see Appendix, page 466). It is remarkable that this
representation can also be deformed with parameter q to a representation
of the quantum group Uqg. The vector space V remains the same, but the
action now depends on q. For a generic value of q all irreducible representa-
tions of Uqg can be obtained in this way. However, when q is a root of unity
the representation theory is different and resembles the representation the-
ory of g in finite characteristic. It can be used to derive quantum invariants
of 3-manifolds. For the purposes of knot theory it is enough to use generic
values of q, that is, those which are not roots of unity.
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2.6.3. An important property of quantum groups is that every representa-
tion gives rise to a solution R of the quantum Yang–Baxter equation

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R)

where R (the R-matrix ) is an invertible linear operator R : V ⊗V → V ⊗V ,
and both sides of the equation are understood as linear transformations
V ⊗ V ⊗ V → V ⊗ V ⊗ V .

Exercise. Given an R-matrix, construct a representation of the braid group
Bn in the space V ⊗n.

There is a procedure to construct an R-matrix associated with a re-
presentation of a Lie algebra. We are not going to describe it in general,
confining ourselves just to one example: the Lie algebra g = sl2 and its
standard two dimensional representation V (for slN case see exercise (38)
on page 68). In this case the associated R-matrix has the form

R :


e1 ⊗ e1 7→ q1/4e1 ⊗ e1

e1 ⊗ e2 7→ q−1/4e2 ⊗ e1

e2 ⊗ e1 7→ q−1/4e1 ⊗ e2 + (q1/4 − q−3/4)e2 ⊗ e1

e2 ⊗ e2 7→ q1/4e2 ⊗ e2

for an appropriate basis {e1, e2} of the space V . The inverse of R (we shall
need it later) is given by the formulae

R−1 :


e1 ⊗ e1 7→ q−1/4e1 ⊗ e1

e1 ⊗ e2 7→ q1/4e2 ⊗ e1 + (−q3/4 + q−1/4)e1 ⊗ e2

e2 ⊗ e1 7→ q1/4e1 ⊗ e2

e2 ⊗ e2 7→ q−1/4e2 ⊗ e2

2.6.4. Exercise. Check that this operator R satisfies the quantum Yang-
Baxter equation.

2.6.5. The general procedure of constructing quantum invariants is orga-
nized as follows (see details in [Oht1]). Consider a knot diagram in the
plane and take a generic horizontal line. To each intersection point of the
line with the diagram assign either the representation space V or its dual
V ∗ depending on whether the orientation of the knot at this intersection is
directed upwards or downwards. Then take the tensor product of all such
spaces over the whole horizontal line. If the knot diagram does not intersect
the line, then the corresponding vector space is the ground field C.

A portion of a knot diagram between two such horizontal lines represents
a tangle T (see the general definition in Section 1.7). We assume that this
tangle is framed by the blackboard framing. With T we associate a linear
transformation θfr(T ) from the vector space corresponding to the bottom
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of T to the vector space corresponding to the top of T . The following three
properties hold for the linear transformation θfr(T ):

• θfr(T ) is an invariant of the isotopy class of the framed tangle T ;
• θfr(T1 · T2) = θfr(T1) ◦ θfr(T2);
• θfr(T1 ⊗ T2) = θfr(T1)⊗ θfr(T2).

 

V

V

 

T
1

T
2

VV

V V

V

VVV *

*

V ∗ ⊗ V ⊗ V ⊗ V

V ⊗ V ∗ ⊗ V ⊗ V

θfr(T1)

OO

V ⊗ V

θfr(T2)

OO θfr(T1·T2)

ii

Now we can define a knot invariant θfr(K) regarding the knot K as a tangle
between the two lines below and above K. In this case θfr(K) would be
a linear transformation from C to C, that is, multiplication by a number.
Since our linear transformations depend on the parameter q, this number is
actually a function of q.

2.6.6. Because of the multiplicativity property θfr(T1 · T2) = θfr(T1) ◦
θfr(T2) it is enough to define θfr(T ) only for elementary tangles T such as
a crossing, a minimum or a maximum point. This is precisely where quan-
tum groups come in. Given a quantum group Uqg and its finite-dimensional
representation V , one can associate certain linear transformations with el-
ementary tangles in a way consistent with the Turaev oriented moves from
page 32. The R-matrix appears here as the linear transformation corre-
sponding to a positive crossing, while R−1 corresponds to a negative cross-
ing. Of course, for a trivial tangle consisting of a single string connecting
the top and bottom, the corresponding linear operator should be the iden-
tity transformation. So we have the following correspondence valid for all
quantum groups:

V

V

VxidV
V

V *

V

 

*
V ∗xidV ∗
V ∗
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V

V

V

V V ⊗ VxR
V ⊗ V

V

V

V

V V ⊗ VxR−1

V ⊗ V

Using this we can easily check that the invariance of a quantum invariant
under the third Reidemeister move is nothing else but the quantum Yang–
Baxter equation:

V ⊗ V ⊗ V

R⊗idV
x

V ⊗ V ⊗ V

idV ⊗R
x

V ⊗ V ⊗ V

R⊗idV
x

V ⊗ V ⊗ V

VV

V VV

V

V VV

V V V

=

VV

V VV

V

V VV

V V V

V ⊗ V ⊗ VxidV ⊗R
V ⊗ V ⊗ VxR⊗idV
V ⊗ V ⊗ VxidV ⊗R
V ⊗ V ⊗ V

(R⊗ idV )◦(idV ⊗R)◦(R⊗ idV ) = (idV ⊗R)◦(R⊗ idV )◦(idV ⊗R)

Similarly, the fact that we assigned mutually inverse operators (R and
R−1) to positive and negative crossings implies the invariance under the sec-
ond Reidemeister move. (The first Reidemeister move is treated in Exercise
37a below.)

To complete the construction of our quantum invariant we should assign
appropriate operators to the minimum and maximum points. These de-
pend on all the data involved: the quantum group, the representation and
the R-matrix. For the quantum group Uqsl2, its standard two dimensional
representation V and the R-matrix chosen in 2.6.3 these operators are:

min−→ =

V

 

V* V ∗ ⊗ V

C

OO q−1/2e1 ⊗ e1 + q1/2e2 ⊗ e2

1
_

OO

min←− =

V

 

V * V ⊗ V ∗

C

OO e1 ⊗ e1 + e2 ⊗ e2

1
_

OO
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−→
max =

V

 

V *

C

V ⊗ V ∗

OO q1/2

e1 ⊗ e1
_

OO 0

e1 ⊗ e2
_

OO 0

e2 ⊗ e1
_

OO
q−1/2

e2 ⊗ e2
_

OO

←−
max =

V

 

V*

C

V ∗ ⊗ V

OO 1

e1 ⊗ e1

_

OO 0

e1 ⊗ e2

_

OO 0

e2 ⊗ e1

_

OO 1

e2 ⊗ e2

_

OO

where {e1, e2} is the basis of V ∗ dual to the basis {e1, e2} of the space V .

We leave to the reader the exercise to check that these operators are
consistent with the oriented Turaev moves from page 32. See Exercise 38
for their generalization to slN .

2.6.7. Example. Let us compute the sl2-quantum invariant of the unknot.
Represent the unknot as a product of two tangles and compute the compo-
sition of the corresponding transformations

V

 

V*

C

V ∗ ⊗ V

OO

C

OO

q−1/2︸ ︷︷ ︸ + q1/2︸︷︷︸
_

OO

_

OO

︷ ︸︸ ︷
q−1/2e1 ⊗ e1 +

︷ ︸︸ ︷
q1/2e2 ⊗ e2︸ ︷︷ ︸

1
_

OO

So θfr(unknot) = q1/2+q−1/2. Therefore, in order to normalize our invariant
so that its value on the unknot is equal to 1, we must divide θfr(·) by

q1/2 + q−1/2. We denote the normalized invariant by θ̃fr(·) = θfr(·)
q1/2+q−1/2 .
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2.6.8. Example. Let us compute the quantum invariant for the left trefoil.
Represent the diagram of the trefoil as follows.

V

 

V

 

V

 

V

 

V

 

V

 

V

 

V

 

V

 

V

 

V

V

V

V

V

V

V

V

V

V

*

*

*

*

*

*

*

*

*

*

Cx
V ∗ ⊗ Vx

V ∗ ⊗ V ⊗ V ⊗ V ∗xidV ∗⊗R−1⊗idV ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗xidV ∗⊗R−1⊗idV ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗xidV ∗⊗R−1⊗idV ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗x
V ⊗ V ∗x

C

Two maps at the bottom send 1 ∈ C into the tensor

1 7→ q−1/2e1 ⊗ e1 ⊗ e1 ⊗ e1 + q−1/2e1 ⊗ e1 ⊗ e2 ⊗ e2

+ q1/2e2 ⊗ e2 ⊗ e1 ⊗ e1 + q1/2e2 ⊗ e2 ⊗ e2 ⊗ e2 .

Then applying R−3 to two tensor factors in the middle we get

q−1/2e1 ⊗
(
q−3/4e1 ⊗ e1

)
⊗ e1

+q−1/2e1 ⊗
((
−q9/4 + q5/4 − q1/4 + q−3/4

)
e1 ⊗ e2

+
(
−q7/4 − q3/4 − q−1/4

)
e2 ⊗ e1

)
⊗ e2

+q1/2e2 ⊗
((
q7/4 − q3/4 + q−1/4

)
e1 ⊗ e2 +

(
−q5/4 + q1/4

)
e2 ⊗ e1

)
⊗ e1

+q1/2e2 ⊗
(
q−3/4e2 ⊗ e2

)
⊗ e2 .
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Finally, the two maps at the top contract the whole tensor into a number

θfr(31) = q−1/2q−3/4q1/2 + q−1/2
(
−q9/4 + q5/4 − q1/4 + q−3/4

)
q−1/2

+q1/2
(
−q5/4 + q1/4

)
q1/2 + q1/2q−3/4q−1/2

= 2q−3/4 − q5/4 + q1/4 − q−3/4 + q−7/4 − q9/4 + q5/4

= q−7/4 + q−3/4 + q1/4 − q9/4

Dividing by the normalizing factor q1/2 + q−1/2 we get

θfr(31)

q1/2 + q−1/2
= q−5/4 + q3/4 − q7/4 .

The invariant θfr(K) remains unchanged under the second and third
Reidemeister moves. However, it varies under the first Reidemeister move
and thus depends on the framing. One can deframe it, that is, manufacture
an invariant of unframed knots out of it, according to the formula

θ(K) = q−
c·w(K)

2 θfr(K) ,

where w(K) is the writhe of the knot diagram and c is the quadratic Casimir
number (see Appendix A.1.4) defined by the Lie algebra g and its represen-
tation. For sl2 and the standard 2-dimensional representation c = 3/2. The
writhe of the left trefoil in our example equals −3. Hence for the unframed
normalized quantum invariant we have

θ̃(31) =
θ(31)

q1/2 + q−1/2
= q9/4

(
q−5/4 + q3/4 − q7/4

)
= q + q3 − q4 .

The substitution q = t−1 gives the Jones polynomial t−1 + t−3 − t−4.

2.7. Two-variable link polynomials

2.7.1. HOMFLY polynomial. The HOMFLY polynomial P (L) is an un-
framed link invariant. It is defined as the Laurent polynomial in two vari-
ables a and z with integer coefficients satisfying the following skein relation
and the initial condition:

aP ( ) − a−1P ( ) = zP ( ) ; P ( ) = 1 .

The existence of such an invariant is a difficult theorem. It was established
simultaneously and independently by five groups of authors [HOM, PT]
(see also [Lik]). The HOMFLY polynomial is equivalent to the collection
of quantum invariants associated with the Lie algebra slN and its standard
N -dimensional representation for all values of N (see Exercise 38 on page 68
for details).
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31 (2a2 − a4) + a2z2

41 (a−2 − 1 + a2)− z2

51 (3a4 − 2a6) + (4a4 − a6)z2 + a4z4

52 (a2 + a4 − a6) + (a2 + a4)z2

61 (a−2 − a2 + a4) + (−1− a2)z2

62 (2− 2a2 + a4) + (1− 3a2 + a4)z2 − a2z4

63 (−a−2 + 3− a2) + (−a−2 + 3− a2)z2 + z4

71 (4a6 − 3a8) + (10a6 − 4a8)z2 + (6a6 − a8)z4 + a6z6

72 (a2 + a6 − a8) + (a2 + a4 + a6)z2

73 (a−4 + 2a−6 − 2a−8) + (3a−4 + 3a−6 − a−8)z2 + (a−4 + a−6)z4

74 (2a−4 − a−8) + (a−2 + 2a−4 + a−6)z2

75 (2a4 − a8) + (3a4 + 2a6 − a8)z2 + (a4 + a6)z4

76 (1− a2 + 2a4 − a6) + (1− 2a2 + 2a4)z2 − a2z4

77 (a−4 − 2a−2 + 2) + (−2a−2 + 2− a2)z2 + z4

81 (a−2 − a4 + a6) + (−1− a2 − a4)z2

82 (3a2 − 3a4 + a6) + (4a2 − 7a4 + 3a6)z2 + (a2 − 5a4 + a6)z4 − a4z6

83 (a−4 − 1 + a4) + (−a−2 − 2− a2)z2

84 (a4 − 2 + 2a−2) + (a4 − 2a2 − 3 + a−2)z2 + (−a2 − 1)z4

85 (4a−2 − 5a−4 + 2a−6) + (4a−2 − 8a−4 + 3a−6)z2

+(a−2 − 5a−4 + a−6)z4 − a−4z6

86 (2− a2 − a4 + a6) + (1− 2a2 − 2a4 + a6)z2 + (−a2 − a4)z4

87 (−2a−4 + 4a−2 − 1) + (−3a−4 + 8a−2 − 3)z2 + (−a−4 + 5a−2 − 1)z4

+a−2z6

88 (−a−4 + a−2 + 2− a2) + (−a−4 + 2a−2 + 2− a2)z2 + (a−2 + 1)z4

89 (2a−2 − 3 + 2a2) + (3a−2 − 8 + 3a2)z2 + (a−2 − 5 + a2)z4 − z6

810 (−3a−4 + 6a−2 − 2) + (−3a−4 + 9a−2 − 3)z2 + (−a−4 + 5a−2 − 1)z4

+a−2z6

811 (1 + a2 − 2a4 + a6) + (1− a2 − 2a4 + a6)z2 + (−a2 − a4)z4

812 (a−4 − a−2 + 1− a2 + a4) + (−2a−2 + 1− 2a2)z2 + z4

813 (−a−4 + 2a−2) + (−a−4 + 2a−2 + 1− a2)z2 + (a−2 + 1)z4

814 1 + (1− a2 − a4 + a6)z2 + (−a2 − a4)z4

815 (a4 + 3a6 − 4a8 + a10) + (2a4 + 5a6 − 3a8)z2 + (a4 + 2a6)z4

816 (−a4 + 2a2) + (−2a4 + 5a2 − 2)z2 + (−a4 + 4a2 − 1)z4 + a2z6

817 (a−2 − 1 + a2) + (2a−2 − 5 + 2a2)z2 + (a−2 − 4 + a2)z4 − z6

818 (−a−2 + 3− a2) + (a−2 − 1 + a2)z2 + (a−2 − 3 + a2)z4 − z6

819 (5a−6 − 5a−8 + a−10) + (10a−6 − 5a−8)z2 + (6a−6 − a−8)z4 + a−6z6

820 (−2a4 + 4a2 − 1) + (−a4 + 4a2 − 1)z2 + a2z4

821 (3a2 − 3a4 + a6) + (2a2 − 3a4 + a6)z2 − a4z4

Table 2.7.1. HOMFLY polynomials of knots with up to 8 crossings



2.7. Two-variable link polynomials 59

Important properties of the HOMFLY polynomial are contained in the
following exercises.

2.7.2. Exercise.

(1) Prove the uniqueness of such an invariant. In other words, prove
that the relation above are sufficient to compute the HOMFLY
polynomial.

(2) Compute the HOMFLY polynomial for the
knots 31, 41 and compare your results with
those given in Table 2.7.1.

(3) Compare the HOMFLY polynomials of the
Conway and Kinoshita-Terasaka knots on the
right (see, for instance, [Sos]).

C =

KT =

2.7.3. Exercise. Prove that the HOMFLY polynomial of a link is preserved
when the orientation of all components is reversed.

2.7.4. Exercise. (W. B. R. Lickorish [Lik]) Prove that

(1) P (L) = P (L), where L is the mirror reflection of L and P (L) is the
polynomial obtained from P (L) by substituting −a−1 for a;

(2) P (K1#K2) = P (K1) · P (K2);

(3) P (L1 t L2) =
a− a−1

z
· P (L1) · P (L2), where

L1tL2 means the split union of links (that is,
the union of L1 and L2 such that each of these
two links is contained inside its own ball, and
the two balls do not have common points);

88 =

10129 =
(4) P (88) = P (10129).

These knots can be distinguished by the two-
variable Kauffman polynomial defined below.

2.7.5. Two-variable Kauffman polynomial. In [Ka4], L. Kauffman
found another invariant Laurent polynomial F (L) in two variables a and
z. Firstly, for a unoriented link diagram D we define a polynomial Λ(D)
which is invariant under Reidemeister moves Ω2 and Ω3 and satisfies the
relations

Λ( ) + Λ( ) = z
(

Λ( ) + Λ( )
)
,

Λ( ) = aΛ( ) , Λ( ) = a−1Λ( ) ,

and the initial condition Λ( ) = 1.
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Now, for any diagram D of an oriented link L we put

F (L) := a−w(D)Λ(D).

It turns out that this polynomial is equivalent to the collection of the quan-
tum invariants associated with the Lie algebra soN and its standard N -
dimensional representation for all values of N (see [Tur3]).

31 (−2a2 − a4) + (a3 + a5)z + (a2 + a4)z2

41 (−a−2 − 1− a2) + (−a−1 − a)z + (a−2 + 2 + a2)z2 + (a−1 + a)z3

51 (3a4 + 2a6) + (−2a5 − a7 + a9)z + (−4a4 − 3a6 + a8)z2

+(a5 + a7)z3 + (a4 + a6)z4

52 (−a2 + a4 + a6) + (−2a5 − 2a7)z + (a2 − a4 − 2a6)z2

+(a3 + 2a5 + a7)z3 + (a4 + a6)z4

61 (−a−2 + a2 + a4) + (2a+ 2a3)z + (a−2 − 4a2 − 3a4)z2

+(a−1 − 2a− 3a3)z3 + (1 + 2a2 + a4)z4 + (a+ a3)z5

62 (2 + 2a2 + a4) + (−a3 − a5)z + (−3− 6a2 − 2a4 + a6)z2

+(−2a+ 2a5)z3 + (1 + 3a2 + 2a4)z4 + (a+ a3)z5

63 (a−2 + 3 + a2) + (−a−3 − 2a−1 − 2a− a3)z + (−3a−2 − 6− 3a2)z2

+(a−3 + a−1 + a+ a3)z3 + (2a−2 + 4 + 2a2)z4 + (a−1 + a)z5

71 (−4a6 − 3a8) + (3a7 + a9 − a11 + a13)z + (10a6 + 7a8 − 2a10 + a12)z2

+(−4a7 − 3a9 + a11)z3 + (−6a6 − 5a8 + a10)z4 + (a7 + a9)z5

+(a6 + a8)z6

72 (−a2 − a6 − a8) + (3a7 + 3a9)z + (a2 + 3a6 + 4a8)z2

+(a3 − a5 − 6a7 − 4a9)z3 + (a4 − 3a6 − 4a8)z4 + (a5 + 2a7 + a9)z5

+(a6 + a8)z6

73 (−2a−8 − 2a−6 + a−4) + (−2a−11 + a−9 + 3a−7)z
+(−a−10 + 6a−8 + 4a−6 − 3a−4)z2 + (a−11 − a−9 − 4a−7 − 2a−5)z3

+(a−10 − 3a−8 − 3a−6 + a−4)z4 + (a−9 + 2a−7 + a−5)z5

+(a−8 + a−6)z6

74 (−a−8 + 2a−4) + (4a−9 + 4a−7)z + (2a−8 − 3a−6 − 4a−4 + a−2)z2

+(−4a−9 − 8a−7 − 2a−5 + 2a−3)z3 + (−3a−8 + 3a−4)z4

+(a−9 + 3a−7 + 2a−5)z5 + (a−8 + a−6)z6

75 (2a4 − a8) + (−a5 + a7 + a9 − a11)z + (−3a4 + a8 − 2a10)z2

+(−a5 − 4a7 − 2a9 + a11)z3 + (a4 − a6 + 2a10)z4

+(a5 + 3a7 + 2a9)z5 + (a6 + a8)z6

76 (1 + a2 + 2a4 + a6) + (a+ 2a3 − a7)z + (−2− 4a2 − 4a4 − 2a6)z2

+(−4a− 6a3 − a5 + a7)z3 + (1 + a2 + 2a4 + 2a6)z4

+(2a+ 4a3 + 2a5)z5 + (a2 + a4)z6

77 (a−4 + 2a−2 + 2) + (2a−3 + 3a−1 + a)z + (−2a−4 − 6a−2 − 7− 3a2)z2

+(−4a−3 − 8a−1 − 3a+ a3)z3 + (a−4 + 2a−2 + 4 + 3a2)z4

+(2a−3 + 5a−1 + 3a)z5 + (a−2 + 1)z6

Table 2.7.2. Kauffman polynomials of knots with up to 7 crossings



2.7. Two-variable link polynomials 61

81 (−a−2 − a4 − a6) + (−3a3 − 3a5)z + (a−2 + 7a4 + 6a6)z2

+(a−1 − a+ 5a3 + 7a5)z3 + (1− 2a2 − 8a4 − 5a6)z4

+(a− 4a3 − 5a5)z5 + (a2 + 2a4 + a6)z6 + (a3 + a5)z7

82 (−3a2 − 3a4 − a6) + (a3 + a5 − a7 − a9)z
+(7a2 + 12a4 + 3a6 − a8 + a10)z2 + (3a3 − a5 − 2a7 + 2a9)z3

+(−5a2 − 12a4 − 5a6 + 2a8)z4 + (−4a3 − 2a5 + 2a7)z5

+(a2 + 3a4 + 2a6)z6 + (a3 + a5)z7

83 (a−4 − 1 + a4) + (−4a−1 − 4a)z + (−3a−4 + a−2 + 8 + a2 − 3a4)z2

+(−2a−3 + 8a−1 + 8a− 2a3)z3 + (a−4 − 2a−2 − 6− 2a2 + a4)z4

+(a−3 − 4a−1 − 4a+ a3)z5 + (a−2 + 2 + a2)z6 + (a−1 + a)z7

84 (−2a−2 − 2 + a4) + (−a−1 + a+ 2a3)z
+(7a−2 + 10− a2 − 3a4 + a6)z2 + (4a−1 − 3a− 5a3 + 2a5)z3

+(−5a−2 − 11− 3a2 + 3a4)z4 + (−4a−1 − a+ 3a3)z5

+(a−2 + 3 + 2a2)z6 + (a−1 + a)z7

85 (−2a−6 − 5a−4 − 4a−2) + (4a−7 + 7a−5 + 3a−3)z
+(a−10 − 2a−8 + 4a−6 + 15a−4 + 8a−2)z2 + (2a−9 − 8a−7 − 10a−5)z3

+(3a−8 − 7a−6 − 15a−4 − 5a−2)z4 + (4a−7 + a−5 − 3a−3)z5

+(3a−6 + 4a−4 + a−2)z6 + (a−5 + a−3)z7

86 (2 + a2 − a4 − a6) + (−a− 3a3 − a5 + a7)z
+(−3− 2a2 + 6a4 + 3a6 − 2a8)z2 + (−a+ 5a3 + 2a5 − 4a7)z3

+(1− 6a4 − 4a6 + a8)z4 + (a− 2a3 − a5 + 2a7)z5

+(a2 + 3a4 + 2a6)z6 + (a3 + a5)z7

87 (−2a−4 − 4a−2 − 1) + (−a−7 + 2a−3 + 2a−1 + a)z
+(−2a−6 + 4a−4 + 12a−2 + 6)z2 + (a−7 − a−5 − 2a−3 − 3a−1 − 3a)z3

+(2a−6 − 3a−4 − 12a−2 − 7)z4 + (2a−5 − a−1 + a)z5

+(2a−4 + 4a−2 + 2)z6 + (a−3 + a−1)z7

88 (−a−4 − a−2 + 2 + a2) + (2a−5 + 3a−3 + a−1 − a− a3)z
+(4a−4 + 5a−2 − 1− 2a2)z2 + (−3a−5 − 5a−3 − 3a−1 + a3)z3

+(−6a−4 − 9a−2 − 1 + 2a2)z4 + (a−5 + a−1 + 2a)z5

+(2a−4 + 4a−2 + 2)z6 + (a−3 + a−1)z7

89 (−2a−2 − 3− 2a2) + (a−3 + a−1 + a+ a3)z
+(−2a−4 + 4a−2 + 12 + 4a2 − 2a4)z2 + (−4a−3 − a−1 − a− 4a3)z3

+(a−4 − 4a−2 − 10− 4a2 + a4)z4 + (2a−3 + 2a3)z5

+(2a−2 + 4 + 2a2)z6 + (a−1 + a)z7

810 (−3a−4 − 6a−2 − 2) + (−a−7 + 2a−5 + 6a−3 + 5a−1 + 2a)z
+(−a−6 + 6a−4 + 12a−2 + 5)z2 + (a−7 − 3a−5 − 9a−3 − 8a−1 − 3a)z3

+(2a−6 − 5a−4 − 13a−2 − 6)z4 + (3a−5 + 3a−3 + a−1 + a)z5

+(3a−4 + 5a−2 + 2)z6 + (a−3 + a−1)z7

Table 2.7.1. Kauffman polynomials of knots with 8 crossings
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811 (1− a2 − 2a4 − a6) + (a3 + 3a5 + 2a7)z + (−2 + 6a4 + 2a6 − 2a8)z2

+(−3a− 2a3 − 3a5 − 4a7)z3 + (1− 2a2 − 7a4 − 3a6 + a8)z4

+(2a+ a3 + a5 + 2a7)z5 + (2a2 + 4a4 + 2a6)z6 + (a3 + a5)z7

812 (a−4 + a−2 + 1 + a2 + a4) + (a−3 + a3)z
+(−2a−4 − 2a−2 − 2a2 − 2a4)z2 + (−3a−3 − 3a−1 − 3a− 3a3)z3

+(a−4 − a−2 − 4− a2 + a4)z4 + (2a−3 + 2a−1 + 2a+ 2a3)z5

+(2a−2 + 4 + 2a2)z6 + (a−1 + a)z7

813 (−a−4 − 2a−2) + (2a−5 + 4a−3 + 3a−1 + a)z + (5a−4 + 7a−2 − 2a2)z2

+(−3a−5 − 7a−3 − 9a−1 − 4a+ a3)z3 + (−6a−4 − 11a−2 − 2 + 3a2)z4

+(a−5 + a−3 + 4a−1 + 4a)z5 + (2a−4 + 5a−2 + 3)z6 + (a−3 + a−1)z7

814 1 + (a+ 3a3 + 3a5 + a7)z + (−2− a2 + 3a4 + a6 − a8)z2

+(−3a− 6a3 − 8a5 − 5a7)z3 + (1− a2 − 7a4 − 4a6 + a8)z4

+(2a+ 3a3 + 4a5 + 3a7)z5 + (2a2 + 5a4 + 3a6)z6 + (a3 + a5)z7

815 (a4 − 3a6 − 4a8 − a10) + (6a7 + 8a9 + 2a11)z
+(−2a4 + 5a6 + 8a8 − a12)z2 + (−2a5 − 11a7 − 14a9 − 5a11)z3

+(a4 − 5a6 − 10a8 − 3a10 + a12)z4 + (2a5 + 5a7 + 6a9 + 3a11)z5

+(3a6 + 6a8 + 3a10)z6 + (a7 + a9)z7

816 (−2a2 − a4) + (a−1 + 3a+ 4a3 + 2a5)z + (5 + 10a2 + 4a4 − a6)z2

+(−2a−1 − 6a− 10a3 − 5a5 + a7)z3 + (−8− 18a2 − 7a4 + 3a6)z4

+(a−1 − a+ 3a3 + 5a5)z5 + (3 + 8a2 + 5a4)z6 + (2a+ 2a3)z7

817 (−a−2 − 1− a2) + (a−3 + 2a−1 + 2a+ a3)z
+(−a−4 + 3a−2 + 8 + 3a2 − a4)z2 + (−4a−3 − 6a−1 − 6a− 4a3)z3

+(a−4 − 6a−2 − 14− 6a2 + a4)z4 + (3a−3 + 2a−1 + 2a+ 3a3)z5

+(4a−2 + 8 + 4a2)z6 + (2a−1 + 2a)z7

818 (a−2 + 3 + a2) + (a−1 + a)z + (3a−2 + 6 + 3a2)z2

+(−4a−3 − 9a−1 − 9a− 4a3)z3 + (a−4 − 9a−2 − 20− 9a2 + a4)z4

+(4a−3 + 3a−1 + 3a+ 4a3)z5 + (6a−2 + 12 + 6a2)z6 + (3a−1 + 3a)z7

819 (−a−10 − 5a−8 − 5a−6) + (5a−9 + 5a−7)z + (10a−8 + 10a−6)z2

+(−5a−9 − 5a−7)z3 + (−6a−8 − 6a−6)z4 + (a−9 + a−7)z5

+(a−8 + a−6)z6

820 (−1− 4a2 − 2a4) + (a−1 + 3a+ 5a3 + 3a5)z + (2 + 6a2 + 4a4)z2

+(−3a− 7a3 − 4a5)z3 + (−4a2 − 4a4)z4 + (a+ 2a3 + a5)z5

+(a2 + a4)z6

821 (−3a2 − 3a4 − a6) + (2a3 + 4a5 + 2a7)z + (3a2 + 5a4 − 2a8)z2

+(−a3 − 6a5 − 5a7)z3 + (−2a4 − a6 + a8)z4 + (a3 + 3a5 + 2a7)z5

+(a4 + a6)z6

Table 2.7.1. Kauffman polynomials of knots with 8 crossings (Continuation)
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As in the previous section, we conclude with a series of exercises with
additional information on the Kauffman polynomial.

2.7.6. Exercise. Prove that the defining relations are sufficient to compute
the Kauffman polynomial.

2.7.7. Exercise. Compute the Kauffman polynomial for the knots 31, 41

and compare the results with those given in the above table.

2.7.8. Exercise. Prove that the Kauffman polynomial of a knot is preserved
when the knot orientation is reversed.

2.7.9. Exercise. (W. B. R. Lickorish [Lik]) Prove that

(1) F (L) = F (L), where L is the mirror reflection

of L, and F (L) is the polynomial obtained
from F (L) by substituting a−1 for a;

(2) F (K1#K2) = F (K1) · F (K2);

(3) F (L1tL2) =
(

(a+a−1)z−1−1
)
·F (L1)·F (L2),

where L1 t L2 means the split union of links;

11a30 =

11a189 =

(4) F (11a30) = F (11a189);
(these knots can be distinguished by the Conway and, hence, by the
HOMFLY polynomial; note that we use the Knotscape numbering
of knots [HT], while in [Lik] the old Perko’s notation is used).

(5) F (L∗) = a4lk(K,L−K)F (L), where the link L∗ is obtained from an
oriented link L by reversing the orientation of a connected compo-
nent K.

2.7.10. Comparative strength of polynomial invariants. Let us say
that an invariant I1 dominates an invariant I2, if the equality I1(K1) =
I1(K2) for any two knots K1 and K2 implies the equality I2(K1) = I2(K2).
Denoting this relation by arrows, we have the following comparison chart:

HOMFLY

a=1

z=x1/2−x−1/2

zzttttttttttttttttttttt

a=1
z=t

��

z=t1/2−t−1/2

a=t−1

##HHHHHHHHHHHHHHHHHHH
Kauffman

a=−t−3/4

z=t1/4+t−1/4

������������������

Alexander x1/2−x−1/2=t

))

Conway
hh

Jones

(the absence of an arrow between the two invariants means that neither of
them dominates the other).

Exercise. Find in this chapter all the facts sufficient to justify this
chart.
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Exercises

(1) Bridge number. The bridge number b(K) of a knot K can be defined
as the minimal number of local maxima of the projection of the knot
onto a straight line, where the minimum is taken over all projections
and over all closed curves in R3 representing the knot. Show that that

b(K1#K2) = b(K1) + b(K2)− 1 .

Knots of bridge number 2 are also called rational knots.

(2) Prove that the Conway and the Jones polynomials of a knot are pre-
served when the knot orientation is reversed.

(3) Compute the Conway and the Jones polynomials for the links from Sec-
tion 1.2.5, page 20, with some orientations of their components.

(4) A link is called split if it is equivalent to a link which has some compo-
nents in a ball while the other components are located outside of the ball.
Prove that the Conway polynomial of a split link is trivial: C(L) = 0.

(5) For a split link L1 t L2 prove that

J(L1 t L2) = (−t1/2 − t−1/2) · J(L1) · J(L2) .

(6) Prove that C(K1#K2) = C(K1) · C(K2).

(7) Prove that J(K1#K2) = J(K1) · J(K2).

(8) (cf. J. H. Conway [Con]) Check that the Conway polynomial satisfies
the following relations.

(a) C
( )

+ C
( )

= (2 + t2)C
( )

;

(b) C
( )

+ C
( )

= 2C
( )

;

(c) C
( )

+ C
( )

= C
( )

+ C
( )

.

(9) Compute the Conway polynomials of the Conway and the Kinoshita–
Terasaka knots (see page 59).

(10) Prove that for any knot K the Conway polynomial C(K) is an even
polynomial in t and its constant term is equal to 1:

C(K) = 1 + c2(K)t2 + c4(K)t4 + . . .

(11) Let L be a link with two components K1 and K2. Prove that the Conway
polynomial C(L) is an odd polynomial in t and its lowest coefficient is
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equal to the linking number lk(K1,K2):

C(L) = lk(K1,K2)t+ c3(L)t3 + c5(L)t5 + . . .

(12) Prove that for a link L with k components the Conway polynomial C(L)
is divisible by tk−1 and is odd or even depending on the parity of k:

C(L) = ck−1(L)tk−1 + ck+1(L)tk+1 + ck+3(L)tk+3 + . . .

(13) For a knot K, show that C(K)
∣∣
t=2i
≡ 1 or 5 (mod 8) depending of the

parity of c2(K). The reduction of c2(K) modulo 2 is called the Arf
invariant of K.

(14) Show that J(L)
∣∣
t=−1

= C(L)
∣∣
t=2i

for any link L. The absolute value of

this number is called the determinant of the link L.
Hint. Choose

√
t in such a way that

√
−1 = −i.

(15) Check the following switching formula for the Jones polynomial.

J( )− tJ( ) = t3λ0(1− t)J( ) ,

where λ0 is the linking number of two components of the link, ,
obtained by smoothing the crossing according to the orientation. Note
that the knot in the right hand side of the formula is unoriented. That
is because such a smoothing destroys the orientation. Since the Jones
polynomial does not distinguish the orientation of a knot, we may choose
it arbitrarily.

(16) Interlacing crossings formulae. Suppose K++ is a knot diagram
with two positive crossings which are interlaced. That means when we
trace the knot we first past the first crossing, then the second, then again
the first, and after that the second. Consider the following four knots
and one link:

K++ K00 K0∞ K∞− L0+

Check that the Jones polynomial satisfies the relation

J(K++) = tJ(K00) + t3λ0+
(
J(K0∞)− tJ(K∞−)

)
,

where λ0+ is the linking number of two components of the link L0+.
Check the similar relations for K+− and K−−:

J(K+−) = J(K00) + t3λ0−+1
(
J(K0∞)− J(K∞+)

)
,
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J(K−−) = t−1J(K00) + t3λ0−
(
J(K0∞)− t−1J(K∞+)

)
.

If a knot diagram does not contain interlacing crossings then it represents
the unknot. Thus the three relations above allow one to compute the
Jones polynomial for knots recursively without referring to links.

(17) Show that the Jones polynomial satisfies the following relations.

(a) t−2J
( )

+ t2J
( )

= (t+ t−1)J
( )

;

(b) tJ
( )

+ t−1J
( )

= (t+ t−1)J
( )

;

(c) t2J
( )

+ t−2J
( )

= t−2J
( )

+ t2J
( )

.

Compare these relations with those of Exercise 8 for the Conway poly-
nomial.

(18) Prove that for a link L with an odd number of components, J(L) is
a polynomial in t and t−1, and for a link L with an even number of
components J(L) = t1/2 · (a polynomial in t and t−1).

(19) Prove that for a link L with k components J(L)
∣∣
t=1

= (−2)k−1. In

particular, J(K)
∣∣
t=1

= 1 for a knot K.

(20) Prove that
d(J(K))

dt

∣∣∣∣∣
t=1

= 0 for any knot K.

(21) Evaluate the Kauffman bracket 〈L〉 at a = eπi/3, b = a−1, c = −a2−a−2.
Deduce from here that J(L)

∣∣
t=e2πi/3

= 1.

Hint.
√
t = a−2 = e4πi/3.

(22) Let L be a link with k components. For odd (resp. even) k let aj
(j = 0, 1, 2, or 3) be the sum of the coefficients of J(L) (resp. J(L)/

√
t,

see problem 18) at ts for all s ≡ j (mod 4).
(a) For odd k, prove that a1 = a3.
(b) For even k, prove that a0 + a1 = a2 + a3.

(23) (W. B. R. Lickorish [Lik, Theorem 10.6]) Let t = i with t1/2 = eπi/4.

Prove that for a knot K, J(K)
∣∣
t=i

= (−1)c2(K).

(24) For the mirror reflection L of a link L prove that J(L) is obtained from
J(L) by substituting t−1 for t.

(25) For the link L∗ obtained from an oriented link L by reversing the orienta-

tion of one of its components K, prove that J(L∗) = t−3lk(K,L−K)J(L).

(26)∗Find a non-trivial knot K with J(K) = 1.
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(27) (L. Kauffman [Ka6], K. Murasugi [Mur1], M. Thistlethwaite [Th]).
Prove the for a reduced alternating knot diagram K (Section 1.3.3) the
number of crossings is equal to span(J(K)), that is, to the difference
beween the maximal and minimal degrees of t in the Jones polynomial
J(K). (This exercise is not particularly difficult, although it solves a
one hundred years old conjecture of Tait. Anyway, the reader can find
a rather simple solution in [Tur1].)

(28) Let L be a link with k components. Show that its HOMFLY polynomial
P (L) is an even function in each of the variables a and z if k is odd, and
it is an odd function if k is even.

(29) For a link L with k components, show that the lowest power of z in its
HOMFLY polynomial is z−k+1. In particular the HOMFLY polynomial
P (K) of a knot K is a genuine polynomial in z. This means that it does
not contain terms with z raised to a negative power.

(30) For a knot K let p0(a) := P (K)|z=0 be the constant term of the HOM-
FLY polynomial. Show that its derivative at a = 1 equals zero.

(31) Let L be a link with two components K1 and K2. Consider P (L) as
a Laurent polynomial in z with coefficients in Laurent polynomials in
a. Let p−1(a) and p1(a) be the coefficients of z−1 and z. Check that
p−1

∣∣
a=1

= 0, p′−1

∣∣
a=1

= 2, p′′−1

∣∣
a=1

= −8lk(K1,K2) − 2, and

p1

∣∣
a=1

= lk(K1,K2).

(32) Compute the HOMFLY polynomial of the four links shown on page 46.
Note that, according to the result, the behaviour of the HOMFLY poly-
nomial under the change of orientation of one component is rather un-
predictable. (The same is true for the Conway polynomial, but not true
for the Jones and the Kauffmann polynomials.)

(33) (W. B. R. Lickorish [Lik]) Prove that for an oriented link L with k
components,

(J(L))2
∣∣∣
t=−q−2

= (−1)k−1F (L)

∣∣∣∣∣ a=q3

z=q+q−1

,

where J(L) is the Jones polynomial and F (L) is the two-variable Kauff-
man polynomial defined on page 59.

(34) Let L be a link with k components. Show that its two-variable Kauffman
polynomial F (L) is an even function of both variables a and z (that is,
it consists of monomials aizj with i and j of the same parity) if k is odd,
and it is an odd function (different parities of i and j) if k is even.

(35) Prove that the Kauffman polynomial F (K) of a knot K is a genuine
polynomial in z.
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(36) For a knot K let f0(a) := F (K)|z=0 be the constant term of the Kauff-
man polynomial. Show that it is related to the constant term of the
HOMFLY polynomial of K as f0(a) = p0(

√
−1 · a).

(37) Quantum sl2-invariant. Let θ(·) and θfr(·) be the quantum invariants
constructed in Sections 2.6.3 and 2.6.6 for the Lie algebra sl2 and its
standard 2-dimensional representation.
(a) Prove the following dependence of θfr(·) on the first Reidemeister

move

θfr( ) = q3/4θfr( ) .

(b) Prove that θ(·) remains unchanged under the first Reidemeister
move.

(c) Compute the value θ(41).
(d) Show that the R-matrix defined in page 52 satisfies the equation

q1/4R− q−1/4R−1 = (q1/2 − q−1/2)idV⊗V .

(e) Prove that θfr(·) satisfies the skein relation

q1/4θfr( ) − q−1/4θfr( ) = (q1/2 − q−1/2)θfr( ) .

(f) Prove that θ(·) satisfies the skein relation

qθ( ) − q−1θ( ) = (q1/2 − q−1/2)θ( ) .

(g) For any link L with k components prove that

θfr(L) = (−1)k(q1/2 + q−1/2) · 〈L〉
∣∣∣
a=−q1/4

,

where 〈·〉 is the Kauffman bracket defined on page 48.

(38) Quantum slN invariants. Let V be an N dimensional vector space of
the standard representation of the Lie algebra slN with a basis e1, . . . , eN .
Consider the operator R : V ⊗ V → V ⊗ V given by the formulae

R(ei ⊗ ej) =


q
−1
2N ej ⊗ ei if i < j

q
N−1
2N ei ⊗ ej if i = j

q
−1
2N ej ⊗ ei +

(
q
N−1
2N − q

−N−1
2N

)
ei ⊗ ej if i > j

which for N = 2 coincides with the operator from Section 2.6.3, page
52.
(a) Prove that it satisfies the quantum Yang–Baxter equation

R12R23R12 = R23R12R23 ,
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where Rij is the operator R acting on the ith and jth factors of
V ⊗ V ⊗ V , that is, R12 = R⊗ idV and R23 = idV ⊗R.

(b) Show that its inverse is given by the formulae

R−1(ei ⊗ ej) =


q

1
2N ej ⊗ ei +

(
−q

N+1
2N + q

−N+1
2N

)
ei ⊗ ej if i < j

q
−N+1
2N ei ⊗ ej if i = j

q
1

2N ej ⊗ ei if i > j

(c) Check that q
1

2NR− q
−1
2NR−1 = (q1/2 − q−1/2)idV⊗V .

(d) Extending the assignments of operators for maximum/minimum
tangles from page 54 we set:

min−→ : C→ V ∗ ⊗ V, min−→(1) :=
N∑
k=1

q
−N−1

2
+kek ⊗ ek ;

min←− : C→ V ⊗ V ∗, min←−(1) :=
N∑
k=1

ek ⊗ ek ;

−→
max : V ⊗ V ∗ → C, −→

max (ei ⊗ ej) :=

{
0 if i 6= j

q
N+1

2
−i if i = j

;

←−
max : V ∗ ⊗ V → C, ←−

max (ei ⊗ ej) :=

{
0 if i 6= j
1 if i = j

.

Prove that all these operators are consistent in the sense that their
appropriate combinations are consistent with the oriented Turaev

moves from page 32. Thus we get a link invariant denoted by θfr,StslN
.

(e) Show the θfr,StslN
satisfies the following skein relation

q
1

2N θfr,StslN
( ) − q−

1
2N θfr,StslN

( ) = (q1/2 − q−1/2)θfr,StslN
( )

and the following framing and initial conditions

θfr,StslN
( ) = q

N−1/N
2 θfr,StslN

( )

θfr,StslN
( ) =

qN/2 − q−N/2

q1/2 − q−1/2
.

(f) The quadratic Casimir number for the standard slN representation
is equal to N − 1/N . Therefore, the deframing of this invariant

gives θStslN := q−
N−1/N

2
·wθfr,StslN

which satisfies

qN/2θStslN ( ) − q−N/2θStslN ( ) = (q1/2 − q−1/2)θStslN ( ) ;
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θStslN ( ) =
qN/2 − q−N/2

q1/2 − q−1/2
.

Check that this invariant is essentially a specialization of the HOM-
FLY polynomial,

θStslN (L) =
qN/2 − q−N/2

q1/2 − q−1/2
P (L)

∣∣∣∣∣ a=qN/2

z=q1/2−q−1/2

.

Prove that the set of invariants {θStslN } for all values of N is equiva-

lent to the HOMFLY polynomial. Thus {θfr,StslN
} may be considered

as a framed version of the HOMFLY polynomial.

(39) A different framed version of the HOMFLY polynomial is defined in

[Ka7, page 54]: P fr(L) := aw(L)P (L). Show that P fr satisfies the
following skein relation

P fr( ) − P fr( ) = zP fr( )

and the following framing and initial conditions

P fr( ) = aP fr( ) , P fr( ) = a−1P fr( )

P fr( ) = 1 .



Chapter 3

Finite type invariants

In this chapter we introduce the main protagonist of this book: the finite
type, or Vassiliev knot invariants.

First we define the Vassiliev skein relation and extend, with its help, ar-
bitrary knot invariants to knots with double points. A Vassiliev invariant of
order at most n is then defined as a knot invariant which vanishes identically
on knots with more than n double points.

After that, we introduce a combinatorial object of great importance: the
chord diagrams. Chord diagrams serve as a means to describe the symbols
(highest parts) of the Vassiliev invariants.

Then we prove that classical invariant polynomials are all, in a sense,
of finite type, explain a simple method of calculating the values of Vassiliev
invariants on any given knot, and give a table of basis Vassiliev invariants
up to degree 5.

Finally, we show how Vassiliev invariants can be defined for framed knots
and for arbitrary tangles.

3.1. Definition of Vassiliev invariants

3.1.1. The original definition of finite type knot invariants was just an ap-
plication of the general machinery developed by V.Vassiliev to study com-
plements of discriminants in spaces of maps.

The discriminants in question are subspaces of maps with singularities of
some kind. In particular, consider the space of all smooth maps of the circle
into R3. Inside this space, define the discriminant as the subspace formed
by maps that fail to be embeddings, such as curves with self-intersections,
cusps etc. Then the complement of this discriminant can be considered as

71
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the space of knots. The connected components of the space of knots are
precisely the isotopy classes of knots; knot invariants are locally constant
functions on the space of knots.

Vassiliev’s machinery produces a spectral sequence that may (or may
not, nobody knows it yet) converge to the cohomology of the space of knots.
The zero-dimensional classes produced by this spectral sequence correspond
to knot invariants which are now known as Vassiliev invariants.

This approach is indispensable if one wants to understand the higher
cohomology of the space of knots. However, if we are only after the zero-
dimensional classes, that is, knot invariants, the definitions can be greatly
simplified. In this chapter we follow the easy path that requires no knowledge
of algebraic topology whatsoever. For the reader who is not intimidated by
spectral sequences we outline Vassiliev’s construction in Chapter 15.

3.1.2. Singular knots and the Vassiliev skein relation. A singular
knot is a smooth map S1 → R3 that fails to be an embedding. We shall only
consider singular knots with the simplest singularities, namely transversal
self-intersections, or double points.

Definition. Let f be a map of a one-dimensional manifold to R3. A point
p ∈ im(f) ⊂ R3 is a double point of f if f−1(p) consists of two points t1 and
t2 and the two tangent vectors f ′(t1) and f ′(t2) are linearly independent.
Geometrically, this means that in a neighbourhood of the point p the curve
f has two branches with non-collinear tangents.

A double point

Remark. In fact, we gave a definition of a simple double point. We omit
the word “simple” since these are the only double points we shall see.

Any knot invariant can be extended to knots with double points by
means of the Vassiliev skein relation:

(3.1.1) v( ) = v( )− v( ).

Here v is the knot invariant with values in some abelian group, the left-hand
side is the value of v on a singular knot K (shown in a neighbourhood of
a double point) and the right-hand side is the difference of the values of v
on (possibly singular) knots obtained from K by replacing the double point
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with a positive and a negative crossing respectively. The process of applying
the skein relation is also referred to as resolving a double point. It is clearly
independent of the plane projection of the singular knot.

Using the Vassiliev skein relation recursively, we can extend any knot
invariant to knots with an arbitrary number of double points. There are
many ways to do this, since we can choose to resolve double points in an
arbitrary order. However, the result is independent of any choice. Indeed,
the calculation of the value of v on a singular knot K with n double points
is in all cases reduced to the complete resolution of the knot K which yields
an alternating sum

(3.1.2) v(K) =
∑

ε1=±1,...,εn=±1

(−1)|ε|v(Kε1,...,εn),

where |ε| is the number of −1’s in the sequence ε1, . . . , εn, and Kε1,...,εn is
the knot obtained from K by a positive or negative resolution of the double
points according to the sign of εi for the point number i.

3.1.3. Definition. (V. Vassiliev [Va1]). A knot invariant is said to be a
Vassiliev invariant (or a finite type invariant) of order (or degree) 6 n if its
extension vanishes on all singular knots with more than n double points. A
Vassiliev invariant is said to be of order (degree) n if it is of order 6 n but
not of order 6 n− 1.

In general, a Vassiliev invariant may take values in an arbitrary abelian
group. In practice, however, all our invariants will take values in commu-
tative rings and it will be convenient to make this assumption from now
on.

Notation. We shall denote by Vn the set of Vassiliev invariants of order
6 n with values in a ring R . Whenever necessary, we shall write VRn to
indicate the range of the invariants explicitly. It follows from the definition
that, for each n, the set Vn is an R-module. Moreover, Vn ⊆ Vn+1, so we
have an increasing filtration

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn ⊆ · · · ⊆ V :=
∞⋃
n=0

Vn .

We shall further discuss this definition in the next section. First, let
us see that there are indeed many (in fact, infinitely many) independent
Vassiliev invariants.

3.1.4. Example. ([BN0]). The nth coefficient of the Conway polynomial
is a Vassiliev invariant of order 6 n.
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Indeed, the definition of the Conway polynomial, together with the Vas-
siliev skein relation, implies that

C( ) = tC( ).

Applying this relation several times, we get

C( . . . ) = tkC( . . . )

for a singular knot with k double points. If k > n + 1, then the coefficient
at tn in this polynomial is zero.

3.2. Algebra of Vassiliev invariants

3.2.1. The singular knot filtration. Consider the “tautological knot in-
variant” K → ZK which sends a knot to itself. Applying the Vassiliev skein
relation, we extend it to knots with double points; a knot with n double
points is then sent to an alternating sum of 2n genuine knots.

Recall that we denote by ZK the free abelian group spanned by the
equivalence classes of knots with multiplication induced by the connected
sum of knots. Let Kn be the Z-submodule of the algebra ZK spanned by
the images of knots with n double points.

Exercise. Prove that Kn is an ideal of ZK.

A knot with n + 1 double points gives rise to a difference of two knots
with n double points in ZK; hence, we have the descending singular knot
filtration

ZK = K0 ⊇ K1 ⊇ . . . ⊇ Kn ⊇ . . .
The definition of Vassiliev invariants can now be re-stated in the following
terms:

Definition. Let R be a commutative ring. A Vassiliev invariant of order
6 n is a linear function ZK → R which vanishes on Kn+1.

According to this definition, the module of R-valued Vassiliev invari-
ants of order 6 n is naturally isomorphic to the space of linear functions
ZK/Kn+1 → R. So, in a certain sense, the study of the Vassiliev invariants
is equivalent to studying the filtration Kn. In the next several chapters we
shall mostly speak about invariants, rather than the filtration on the algebra
of knots. Nevertheless, the latter approach, developed by Goussarov [G2] is
important and we cannot skip it here altogether.

Definition. Two knots K1 and K2 are n-equivalent if they cannot be dis-
tinguished by Vassiliev invariants of degree n and smaller with values in an
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arbitrary abelian group. A knot that is n-equivalent to the trivial knot is
called n-trivial.

In other words, K1 and K2 are n-equivalent if and only if K1 − K2 ∈
Kn+1.

Definition. Let ΓnK be the set of (n − 1)-trivial knots. The Goussarov
filtration on K is the descending filtration

K = Γ1K ⊇ Γ2K ⊇ . . . ⊇ ΓnK ⊇ . . .

The sets ΓnK are, in fact, abelian monoids under the connected sum
of knots (this follows from the fact that each Kn is a subalgebra of ZK).
Goussarov proved that the monoid quotient K/ΓnK is an (abelian) group.
We shall consider n-equivalence in greater detail in Chapters 12 and 14.

3.2.2. Vassiliev invariants as polynomials. A useful way to think of
Vassiliev invariants is as follows. Let v be an invariant of singular knots
with n double points and ∇(v) be the extension of v to singular knots with
n+ 1 double points using the Vassiliev skein relation. We can consider ∇ as
an operator between the corresponding spaces of invariants. Now, a function
v : K → R is a Vassiliev invariant of degree 6 n, if it satisfies the difference
equation ∇n+1(v) = 0. This can be seen as an analogy between Vassiliev
invariants as a subspace of all knot invariants and polynomials as a subspace
of all smooth functions on a real line: the role of differentiation is played
by the operator ∇. It is well known that continuous functions on a real
line can be approximated by polynomials. The main open problem of the
theory of finite type invariants is to find an analogue of this statement in the
knot-theoretic context, namely, to understand to what extent an arbitrary
numerical knot invariant can be approximated by Vassiliev invariants. More
on this in Section 3.2.4.

3.2.3. The filtration on the algebra of Vassiliev invariants. The set
of all Vassiliev invariants forms a commutative filtered algebra with respect
to the usual (pointwise) multiplication of functions.

Theorem. The product of two Vassiliev invariants of degrees 6 p and 6 q
is a Vassiliev invariant of degree 6 p+ q.

Proof. Let f and g be two invariants with values in a ring R, of degrees p
and q respectively. Consider a singular knot K with n = p + q + 1 double
points. The complete resolution of K via the Vassiliev skein relation gives

(fg)(K) =
∑

ε1=±1,...,εn=±1

(−1)|ε|f(Kε1,...,εn)g(Kε1,...,εn)
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in the notation of (3.1.2). The alternating sum on the right-hand side is
taken over all points of an n-dimensional binary cube

Qn = {(ε1, . . . , εn) | εi = ±1}.
In general, given a function v on Qn and a subset S ⊆ Qn, the alternating
sum of v over S is defined as

∑
ε∈S(−1)|ε|v(ε).

If we set

f(ε1, ..., εn) = f(Kε1,...,εn)

and define g(ε1, ..., εn) similarly, we can think of f and g as functions on
Qn. The fact that f is of degree p means that the alternating sum of f on
each (p + 1)-face of Qn is zero. Similarly, on each (q + 1)-face of Qn the
alternating sum of g vanishes. Now, the theorem is a consequence of the
following lemma.

Lemma. Let f, g be functions on Qn, where n = p+q+1. If the alternating
sums of f over any (p + 1)-face, and of g over any (q + 1)-face of Qn are
zero, so is the alternating sum of the product fg over the entire cube Qn.

Proof of the lemma. Use induction on n. For n = 1 we have p = q = 0 and
the premises of the lemma read f(−1) = f(1) and g(−1) = g(1). Therefore,
(fg)(−1) = (fg)(1), as required.

For the general case, denote by Fn the space of functions Qn → R. We
have two operators

ρ−, ρ+ : Fn → Fn−1

which take a function v to its restrictions to the (n − 1)-dimensional faces
ε1 = −1 and ε1 = 1 of Qn:

ρ−(v)(ε2, . . . , εn) = v(−1, ε2, . . . , εn)

and

ρ+(v)(ε2, . . . , εn) = v(1, ε2, . . . , εn).

Let

δ = ρ+ − ρ−.
Observe that if the alternating sum of v over any r-face ofQn is zero, then the
alternating sum of ρ±(v) (respectively, δ(v)) over any r-face (respectively,
(r − 1)-face) of Qn−1 is zero.

A direct check shows that the operator δ satisfies the following Leibniz
rule:

δ(fg) = ρ+(f) · δ(g) + δ(f) · ρ−(g).

Applying the induction assumption to each of the two summands on the
right-hand side, we see that the alternating sum of δ(fg) over the cube Qn−1

vanishes. By the definition of δ, this sum coincides with the alternating sum
of fg over Qn. �
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Remark. The existence of the filtration on the algebra of Vassiliev invari-
ants can be thought of as a manifestation of their polynomial character.
Indeed, a polynomial of degree 6 n in one variable can be defined as a
function whose n + 1st derivative is identically zero. Then the fact that a
product of polynomials of degrees 6 p and 6 q has degree 6 p + q can be
proved by induction using the Leibniz formula. In our argument on Vas-
siliev invariants we have used the very same logic. A further discussion of
the Leibniz formula for finite type invariants can be found in [Wil4].

3.2.4. Approximation by Vassiliev invariants. The analogy between
finite type invariants and polynomials would be even more satisfying if there
existed a Stone-Weierstraß type theorem for knot invariants that would af-
firm that any invariant can be approximated by Vassiliev invariants. At the
moment no such statement is known. In fact, understanding the strength of
the class of finite type invariants is the main problem in the theory.

There are various ways of formulating this problem as a precise question.
Let us say that a class U of knot invariants is complete if for any finite set of
knots the invariants from U span the space of all functions on these knots.
We say that invariants from U distinguish knots if for any two different knots
K1 and K2 there exists f ∈ U such that f(K1) 6= f(K2). Finally, the class
U detects the unknot if any knot can be distinguished from the trivial knot
by an invariant from U . A priori, completeness is the strongest of these
properties. In this terminology, the main outstanding problem in the theory
of finite type invariants is to determine whether the Vassiliev invariants
distinguish knots. While it is conjectured that the set of rational-valued
Vassiliev knot invariants is complete, it is not even known if the class of all
Vassiliev knot invariants detects the unknot.

Note that the rational-valued Vassiliev invariants are complete if and
only if the intersection ∩Kn of all the terms of the singular knot filtration
is zero. Indeed, a non-zero element of ∩Kn produces a universal relation
among the values of the invariants on a certain set of knots. On the other
hand, let ∩Kn = 0. Then the map K → ZK/Kn+1 is a Vassiliev invariant of
order n whose values on any given set of knots become linearly independent
as n grows. As for the Goussarov filtration ΓnK, the intersection of all of
its terms consists of the trivial knot if and only if the Vassiliev invariants
detect the unknot.

There are knot invariants, of which we shall see many examples, which
are not of finite type, but, nevertheless, can be approximated by Vassiliev
invariants in a certain sense. These are the polynomial and the power series
Vassiliev invariants. A polynomial Vassiliev invariant is an element of the
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vector space

V• =
∞⊕
n=0

Vn.

Since the product of two invariants of degrees m and n has degree at most
m + n, the space V• is, in fact, a commutative graded algebra. The power
series Vassiliev invariants are, by definition, the elements of its graded com-

pletion V̂• (see Appendix A.2.3, page 476).

The Conway polynomial C is an example of a power series invariant.
Observe that even though for any knot K the value C(K) is a polynomial,
the Conway polynomial C is not a polynomial invariant according to the
definition of this paragraph.

Power series Vassiliev invariants are just one possible approach to defin-
ing approximation by finite type invariants. A wider class of invariants are
those dominated by Vassiliev invariants. We say that a knot invariant u is
dominated by Vassiliev invariants if u(K1) 6= u(K2) for some knots K1 and
K2 implies that there is a Vassiliev knot invariant v with v(K1) 6= v(K2).
Clearly, if Vassiliev invariants distinguish knots, then each knot invariant is
dominated by Vassiliev invariants. At the moment, however, it is an open
question whether, for instance, the signature of a knot [Rol] is dominated
by Vassiliev invariants.

3.3. Vassiliev invariants of degrees 0, 1 and 2

3.3.1. Proposition. V0 = {const}, dimV0 = 1.

Proof. Let f ∈ V0. By definition, the value of (the extension of) f on any
singular knot with one double point is 0. Pick an arbitrary knot K. Any
diagram of K can be turned into a diagram of the trivial knot K0 by crossing
changes done one at a time. By assumption, the jump of f at every crossing
change is 0, therefore, f(K) = f(K0). Thus f is constant. �

3.3.2. Proposition. V1 = V0.

Proof. A singular knot with one double point is divided by the double point
into two closed curves. An argument similar to the last proof shows that
the value of v on any knot with one double point is equal to its value on the
“figure infinity” singular knot and, hence, to 0:

(3.3.1) v( ) = v( ) = 0

Therefore, V1 = V0. �
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The first non-trivial Vassiliev invariant appears in degree 2: it is the
second coefficient c2 of the Conway polynomial, also known as the Casson
invariant.

3.3.3. Proposition. dimV2 = 2.

Proof. Let us explain why the argument of the proof of Propositions 3.3.1
and 3.3.2 does not work in this case. Take a knot with two double points
and try to transform it into some fixed knot with two double points using
smooth deformations and crossing changes. It is easy to see that any knot
with two double points can be reduced to one of the following two basic
knots:

Basic knot K1 Basic knot K2

— but these two knots cannot be obtained one from the other! The essential
difference between them is in the order of the double points on the curve.

Let us label the double points of K1 and K2, say, by 1 and 2. When
travelling along the first knot, K1, the two double points are encountered
in the order 1122 (or 1221, 2211, 2112 if you start from a different initial
point). For the knot K2 the sequence is 1212 (equivalent to 2121). The
two sequences 1122 and 1212 are different even if cyclic permutations are
allowed.

Now take an arbitrary singular knot K with two double points. If the
cyclic order of these points is 1122, then we can transform the knot to K1,
passing in the process of deformation through some singular knots with three
double points; if the order is 1212, we can reduce K in the same way to the
second basic knot K2.

The above argument shows that, to any R-valued order 2 Vassiliev in-
variant there corresponds a function on the set of two elements {K1,K2}
with values in R. We thus obtain a linear map V2 → R2. The kernel of this
map is equal to V1: indeed, the fact that a given invariant f ∈ V2 satisfies
f(K1) = f(K2) = 0 means that it vanishes on any singular knot with 2
double points, which is by definition equivalent to saying that f ∈ V1.

On the other hand, the image of this linear map is no more than one-
dimensional, since for any knot invariant f we have f(K1) = 0. This proves
that dimV2 6 2. In fact, dimV2 = 2, since the second coefficient c2 of the
Conway polynomial is not constant (see Table 2.3.3). �
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3.4. Chord diagrams

Now let us give a formal definition of the combinatorial structure which is
implicit in the proof of Proposition 3.3.3.

Definition. A chord diagram of order n (or degree n) is an oriented circle
with a distinguished set of n disjoint pairs of distinct points, considered up
to orientation preserving diffeomorphisms of the circle. The set of all chord
diagrams of order n will be denoted by An.

We shall usually omit the orientation of the circle in pictures of chord
diagrams, assuming that it is oriented counterclockwise.

Examples.

A1 = { },

A2 = { , },

A3 = { , , , , }.

Remark. Chord diagrams that differ by a mirror reflection are, in general,
different:

6=

This observation reflects the fact that we are studying oriented knots.

3.4.1. The chord diagram of a singular knot. Chord diagrams are
used to code certain information about singular knots.

Definition. The chord diagram σ(K) ∈ An of a singular knot with n double
points is obtained by marking on the parametrizing circle n pairs of points
whose images are the n double points of the knot.

Examples.

σ
( )

= , σ
( )

= .

3.4.2. Proposition. (V. Vassiliev [Va1]). The value of a Vassiliev invari-
ant v of order 6 n on a knot K with n double points depends only on the
chord diagram of K:

σ(K1) = σ(K2)⇒ v(K1) = v(K2).
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Proof. Suppose that σ(K1) = σ(K2). Then there is a one-to-one corre-
spondence between the chords of both chord diagrams, and, hence, between
the double points of K1 and K2. Place K1,K2 in R3 so that the correspond-
ing double points coincide together with both branches of the knot in the
vicinity of each double point.

Knot K1 Knot K2

Now we can deform K1 into K2 in such a way that some small neigh-
bourhoods of the double points do not move. We can assume that the only
new singularities created in the process of this deformation are a finite num-
ber of double points, all at distinct values of the deformation parameter. By
the Vassiliev skein relation, in each of these events the value of v does not
change, and this implies that v(K1) = v(K2). �

Proposition 3.4.2 shows that there is a well defined map αn : Vn → RAn

(the R-module of R-valued functions on the set An):

αn(v)(D) = v(K),

where K is an arbitrary knot with σ(K) = D.

We want to understand the size and the structure of the space Vn, so it
would be of use to have a description of the kernel and the image of αn.

The description of the kernel follows immediately from the definitions:
kerαn = Vn−1. Therefore, we obtain an injective homomorphism

(3.4.1) αn : Vn/Vn−1 → RAn.

The problem of describing the image of αn is much more difficult. The
answer to it will be given in Theorem 4.2.1 on page 100.

Since there is only a finite number of diagrams of each order, Proposi-
tion 3.4.2 implies the following

3.4.3. Corollary. The module of R-valued Vassiliev invariants of degree at
most n is finitely generated over R.

Since the map αn discards the order (n− 1) part of a Vassiliev invariant
v, we can, by analogy with differential operators, call the function αn(v) on
chord diagrams the symbol of the Vassiliev invariant v:

symb(v) = αn(v),

where n is the order of v.
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Example. The symbol of the Casson invariant is equal to 0 on the chord
diagram with two parallel chords, and to 1 on the chord diagram with two
interecting chords.

3.4.4. Remark. It may be instructive to state all the above in the dual
setting of the singular knot filtration. The argument in the proof of Propo-
sition 3.4.2 essentially says that An is the set of singular knots with n double
points modulo isotopies and crossing changes. In terms of the singular knot
filtration, we have shown that if two knots with n double points have the
same chord diagram, then their difference lies in Kn+1 ⊂ ZK. Since Kn is
spanned by the complete resolutions of knots with n double points, we have
a surjective map

ZAn → Kn/Kn+1.

The kernel of this map , after tensoring with the rational numbers, is spanned
by the so-called 4T and 1T relations, defined in the next chapter. This is
the content of Theorem 4.2.1.

3.5. Invariants of framed knots

A singular framing on a closed curve immersed in R3 is a smooth normal
vector field with a finite number of simple zeroes on this curve. A singular
framed knot is a knot with simple double points in R3 equipped with a
singular framing whose set of zeroes is disjoint from the set of double points.

Invariants of framed knots are extended to singular framed knots by
means of the Vassiliev skein relation; for double points it has the same form
as before, and for the zeroes of the singular framing it can be drawn as

v
( )

= v
( )

− v
( )

.

An invariant of framed knots is of order 6 n if its extension vanishes on knots
with more than n singularities (double points or zeroes of the framing).

Let us denote the space of invariants of order 6 n by Vfrn . There is a

natural inclusion i : Vn → Vfrn defined by setting i(f)(K) = f(K ′) where
K is a framed knot, and K ′ is the same knot without framing. It turns out
that this is a proper inclusion for all n > 1.

Let us determine the framed Vassiliev invariants of small degree. Any
invariant of degree zero is, in fact, an unframed knot invariant and, hence,
is constant. Indeed, increasing the framing by one can be thought of as
passing a singularity of the framing, and this does not change the value of
a degree zero invariant.
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3.5.1. Exercise. (1) Prove that dimVfr1 = 2, and that Vfr1 is spanned by
the constants and the self-linking number.

(2) Find the dimension and a basis of the vector space Vfr2 .

3.5.2. Exercise. Let v be a framed Vassiliev invariant degree n, and K an
unframed knot. Let v(K, k) be the value of v on K equipped with a framing
with self-linking number k. Show that v(K, k) is a polynomial in k of degree
at most n.

3.5.3. Chord diagrams for framed knots. We have seen that chord
diagrams on n chords can be thought of as singular knots with n double
points modulo isotopies and crossing changes. Following the same logic, we
should define a chord diagram for framed knots as an equivalence class of
framed singular knots with n singularities modulo isotopies, crossing changes
and additions of zeroes of the framing. In this way, the value of a degree n
Vassiliev invariant on a singular framed knot with n singularities will only
depend on the chord diagram of the knot.

As a combinatorial object, a framed chord diagram of degree n can be
defined as a usual chord diagram of degree n−k together with k dots marked
on the circle. The chords correspond to the double points of a singular knot
and the dots represent the zeroes of the framing.

In the sequel we shall not make any use of diagrams with dots, for the
following reason. If R is a ring where 2 is invertible, a zero of the framing
on a knot with n singularities can be replaced, modulo knots with n + 1
singularities, by “half of a double point”:

v( ) =
1

2
v( )− 1

2
v( )

for any invariant v. In particular, if we replace a dot with a chord whose end-
points are next to each other on some diagram, the symbol of any Vassiliev
invariant on this diagram is simply multiplied by 2.

On the other hand, the fact that we can use the same chord diagrams
for both framed and unframed knots does not imply that the corresponding
theories of Vassiliev invariants are the same. In particular, we shall see that
the symbol of any invariant of unframed knots vanishes on a diagram which
has a chord that has no intersections with other chords. This does not hold
for an arbitrary framed invariant.

Example. The symbol of the self-linking number is the function equal to 1
on the chord diagram with one chord.
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3.6. Classical knot polynomials as Vassiliev invariants

In Example 3.1.4, we have seen that the coefficients of the Conway polyno-
mial are Vassiliev invariants. The Conway polynomial, taken as a whole, is
not, of course, a finite type invariant, but it is an infinite linear combina-
tion of such; in other words, it is a power series Vassiliev invariant. This
property holds for all classical knot polynomials — but only after a suitable
substitution.

3.6.1. Modify the Jones polynomial of a knot K substituting t = eh and
then expanding it into a formal power series in h. Let jn(K) be the coefficient
of hn in this expansion.

Theorem ([G1, BL, BN1]). The coefficient jn(K) is a Vassiliev invariant
of order 6 n.

Proof. Plugging t = eh = 1 + h + . . . into the skein relation from Sec-
tion 2.4.3 we get

(1− h+ . . . ) · J( )− (1 + h+ . . . ) · J( ) = (h+ . . . ) · J( ) .

We see that the difference

J( )− J( ) = J( )

is congruent to 0 modulo h. Therefore, the Jones polynomial of a singular
knot with k double points is divisible by hk. In particular, for k > n+ 1 the
coefficient of hn equals zero. �

Below we shall give an explicit description of the symbols of the finite
type invariants jn; the similar description for the Conway polynomial is left
as an exercise (no. 16 at the end of the chapter, page 96).

3.6.2. Symbol of the Jones invariant jn(K). To find the symbol of
jn(K), we must compute the coefficient of hn in the Jones polynomial J(Kn)
of a singular knot Kn with n double points in terms of its chord diagram
σ(Kn). Since

J( )= J( )−J( )=h
(
j0( )+j0( )+j0( )

)
+. . .

the contribution of a double point of Kn to the coefficient jn(Kn) is the
sum of the values of j0(·) on the three links in the parentheses above. The
values of j0(·) for the last two links are equal, since, according to Exercise 4

to this chapter, to j0(L) = (−2)#(components of L)−1. So it does not de-
pend on the specific way L is knotted and linked and we can freely change
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the under/over-crossings of L. On the level of chord diagrams these two
terms mean that we just forget about the chord corresponding to this dou-

ble point. The first term, j0( ), corresponds to the smoothing of the

double point according to the orientation of our knot (link). On the level of
chord diagrams this corresponds to the doubling of a chord:

.

This leads to the following procedure of computing the value of the symbol
of jn(D) on a chord diagram D. Introduce a state s for D as an arbitrary
function on the set chords of D with values in the set {1, 2}. With each
state s we associate an immersed plane curve obtained from D by resolving
(either doubling or deleting) all its chords according to s:

c , if s(c) = 1; c , if s(c) = 2.

Let |s| denote the number of components of the curve obtained in this way.
Then

symb(jn)(D) =
∑
s

(∏
c

s(c)
)

(−2)|s|−1 ,

where the product is taken over all n chords of D, and the sum is taken over
all 2n states for D.

For example, to compute the value of the symbol of j3 on the chord

diagram we must consider 8 states:

∏
s(c)=1

|s|=2

∏
s(c)=2

|s|=1

∏
s(c)=2

|s|=1

∏
s(c)=2

|s|=3

∏
s(c)=4

|s|=2

∏
s(c)=4

|s|=2

∏
s(c)=4

|s|=2

∏
s(c)=8

|s|=1

Therefore,

symb(j3)
( )

= −2 + 2 + 2 + 2(−2)2 + 4(−2) + 4(−2) + 4(−2) + 8 = −6
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Similarly one can compute the values of symb(j3) on all chord diagrams with
three chords. Here is the result:

D

symb(j3)(D) 0 0 0 −6 −12

This function on chord diagrams, as well as the whole Jones polynomial,
is closely related to the Lie algebra sl2 and its standard 2-dimensional re-
presentation. We shall return to this subject several times in the sequel (see
Sections 6.1.4, 6.1.8, etc).

3.6.3. According to Exercise 24 (page 66), for the mirror reflection K of a
knot K the power series expansion of J(K) can be obtained from the series
J(K) by substituting −h for h. This means that j2k(K) = j2k(K) and
j2k+1(K) = −j2k+1(K).

3.6.4. Table 3.6.1 displays the first five terms of the power series expansion
of the Jones polynomial after the substitution t = eh.

31 1 −3h2 +6h3 −(29/4)h4 +(13/2)h5 +. . .

41 1 +3h2 +(5/4)h4 +. . .

51 1 −9h2 +30h3 −(243/4)h4 +(185/2)h5 +. . .

52 1 −6h2 +18h3 −(65/2)h4 +(87/2)h5 +. . .

61 1 +6h2 −6h3 +(17/2)h4 −(13/2)h5 +. . .

62 1 +3h2 −6h3 +(41/4)h4 −(25/2)h5 +. . .

63 1 −3h2 −(17/4)h4 +. . .

71 1 −18h2 +84h3 −(477/2)h4 +511h5 +. . .

72 1 −9h2 +36h3 −(351/4)h4 +159h5 +. . .

73 1 −15h2 −66h3 −(697/4)h4 −(683/2)h5 +. . .

74 1 −12h2 −48h3 −113h4 −196h5 +. . .

75 1 −12h2 +48h3 −119h4 +226h5 +. . .

76 1 −3h2 +12h3 −(89/4)h4 +31h5 +. . .

77 1 +3h2 +6h3 +(17/4)h4 +(13/2)h5 +. . .

81 1 +9h2 −18h3 +(135/4)h4 −(87/2)h5 +. . .

82 1 −6h3 +27h4 −(133/2)h5 +. . .

83 1 +12h2 +17h4 +. . .

84 1 +9h2 −6h3 +(63/4)h4 −(25/2)h5 +. . .

85 1 +3h2 +18h3 +(209/4)h4 +(207/2)h5 +. . .
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86 1 +6h2 −18h3 +(77/2)h4 −(123/2)h5 +. . .

87 1 −6h2 −12h3 −(47/2)h4 −31h5 +. . .

88 1 −6h2 −6h3 −(29/2)h4 −(25/2)h5 +. . .

89 1 +6h2 +(23/2)h4 +. . .

810 1 −9h2 −18h3 −(123/4)h4 −(75/2)h5 +. . .

811 1 +3h2 −12h3 +(125/4)h4 −55h5 +. . .

812 1 +9h2 +(51/4)h4 +. . .

813 1 −3h2 −6h3 −(53/4)h4 −(25/2)h5 +. . .

814 1 +6h4 −18h5 +. . .

815 1 −12h2 +42h3 −80h4 +(187/2)h5 +. . .

816 1 −3h2 +6h3 −(53/4)h4 +(37/2)h5 +. . .

817 1 +3h2 +(29/4)h4 +. . .

818 1 −3h2 +(7/4)h4 +. . .

819 1 −15h2 −60h3 −(565/4)h4 −245h5 +. . .

820 1 −6h2 +12h3 −(35/2)h4 +19h5 +. . .

821 1 −6h3 +21h4 −(85/2)h5 +. . .

Table 3.6.1: Taylor expansion of the modified Jones polyno-
mial

3.6.5. Example. In the following examples the h-expansion of the Jones
polynomial starts with a power of h equal to the number of double points
in a singular knot, in compliance with Theorem 3.6.1.

J

( )
= J

( )
︸ ︷︷ ︸

||
0

−J

( )
= − J

( )
︸ ︷︷ ︸

||
1

+J

( )

= −1 + J(31) = −3h2 + 6h3 − 29
4 h

4 + 13
2 h

5 + . . .

Similarly,

J

( )
= J(31)− 1 = −3h2 − 6h3 − 29

4
h4 − 13

2
h5 + . . .

Thus we have

J

( )
= J

( )
− J

( )
= −12h3 − 13h5 + . . .
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3.6.6. J. Birman and X.-S. Lin proved in [BL] that all quantum invariants
produce Vassiliev invariants in the same way as the Jones polynomial. More
precisely, let θ(K) be the quantum invariant constructed as in Section 2.6.
It is a polynomial in q and q−1. Now let us make substitution q = eh and
consider the coefficient θn(K) of hn in the Taylor expansion of θ(K).

Theorem ([BL, BN1]). The coefficient θn(K) is a Vassiliev invariant of
order 6 n.

Proof. The argument is similar to that used in Theorem 3.6.1: it is based
on the fact that an R-matrix R and its inverse R−1 are congruent modulo
h. �

3.6.7. The Casson invariant. The second coefficient of the Conway poly-
nomial, or the Casson invariant, can be computed directly from any knot
diagram by counting (with signs) pairs of crossings of certain type1.

Namely, fix a based Gauss diagram G of a knot K, with an arbitrary
basepoint, and consider all pairs of arrows of G that form a subdiagram of
the following form:
(3.6.1)

ε1 ε2

The Casson invariant a2(K) is defined as the number of such pairs of arrows
with ε1ε2 = 1 minus the number of pairs of this form with ε1ε2 = −1.

Theorem. The Casson invariant coincides with the second coefficient of
the Conway polynomial c2.

Proof. We shall prove that the Casson invariant as defined above, is a
Vassiliev invariant of degree 2. It can be checked directly that it vanishes
on the unknot and is equal to 1 on the left trefoil. Since the same holds for
the invariant c2 and dimV2 = 2, the assertion of the theorem will follow.

First, let us verify that a2 does not depend on the location of the base-
point on the Gauss diagram. It is enough to prove that whenever the base-
point is moved over the endpoint of one arrow, the value of a2 remains the
same.

Let c be an arrow of some Gauss diagram. For another arrow c′ of the
same Gauss diagram with the sign ε(c′), the flow of c′ through c is equal
to ε(c′) if c′ intersects c, and is equal to 0 otherwise. The flow to the right
through c is the sum of the flows through c of all arrows c′ such that c′ and
c, in this order, form a positive basis of R2. The flow to the left is defined
as the sum of the flows of all c′ such that c′, c form a negative basis. The

1The Casson invariant was defined in 1985 by Casson as an invariant of homology 3-spheres.

The Casson invariant of a knot can be interpreted as the difference between the Casson invariants
of the homology spheres obtained by surgeries on the knot with different framings, see [AM].
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total flow through the arrow c is the difference of the right and the left flows
through c.

Now, let us observe that if a Gauss diagram is realizable, then the total
flow through each of its arrows is equal to zero. Indeed, let us cut and re-
connect the branches of the knot represented by the Gauss diagram in the
vicinity of the crossing point that corresponds to the arrow c. What we get
is a two-component link:

1

4

2

3

5

A

B

It is easy to see that the two ways of computing the linking number of the
two components A and B (see Section 2.2) are equal to the right and the
left flow through c respectively. Since the linking number is an invariant,
the difference of the flows is 0.

Now, let us see what happens when the basepoint is moved over an
endpoint of an arrow c. If this endpoint corresponds to an overcrossing,
this means that the arrow c does not appear in any subdiagram of the form
(3.6.1) and, hence, the value of a2 remains unchanged. If the basepoint of
the diagram is moved over an undercrossing, the value of a2 changes by
the amount that is equal to the number of all subdiagrams of G involving
c, counted with signs. Taking the signs into the account, we see that this
amount is equal to the total flow through the chord c in G, that is, zero.

Let us now verify that a2 is invariant under the Reidemeister moves.
This is clear for the move V Ω1, since an arrow with adjacent endpoints
cannot participate in a subdiagram of the form (3.6.1).

The move V Ω2 involves two arrows; denote them by c1 and c2. Choose
the basepoint “far” from the endpoints of c1 and c2, namely, in such a way
that it belongs neither to the interval between the sources of c1 and c2,
nor to the interval between the targets of these arrows. (Since a2 does not
depend on the location of the basepoint, there is no loss of generality in this
choice.) Then the contribution to a2 of any pair that contains the arrow c1

cancels with the corresponding contribution for c2.

The moves of type 3 involve three arrows. If we choose a basepoint
far from all of these endpoints, only one of the three distinguished arrows
can participate in a subdiagram of the from (3.6.1). It is then clear that
exchanging the endpoints of the three arrows as in the move V Ω3 does not
affect the value of a2.

It remains to show that a2 has degree 2. Consider a knot with 3 double
points. Resolving the double point, we obtain an alternating sum of eight
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knots whose Gauss diagrams are the same except for the directions and signs
of 3 arrows. Any subdiagram of the form (3.6.1) fails to contain at least one
of these three arrows. It is, therefore clear that for each instance that the
Gauss diagram of one of the eight knots contains the diagram (3.6.1) as a
subdiagram, there is another occurrence of (3.6.1) in another of the eight
knots, counted in a2 with the opposite sign. �

Remark. This method of calculating c2 (invented by Polyak and Viro
[PV1, PV2]) is an example of a Gauss diagram formula. See Chapter 13
for details and for more examples.

3.7. Actuality tables

In general, the amount of information needed to describe a knot invariant
v is infinite, since v is a function on an infinite domain: the set of isotopy
classes of knots. However, Vassiliev invariants require only a finite amount
of information for their description. We already mentioned the analogy
between Vassiliev invariants and polynomials. A polynomial of degree n can
be described, for example, using the Lagrange interpolation formula, by its
values in n+1 particular points. In a similar way a given Vassiliev invariant
can be described by its values on a finitely many knots. These values are
organized in the actuality table (see [Va1, BL, Bir3]).

3.7.1. Basic knots and actuality tables. To construct the actuality ta-
ble we must choose a representative (basic) singular knot for every chord
diagram. A possible choice of basic knots up to degree 3 is shown in the
table.

A0 A1 A2 A3

The actuality table for a particular invariant v of order 6 n consists
of the set of its values on the set of all basic knots with at most n double
points. The knowledge of this set is sufficient for calculating v for any knot.

Indeed, any knot K can be transformed into any other knot, in partic-
ular, into the basic knot with no singularities (in the table above this is the
unknot), by means of crossing changes and isotopies. The difference of two
knots that participate in a crossing change is a knot with a double point,
hence in ZK the knot K can be written as a sum of the basic non-singular
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knot and several knots with one double point. In turn, each knot with one
double point can be transformed, by crossing changes and isotopies, into the
basic singular knot with the same chord diagram, and can be written, as a
result, as a sum of a basic knot with one double point and several knots with
two double points. This process can be iterated until we obtain a represen-
tation of the knot K as a sum of basic knots with at most n double points
and several knots with n+ 1 double points. Now, since v is of order 6 n, it
vanishes on the knots with n + 1 double points, so v(K) can be written as
a sum of the values of v on the basic knots with at most n singularities.

By Proposition 3.4.2, the values of v on the knots with precisely n double
points depend only on their chord diagrams. For a smaller number of double
points, the values of v in the actuality table depend not only on chord
diagrams, but also on the basic knots. Of course, the values in the actuality
table cannot be arbitrary. They satisfy certain relations which we shall
discuss later (see Section 4.1). The simplest of these relations, however, is
easy to spot from the examples: the value of any invariant on a diagram
with a chord that has no intersections with other chords is zero.

3.7.2. Example. The second coefficient c2 of the Conway polynomial (Sec-
tion 3.1.2) is a Vassiliev invariant of order 6 2. Here is an actuality table
for it.

c2 : 0 0 0 1

The order of the values in this table corresponds to the order of basic knots
in the table on page 90.

3.7.3. Example. A Vassiliev invariant of order 3 is given by the third
coefficient j3 of the Taylor expansion of Jones polynomial (Section 2.4).
The actuality table for j3 looks as follows.

j3 : 0 0 0 6 0 0 0 −6 −12

3.7.4. To illustrate the general procedure of computing the value of a Vas-
siliev invariant on a particular knot by means of actuality tables let us
compute the value of j3 on the right-hand trefoil. The right-hand trefoil is
an ordinary knot, without singular points, so we have to deform it (using
crossing changes) to our basic knot without double points, that is, the un-
knot. This can be done by one crossing change, and by the Vassiliev skein
relation we have

j3

( )
= j3

( )
+ j3

( )
= j3

( )
because j3(unknot) = 0 in the actuality table. Now the knot with one double
point we got is not quite the one from our basic knots. We can deform it to
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a basic knot changing the upper right crossing.

j3

( )
= j3

( )
+ j3

( )
= j3

( )
Here we used the fact that any invariant vanishes on the basic knot with
a single double point. The knot with two double points on the right-hand
side of the equation still differs by one crossing from the basic knot with two
double points. This means that we have to do one more crossing change.
Combining these equations together and using the values from the actuality
table we get the final answer

j3

( )
= j3

( )
= j3

( )
+ j3

( )
= 6− 12 = −6

3.7.5. The first ten Vassiliev invariants. Using actuality tables, one
can find the values of the Vassiliev invariants of low degree. Table 3.7.1
uses a certain basis in the space of Vassiliev invariants up to degree 5. It
represents an abridged version of the table compiled by T. Stanford [Sta1],
where the values of invariants up to degree 6 are given on all knots with at
most 10 crossings.

Some of the entries in Table 3.7.1 are different from [Sta1], this is due
to the fact that, for some non-amphicheiral knots, Stanford uses mirror
reflections of the Rolfsen’s knots shown in Table 1.5.1.

v0 v2 v3 v41 v42 v2
2 v51 v52 v53 v2v3

01 ++ 1 0 0 0 0 0 0 0 0 0

31 −+ 1 1 −1 1 −3 1 −3 1 −2 −1

41 ++ 1 −1 0 −2 3 1 0 0 0 0

51 −+ 1 3 −5 1 −6 9 −12 4 −8 −15

52 −+ 1 2 −3 1 −5 4 −7 3 −5 −6

61 −+ 1 −2 1 −5 5 4 4 −1 2 −2

62 −+ 1 −1 1 −3 1 1 3 −1 1 −1

63 ++ 1 1 0 2 −2 1 0 0 0 0

71 −+ 1 6 −14 −4 −3 36 −21 7 −14 −84

72 −+ 1 3 −6 0 −5 9 −9 6 −7 −18

73 −+ 1 5 11 −3 −6 25 16 −8 13 55

74 −+ 1 4 8 −2 −8 16 10 −8 10 32

75 −+ 1 4 −8 0 −5 16 −14 6 −9 −32

76 −+ 1 1 −2 0 −3 1 −2 3 −2 −2

77 −+ 1 −1 −1 −1 4 1 0 2 0 1

81 −+ 1 −3 3 −9 5 9 12 −3 5 −9

82 −+ 1 0 1 −3 −6 0 2 0 −3 0
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83 ++ 1 −4 0 −14 8 16 0 0 0 0

84 −+ 1 −3 1 −11 4 9 0 −2 −1 −3

85 −+ 1 −1 −3 −5 −5 1 −5 3 2 3

86 −+ 1 −2 3 −7 0 4 9 −3 2 −6

87 −+ 1 2 2 4 −2 4 7 −1 3 4

88 −+ 1 2 1 3 −4 4 2 −1 1 2

89 ++ 1 −2 0 −8 1 4 0 0 0 0

810 −+ 1 3 3 3 −6 9 5 −3 3 9

811 −+ 1 −1 2 −4 −2 1 8 −1 2 −2

812 ++ 1 −3 0 −8 8 9 0 0 0 0

813 −+ 1 1 1 3 0 1 6 0 3 1

814 −+ 1 0 0 −2 −3 0 −2 0 −3 0

815 −+ 1 4 −7 1 −7 16 −16 5 −10 −28

816 −+ 1 1 −1 3 0 1 2 2 2 −1

817 +− 1 −1 0 −4 0 1 0 0 0 0

818 ++ 1 1 0 0 −5 1 0 0 0 0

819 −+ 1 5 10 0 −5 25 18 −6 10 50

820 −+ 1 2 −2 2 −5 4 −1 3 −1 −4

821 −+ 1 0 1 −1 −3 0 1 −1 −1 0

Table 3.7.1: Vassiliev invariants of order 6 5

The two signs after the knot number refer to their symmetry properties: a
plus in the first position means that the knot is amphicheiral, a plus in the
second position means that the knot is invertible.

3.8. Vassiliev invariants of tangles

Knots are tangles whose skeleton is a circle. A theory of Vassiliev invariants,
similar to the theory for knots, can be constructed for isotopy classes of
tangles with any given skeleton X.

Indeed, similarly to the case of knots, one can introduce tangles with
double points, with the only extra assumption that the double points lie
in the interior of the tangle box. Then, any invariant of tangles can be
extended to tangles with double points with the help of the Vassiliev skein
relation. An invariant of tangles is a Vassiliev invariant of degree 6 n if it
vanishes on all tangles with more that n double points.

We stress that we define Vassiliev invariants separately for each skele-
ton X. Nevertheless, there are relations among invariants of tangles with
different skeleta.
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Example. Assume that the isotopy classes of tangles with the skeleta X1

and X2 can be multiplied. Given a tangle T with skeleton X1 and a Vassiliev
invariant v of tangles with skeleton X1X2, we can define an invariant of
tangles on X2 of the same order as v by composing a tangle with T and
applying v.

Example. In the above example the product of tangles can be replaced by
their tensor product. (Of course, the condition that X1 and X2 can be
multiplied is no longer necessary here.)

In particular, the Vassiliev invariants of tangles whose skeleton has one
component, can be identified with the Vassiliev invariants of knots.

Example. Assume that X ′ is obtained from X by dropping one or several
components. Then any Vassiliev invariant v′ of tangles with skeleton X ′

gives rise to an invariant v of tangles on X of the same order; to compute
v drop the components of the tangle that are not in X ′ and apply v′.

This example immediately produces a lot of tangle invariants of finite
type: namely, those coming from knots. The simplest example of a Vas-
siliev invariant that does not come from knots is the linking number of two
components of a tangle. So far, we have defined the linking number only for
pairs of closed curves. If one or both of the components are not closed, we
can use the constructions above to close them up in some fixed way.

Lemma. The linking number of two components of a tangle is a Vassiliev
invariant of order 1.

Proof. Consider a two-component link with one double point. This double
point can be of two types: either it is a self-intersection point of a single
component, or it is an intersection of two different components. Using the
Vassiliev skein relation and the formula 2.2.1, we see that in the first case
the linking number vanishes, while in the second case it is equal to 1. It
follows that for a two-component link with two double points the linking
number is always zero. �

Among the invariants for all classes of tangles, the string link invari-
ants have attracted most attention. Two particular classes of string link
invariants are the knot invariants (recall that string links on one strand are
in one-to-one correspondence with knots) and the invariants of pure braids.
We shall treat the Vassiliev invariants of pure braids in detail in Chapter 12.
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Exercises

(1) Using the actuality tables, compute the value of j3 on the left-hand
trefoil.

(2) Choose the basic knots with four double points and construct the actu-
ality tables for the fourth coefficients c4 and j4 of the Conway and Jones
polynomials.

(3) Prove that j0(K) = 1 and j1(K) = 0 for any knot K.

(4) Show that the value of j0 on a link with k components is equal to
(−2)k−1.

(5) For a link L with two components K1 and K2 prove that
j1(L) = −3 · lk(K1,K2). In other words,

J(L) = −2− 3 · lk(K1,K2) · h+ j2(L) · h2 + j3(L) · h3 + . . . .

(6) Prove that for any knot K the integer j3(K) is divisible by 6.

(7) For a knot K, find the relation between the second coefficients c2(K)
and j2(K) of the Conway and Jones polynomials.

(8) Prove that v(31#31) = 2v(31)−v(0), where 0 is the trivial knot, for any
Vassiliev invariant v ∈ V3.

(9) Prove that for a knot K the nth derivative at 1 of the Jones polynomial

dn(J(K))

dtn

∣∣∣∣
t=1

is a Vassiliev invariant of order 6 n. Find the relation between these
invariants and j1, . . . , jn for small values of n.

(10) Express the coefficients c2, c4, j2, j3, j4, j5 of the Conway and Jones
polynomials in terms of the basis Vassiliev invariants from Table 3.7.1.

(11) Find the symbols of the Vassiliev invariants from Table 3.7.1.

(12) Express the invariants of Table 3.7.1 through the coefficients of the Con-
way and the Jones polynomials.

(13) Find the actuality tables for some of the Vassiliev invariants appearing
in Table 3.7.1.

(14) Explain the correlation between the first sign and the zeroes in the last
four columns of Table 3.7.1.

(15) Check that Vassiliev invariants up to order 4 are enough to distinguish,
up to orientation, all knots with at most 8 crossings from Table 1.5.1 on
page 26.



96 3. Finite type invariants

(16) Prove that the symbol of the coefficient cn of the Conway polynomial can
be calculated as follows. Double every chord of a given chord diagram
D as in Section 3.6.2, and let |D| be equal to the number of components
of the obtained curve. Then

symb(cn)(D) =

{
1, if |D| = 1
0, otherwise .

(17) Prove that cn is a Vassiliev invariant of degree exactly n, if n is even.

(18) Prove that there is a well-defined extension of knot invariants to singular
knots with a non-degenerate triple point according to the rule

f( ) = f( )− f( ) .

Is it true that, according to this extension, a Vassiliev invariant of degree
2 is equal to 0 on any knot with a triple point?

Is it possible to use the same method to define an extension of knot
invariants to knots with self-intersections of multiplicity higher than 3?

(19) Following Example 3.6.5, find the power series expansion of the modified
Jones polynomial of the singular knot .

(20) Prove the following relation between the Casson knot invariant c2, ex-
tended to singular knots, and the linking number of two curves. Let
K be a knot with one double point. Smoothing the double point by

the rule 7→ , one obtains a 2-component link L. Then

lk(L) = c2(K).

(21) Is there a prime knot K such that j4(K) = 0?

(22) Vassiliev invariants from the HOMFLY polynomial. For a link
L make a substitution a = eh in the HOMFLY polynomial P (L) and
take the Taylor expansion in h. The result will be a Laurent polynomial
in z and a power series in h. Let pk,l(L) be its coefficient at hkzl.
(a) Show that for any link L the total degree k + l is not negative.
(b) If l is odd, then pk,l = 0.
(c) Prove that pk,l(L) is a Vassiliev invariant of order 6 k + l.
(d) Describe the symbol of pk,l(L).



Chapter 4

Chord diagrams

A chord diagram encodes the order of double points along a singular knot.
We saw in the last chapter that a Vassiliev invariant of degree n gives rise
to a function on chord diagrams with n chords. Here we shall describe the
conditions, called one-term and four-term relations, that a function on chord
diagrams should satisfy in order to come from a Vassiliev invariant. We shall
see that the vector space spanned by chord diagrams modulo these relations
has the structure of a Hopf algebra. This Hopf algebra turns out to be dual
to the graded algebra of the Vassiliev invariants.

4.1. Four- and one-term relations

Recall that R denotes a commutative ring and Vn is the space of R-valued
Vassiliev invariants of order 6 n. Some of our results will only hold when R
is a field of characteristic 0; sometimes we shall take R = C. On page 81 in
Section 3.1.2 we constructed a linear inclusion (the symbol of an invariant)

αn : Vn/Vn−1 → RAn,

where RAn is the space of R-valued functions on the set An of chord dia-
grams of order n.

To describe the image of αn, we need the following definition.

4.1.1. Definition. A function f ∈ RAn is said to satisfy the 4-term (or
4T) relations if the alternating sum of the values of f is zero on the following
quadruples of diagrams:

(4.1.1) f( )− f( ) + f( )− f( ) = 0.

97
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In this case f is also called a (framed) weight system of order n.

Here it is assumed that the diagrams in the pictures may have other
chords with endpoints on the dotted arcs, while all the endpoints of the
chords on the solid portions of the circle are explicitly shown. For example,
this means that in the first and second diagrams the two bottom points are
adjacent. The chords omitted from the pictures should be the same in all
the four cases.

Example. Let us find all 4-term relations for chord diagrams of order 3.
We must add one chord in one and the same way to all the four terms of
Equation (4.1.1). Since there are 3 dotted arcs, there are 6 different ways
to do that, in particular,

f( )− f( ) + f( )− f( ) = 0

and

f( )− f( ) + f( )− f( ) = 0

Some of the diagrams in these equations are equal, and the relations can be

simplified as f( ) = f( ) and f( )− 2f( ) + f( ) = 0.

The reader is invited to check that the remaining four 4-term relations (we
wrote only 2 out of 6) are either trivial or coincide with one of these two.

It is often useful to look at a 4T relation from the following point of view.
We can think that one of the two chords that participate in equation (4.1.1)
is fixed, and the other is moving. One of the ends of the moving chord is
also fixed, while the other end travels around the fixed chord stopping at
the four locations adjacent to its endpoints. The resulting four diagrams are
then summed up with alternating signs. Graphically,

(4.1.2) f( )− f( ) + f( )− f( ) = 0.

where the fixed end of the moving chord is marked by .

Another way of writing the 4T relation, which will be useful in Sec-
tion 5.1, is to split the four terms into two pairs:

f( )− f( ) = f( )− f( ) .

Because of the obvious symmetry, this can be completed as follows:

(4.1.3) f( )− f( ) = f( )− f( ) .
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Note that for each order n the choice of a specific 4-term relation depends
on the following data:

• a diagram of order n− 1,

• a distinguished chord of this diagram (“fixed chord”), and

• a distinguished arc on the circle of this diagram (where the fixed
endpoint of the “moving chord” is placed).

There are 3 fragments of the circle that participate in a 4-term relation,
namely, those that are shown by solid lines in the equations above. If these
3 fragments are drawn as 3 vertical line segments, then the 4-term relation
can be restated as follows:

(4.1.4) (−1)↓ f
(

i kj

)
− (−1)↓ f

(
ji k

)
+ (−1)↓ f

(
ji k

)
− (−1)↓ f

(
ji k

)
= 0 .

where ↓ stands for the number of endpoints of the chords in which the
orientation of the strands is directed downwards. This form of a 4T relation
is called a horizontal 4T relation . (See also Section 4.7). It first appeared,
in a different context, in the work by T. Kohno [Koh2].

4.1.2. Exercise. Choose some orientations of the three fragments of the
circle, add the portions necessary to close it up and check that the last form
of the 4-term relation carries over into the ordinary four-term relation.

Here is an example:

f
( )

− f
( )

− f
( )

+ f
( )

= 0 .

We shall see in the next section that the four-term relations are always
satisfied by the symbols of Vassiliev invariants, both in the usual and in
the framed case. For the framed knots, there are no other relations; in the
unframed case, there is another set of relations, called one-term, or framing
independence relations.

4.1.3. Definition. An isolated chord is a chord that does not intersect any
other chord of the diagram. A function f ∈ RAn is said to satisfy the 1-
term relations if it vanishes on every chord diagram with an isolated chord.
An unframed weight system of order n is a weight system that satisfies the
1-term relations.

Here is an example of a 1T relation: f( ) = 0 .
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4.1.4. Notation. We denote by Wfr
n the subspace of RAn consisting of

all (framed) weight systems of order n and by Wn ⊂ Wfr
n the space of all

unframed weight systems of order n.

4.2. The Fundamental Theorem

In Section 3.4 we showed that the symbol of an invariant gives an injec-
tive map αn : Vn/Vn−1 → RAn. The Fundamental Theorem on Vassiliev
invariants describes its image.

4.2.1. Theorem (Vassiliev–Kontsevich). For R = C the map αn identifies
Vn/Vn−1 with the subspace of unframed weight systemsWn ⊂ RAn. In other
words, the space of unframed weight systems is isomorphic to the graded
space associated with the filtered space of Vassiliev invariants,

W =
∞⊕
n=0

Wn
∼=

∞⊕
n=0

Vn/Vn+1 .

The theorem consists of two parts:

• (V. Vassiliev) The symbol of every Vassiliev invariant is an un-
framed weight system.

• (M. Kontsevich) Every unframed weight system is the symbol of a
certain Vassiliev invariant.

We shall now prove the first (easy) part of the theorem. The second
(difficult) part will be proved later (in Section 8.8.1) using the Kontsevich
integral.

The first part of the theorem consists of two assertions, and we prove
them one by one.

4.2.2. First assertion: any function f ∈ RAn coming from an invariant
v ∈ Vn satisfies the 1-term relations.

Proof. Let K be a singular knot whose chord diagram contains an isolated
chord. The double point p that corresponds to the isolated chord divides
the knot into two parts: A and B.

3

p

A

B
1

2
2

1

2

1

3
p

3

p

The fact that the chord is isolated means that A and B do not have
common double points. There may, however, be crossings involving branches
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from both parts. By crossing changes, we can untangle part A from part B
thus obtaining a singular knot K ′ with the same chord diagram as K and
with the property that the two parts lie on either side of some plane in R3

that passes through the double point p :

BA

p

Here it is obvious that the two resolutions of the double point p give equiv-
alent singular knots, therefore v(K) = v(K ′) = v(K ′+)− v(K ′−) = 0. �

4.2.3. Second assertion: any function f ∈ RAn coming from an invari-
ant v ∈ Vn satisfies the 4-term relations.

Proof. We shall use the following lemma.

Lemma (4-term relation for knots). Any Vassiliev invariant satisfies

f
( )

− f
( )

+ f
( )

− f
( )

= 0,

Proof. By the Vassiliev skein relation,

f
( )

= f
( )

− f
( )

= a− b,

f
( )

= f
( )

− f
( )

= c− d,

f
( )

= f
( )

− f
( )

= c− a,

f
( )

= f
( )

− f
( )

= d− b.

The alternating sum of these expressions is (a− b)− (c− d) + (c− a)−
(d− b) = 0, and the lemma is proved. �

Now, denote by D1, . . . , D4 the four diagrams in a 4T relation. In order
to prove the 4-term relation for the symbols of Vassiliev invariants, let us
choose for the first diagram D1 an arbitrary singular knot K1 such that
σ(K1) = D1:

σ
( K1 D1)

= .
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Then the three remaining knots K2, K3, K4 that participate in the 4-term
relation for knots, correspond to the three remaining chord diagrams of the
4-term relation for chord diagrams, and the claim follows from the lemma.

σ
( K2 D2)

= , σ
( K3 D3)

= , σ
( K4 D4)

= .

�

4.2.4. The case of framed knots. As in the case of usual knots, for the

invariants of framed knots we can define a linear map Vfrn /Vfrn−1 → RAn.
This map satisfies the 4T relations, but does not satisfy the 1T relation,
since the two knots differing by a crossing change (see the proof of the first
assertion in 4.2.2), are not equivalent as framed knots (the two framings
differ by 2). The Fundamental Theorem also holds, in fact, for framed
knots: we have the equality

Vfrn /Vfrn−1 =Wfr
n ;

it can be proved using the Kontsevich integral for framed knots (see Sec-
tion 9.1).

This explains why the 1-term relation for the Vassiliev invariants of
(unframed) knots is also called the framing independence relation .

4.2.5. We see that, in a sense, the 4T relations are more fundamental than
the 1T relations. Therefore, in the sequel we shall mainly study combina-
torial structures involving the 4T relations only. In any case, 1T relations
can be added at all times, either by considering an appropriate subspace or
an appropriate quotient space (see Section 4.4.5). This is especially easy to
do in terms of the primitive elements (see page 113): the problem reduces
to simply leaving out one primitive generator.

4.3. Bialgebras of knots and Vassiliev knot invariants

Prerequisites on bialgebras can be found in the Appendix (see page 469). In
this section it will be assumed that R = F, a field of characteristic zero.

In Section 2.5 we noted that the algebra of knot invariants I, as a vector
space, is dual to the algebra of knots FK = ZK ⊗ F. This duality provides
the algebras of knot and knot invariants with additional structure. Indeed,
the dual map to a product V ⊗ V → V on a vector space V is a map
V ∗ → (V ⊗V )∗; when V is finite-dimensional it is a coproduct V ∗ → V ∗⊗V ∗.
This observation does not apply to the algebras of knots and knot invariants
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directly, since they are not finite-dimensional. Nevertheless, the coproduct
on the algebra of knots exists and is given by an explicit formula

δ(K) = K ⊗K

for any knot K; by linearity this map extends to the entire space FK. Note
that its dual is precisely the product in I.

4.3.1. Exercise. Show that with this coproduct FK is a bialgebra. (For
this, define the counit and check the compatibility conditions for the product
and the coproduct.)

The singular knot filtration Kn on FK is obtained from the singular knot
filtration on ZK (page 74) simply by tensoring it with the field F.

4.3.2. Theorem. The bialgebra of knots FK considered with the singular
knot filtration is a bialgebra with a decreasing filtration (see Section A.2.3).

Proof. There are two assertions to prove:

(1) If x ∈ Km and y ∈ Kn, then xy ∈ Km+n,

(2) If x ∈ Kn, then δ(x) ∈
∑

p+q=n
Kp ⊗Kq.

The first assertion was proved in Chapter 3.

In order to prove (2), first let us introduce some additional notation.

Let K be a knot given by a plane diagram with > n crossings out of
which exactly n are distinguished and numbered. Consider the set K̂ of 2n

knots that may differ from K by crossing changes at the distinguished points
and the vector space XK ⊂ FK spanned by K̂. The group Zn2 acts on the set

K̂; the action of ith generator si consists in the flip of under/overcrossing
at the distinguished point number i. We thus obtain a set of n commuting
linear operators si : XK → XK . Set σi = 1 − si. In these terms, a typical
generator x of Kn can be written as x = (σ1 ◦ · · · ◦σn)(K). To evaluate δ(x),
we must find the commutator relations between the operators δ and σi.

4.3.3. Lemma.

δ ◦ σi = (σi ⊗ id + si ⊗ σi) ◦ δ,

where both the left-hand side and the right-hand side are understood as linear
operators from XK into XK ⊗XK .

Proof. Just check that the values of both operators on an arbitrary element
of the set K̂ are equal. �
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A successive application of the lemma yields:

δ ◦ σ1 ◦ · · · ◦ σn =

(
n∏
i=1

(σi ⊗ id + si ⊗ σi)

)
◦ δ

= (
∑

I⊂{1,...,n}

∏
i∈I

σi
∏
i 6∈I

si ⊗
∏
i 6∈I

σi) ◦ δ .

Therefore, an element x = (σ1 ◦ · · · ◦ σn)(K) satisfies

δ(x) =
∑

I⊂{1,...,n}

(
∏
i∈I

σi
∏
i 6∈I

si)(K)⊗ (
∏
i 6∈I

σi)(K)

which obviously belongs to
∑

p+q=n ZKp ⊗ ZKq. �

4.3.4. In contrast with the knot algebra, the algebra of invariants does not
have a natural coproduct. The map dual to the product in FK is given by

δ(f)(K1 ⊗K2) = f(K1#K2)

for an invariant f and any pair of knots K1 and K2. It sends I = (FK)∗ to
(FK ⊗ FK)∗ but its image is not contained in I ⊗ I.

4.3.5. Exercise. Find a knot invariant whose image under δ is not in I⊗I.

Even though the map δ is not a coproduct, it becomes one if we restrict
our attention to the subalgebra VF ⊂ I consisting of all F-valued Vassiliev
invariants.

4.3.6. Proposition. The algebra of F-valued Vassiliev knot invariants VF
is a bialgebra with an increasing filtration (page 475).

Indeed, the algebra of VF is a bialgebra is dual as a filtered bialgebra to
the bialgebra of knots with the singular knot filtration. The filtrations on
VF and FK are of finite type by Corollary 3.4.3 and, hence, the Proposition
follows from Theorem 4.3.2 and Proposition A.2.6 on page 476.

4.3.7. Let us now find all the primitive and the group-like elements in the
algebras FK and VF (see definitions in Appendix A.2.2 on page 472). As for
the algebra of knots FK, both structures are quite poor: it follows from the
definitions that P(FK) = 0, while G(FK) consists of only one element: the
trivial knot. (Non-trivial knots are semigroup-like, but not group-like!)

The case of the algebra of Vassiliev invariants is more interesting. As a
consequence of Proposition A.2.8 we obtain a description of primitive and
group-like Vassiliev knot invariants: these are nothing but the additive and
the multiplicative invariants, respectively, that is, the invariants satisfying
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the relations

f(K1#K2) = f(K1) + f(K2),

f(K1#K2) = f(K1)f(K2),

respectively, for any two knots K1 and K2.

As in the case of the knot algebra, the group-like elements of VF are
scarce:

4.3.8. Exercise. Show that the only group-like Vassiliev invariant is the
constant 1.

In contrast, we shall see that primitive Vassiliev invariants abound.

4.3.9. The bialgebra structure of the Vassiliev invariants extends naturally
to the power series Vassiliev invariants term by term. In this framework,
there are many more group-like invariants.

Example. According to Exercise 6 to Chapter 2, the Conway polynomial
is a group-like power series Vassiliev invariant. Taking its logarithm one
obtains a primitive power series Vassiliev invariant. For example, the coef-
ficient c2 (the Casson invariant) is primitive.

4.3.10. Exercise. Find a finite linear combination of coefficients jn of the
Jones polynomial that gives a primitive Vassiliev invariant.

4.4. Bialgebra of chord diagrams

4.4.1. The vector space of chord diagrams. A dual way to define the
weight systems is to introduce the 1- and 4-term relations directly in the
vector space spanned by chord diagrams.

4.4.2. Definition. The space Afrn of chord diagrams of order n is the vector
space generated by the set An (all diagrams of order n) modulo the subspace
spanned by all 4-term linear combinations

− + − .

The space An of unframed chord diagrams of order n is the quotient of Afrn
by the subspace spanned by all diagrams with an isolated chord.

In these terms, the space of framed weight systems Wfr
n is dual to the

space of framed chord diagrams Afrn , and the space of unframed weight
systems Wn — to that of unframed chord diagrams An:

Wn = Hom(An,R),

Wfr
n = Hom(Afrn ,R).
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Below, we list the dimensions and some bases of the spacesAfrn for n = 1,
2 and 3:

Afr1 =
〈 〉

, dimAfr1 = 1.

Afr2 =
〈

,
〉
, dimAfr2 = 2, since the only 4-term relation involv-

ing chord diagrams of order 2 is trivial.

Afr3 =
〈

, ,
〉
, dimAfr3 = 3, since A3 consists of 5 ele-

ments, and there are 2 independent 4-term relations (see page 98):

= and − 2 + = 0.

Taking into account the 1-term relations, we get the following result for
the spaces of unframed chord diagrams of small orders:

A1 = 0, dimA1 = 0.

A2 =
〈 〉

, dimA2 = 1.

A3 =
〈 〉

, dimA3 = 1.

The result of similar calculations for order 4 diagrams is presented in

Table 4.4.1. In this case dimAfr4 = 6; the set {d4
3, d

4
6, d

4
7, d

4
15, d

4
17, d

4
18} is

used in the table as a basis. The table is obtained by running Bar-Natan’s
computer program available at [BN5]. The numerical notation for chord
diagrams like [12314324] is easy to understand: one writes the numbers on
the circle in the positive direction and connects equal numbers by chords.
Of all possible codes we choose the lexicographically minimal one.

4.4.3. Multiplication of chord diagrams. Now we are ready to define

the structure of an algebra in the vector space Afr =
⊕
k>0

Afrk of chord

diagrams.

Definition. The product of two chord diagrams D1 and D2 is defined by
cutting and glueing the two circles as shown:

· = =

This map is then extended by linearity to

µ : Afrm ⊗Afrn → A
fr
m+n.
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CD Code and expansion CD Code and expansion

d4
1 = [12341234]

= d4
3 + 2d4

6− d4
7− 2d4

15 + d4
17

d4
2 = [12314324]

= d4
3 − d4

6 + d4
7

d4
3 = [12314234]

= d4
3

d4
4 = [12134243]

= d4
6 − d4

7 + d4
15

d4
5 = [12134234]

= 2d4
6 − d4

7

d4
6 = [12132434]

= d4
6

d4
7 = [12123434]

= d4
7

d4
8 = [11234432]

= d4
18

d4
9 = [11234342]

= d4
17

d4
10 = [11234423]

= d4
17

d4
11 = [11234324]

= d4
15

d4
12 = [11234243]

= d4
15

d4
13 = [11234234]

= 2d4
15 − d4

17

d4
14 = [11232443]

= d4
17

d4
15 = [11232434]

= d4
15

d4
16 = [11223443]

= d4
18

d4
17 = [11223434]

= d4
17

d4
18 = [11223344]

= d4
18

Table 4.4.1. Chord diagrams of order 4

Note that the product of diagrams depends on the choice of the points where
the diagrams are cut: in the example above we could equally well cut the

circles in other places and get a different result: .

Lemma. The product is well-defined modulo 4T relations.

Proof. We shall show that the product of two diagrams is well-defined; it
follows immediately that this is also true for linear combinations of diagrams.
It is enough to prove that if one of the two diagrams, say D2, is turned inside
the product diagram by one “click” with respect to D1, then the result is
the same modulo 4T relations.

Note that such rotation is equivalent to the following transformation.
Pick a chord in D2 with endpoints a and b such that a is adjacent to D1.
Then, fixing the endpoint b, move a through the diagram D1. In this process
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we obtain 2n+ 1 diagrams P0, P1, ..., P2n, where n is the order of D1, and
we must prove that P0 ≡ P2n mod 4T . Now, it is not hard to see that the
difference P0 − P2n is, in fact, equal to the sum of all n four-term relations
which are obtained by fixing the endpoint b and all chords of D1, one by
one. For example, if we consider the two products shown above and use the
following notation:

a

b

a

b

a

b

a

b
a

b a b a b

P0 P1 P2 P3 P4 P5 P6

then we must take the sum of the three linear combinations

P0 − P1 + P2 − P3,

P1 − P2 + P4 − P5,

P3 − P4 + P5 − P6,

and the result is exactly P0 − P6.

�

Exercise. Show that the multiplication of chord diagrams corresponds to
the connected sum operation on knots in the following sense: if K1 and K2

are two singular knots and D1 and D2 are their chord diagrams, there exists
a singular knot, equal to K1#K2 as an element of ZK, whose diagram is
D1 ·D2.

In view of this exercise, the product of chord diagrams D1 and D2 is
sometimes referred to as their connected sum and denoted by D1#D2.

4.4.4. Comultiplication of chord diagrams. The coproduct in the al-
gebra Afr

δ : Afrn →
⊕
k+l=n

Afrk ⊗A
fr
l

is defined as follows. For a diagram D ∈ Afrn we put

δ(D) :=
∑
J⊆[D]

DJ ⊗DJ ,

the summation taken over all subsets J of the set of chords of D. Here DJ

is the diagram consisting of the chords that belong to J and J = [D] \ J is
the complementary subset of chords. To the entire space Afr the operator
δ is extended by linearity.

If D is a diagram of order n, the total number of summands in the
right-hand side of the definition is 2n.
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Example.

δ
( )

= ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + 2 ⊗ + ⊗

+ ⊗ + 2 ⊗ + ⊗

Lemma. The coproduct δ is well-defined modulo 4T relations.

Proof. Let D1 −D2 + D3 −D4 = 0 be a 4T relation. We must show that
the sum δ(D1)− δ(D2) + δ(D3)− δ(D4) can be written as a combination of
4T relations. Recall that a specific four-term relation is determined by the
choice of a moving chord m and a fixed chord a. Now, take one and the same
splitting A∪B of the set of chords in the diagrams Di, the same for each i,
and denote by Ai, Bi the resulting chord diagrams giving the contributions
Ai ⊗ Bi to δ(Di), i = 1, 2, 3, 4. Suppose that the moving chord m belongs
to the subset A. Then B1 = B2 = B3 = B4 and A1 ⊗B1 −A2 ⊗B2 +A3 ⊗
B3 −A4 ⊗B4 = (A1 −A2 +A3 −A4)⊗B1. If the fixed chord a belongs to
A, then the A1 − A2 + A3 − A4 is a four-term combination; otherwise it is
easy to see that A1 = A2 and A3 = A4 for an appropriate numbering. The
case when m ∈ B is treated similarly. �

The unit and the counit in Afr are defined as follows:

ι : R → Afr , ι(x) = x ,

ε : Afr → R , ε
(
x + ...

)
= x .

Exercise. Check the axioms of a bialgebra for Afr and verify that it is
commutative, cocommutative and connected.

4.4.5. Deframing the chord diagrams. The space of unframed chord
diagrams A was defined as the quotient of the space Afr by the subspace
spanned by all diagrams with an isolated chord. In terms of the multiplica-
tion in Afr, this subspace can be described as the ideal of Afr generated by
Θ, the chord diagram with one chord, so that we can write:

A = Afr/(Θ).
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It turns out that there is a simple explicit formula for a linear operator

p : Afr → Afr whose kernel is the ideal (Θ). Namely, define pn : Afrn → Afrn
by

pn(D) :=
∑
J⊆[D]

(−Θ)n−|J | ·DJ ,

where, as earlier, [D] stands for the set of chords in the diagram D and DJ

means the subdiagram of D with only the chords from J left. The sum of
pn over all n is the operator p : Afr → Afr.

4.4.6. Exercise. Check that

(1) p is a homomorphism of algebras,

(2) p(Θ) = 0 and hence p takes the entire ideal (Θ) into 0.

(3) p is a projector, that is, p2 = p.

(4) the kernel of p is exactly (Θ).

We see, therefore, that the quotient map p̄ : Afr/(Θ) → Afr is the
isomorphism of A onto its image and we have a direct decomposition Afr =
p̄(A)⊕ (Θ). Note that the first summand here is different from the subspace
spanned merely by all diagrams without isolated chords!

For example, p(Afr3 ) is spanned by the two vectors

p
( )

= − 2 + ,

p
( )

= − 3 + 2 = 2p
( )

.

while the subspace generated by the elements and is 2-dimensional

and has a nonzero intersection with the ideal (Θ).

4.5. Bialgebra of weight systems

According to 4.4.2 the vector spaceWfr is dual to the space Afr. Since now
Afr is equipped with the structure of a Hopf algebra, the general construc-
tion of Section A.2.10 supplies the space Wfr with the same structure. In
particular, weight systems can be multiplied: (w1·w2)(D) := (w1⊗w2)(δ(D))
and comultiplied: (δ(w))(D1 ⊗D2) := w(D1 ·D2). The unit of Wfr is the
weight system I0 which takes value 1 on the chord diagram without chords
and vanishes elsewhere. The counit sends a weight system to its value on
on the chord diagram without chords.

For example, if w1 is a weight system which takes value a on the chord

diagram , and zero value on all other chord diagrams, and w2 takes
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value b on

and vanishes elsewhere, then

(w1 · w2)( ) = (w1 ⊗ w2)(δ( )) = 2w1( ) · w2( ) = 2ab .

4.5.1. Proposition. The symbol symb : Vfr →Wfr commutes with multi-
plication and comultiplication.

Proof of the proposition. Analyzing the proof of Theorem 3.2.3 one can
conclude that for any two Vassiliev invariants of orders 6 p and 6 q the
symbol of their product is equal to the product of their symbols. This
implies that the map symb respects the multiplication. Now we prove that
symb(δ(v)) = δ(symb(v)) for a Vassiliev invariant v of order 6 n. Let us
apply both parts of this equality to the tensor product of two chord diagrams
D1 and D2 with the number of chords p and q respectively where p+ q = n.
We have

symb(δ(v))
(
D1 ⊗D2

)
= δ(v)

(
KD1 ⊗KD2

)
= v
(
KD1#KD2

)
,

where the singular knots KD1 and KD2 represent chord diagrams D1 and
D2. But the singular knot KD1#KD2 represents the chord diagram D1 ·D2.
Since the total number of chords in D1 ·D2 is equal to n, the value of v on
the corresponding singular knot would be equal to the value of its symbol
on the chord diagram:

v
(
KD1#KD2

)
= symb(v)

(
D1 ·D2

)
= δ(symb(v))

(
D1 ⊗D2

)
.

�

Remark. The map symb : Vfr → Wfr is not a bialgebra homomorphism
because it does not respect the addition. Indeed, the sum of two invariants
v1 + v2 of different orders p and q with, say p > q has the order p. That
means symb(v1 + v2) = symb(v1) 6= symb(v1) + symb(v2).

However, we can extend the map symb to power series Vassiliev invari-

ants by sending the invariant
∏
vi ∈ V̂fr• to the element

∑
symb(vi) of the

graded completion Ŵfr. Then the above Proposition implies that the map

symb : V̂fr• → Ŵfr is a graded bialgebra homomorphism.

4.5.2. We call a weight system w multiplicative if for any two chord diagrams
D1 and D2 we have

w(D1 ·D2) = w(D1)w(D2).

This is the same as to say that w is a semigroup-like element in the bialgebra
of weight systems (see Appendix A.2.2). Note that a multiplicative weight
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system always takes value 1 on the chord diagram with no chords. The
unit I0 is the only group-like element of the bialgebra Wfr (compare with

Exercise 4.3.8 on page 105). However, the graded completion Ŵfr contains
many interesting group-like elements.

Corollary of Proposition 4.5.1. Suppose that

v =
∞∏
n=0

vn ∈ V̂fr•

is multiplicative. Then its symbol is also multiplicative.

Indeed any homomorphism of bialgebras sends group-like elements to
group-like elements.

4.5.3. A weight system that belongs to a homogeneous component Wfr
n of

the space Wfr is said to be homogeneous of degree n. Let w ∈ Ŵfr be an

element with homogeneous components wi ∈ Wfr
i such that w0 = 0. Then

the exponential of w can be defined as the Taylor series

exp(w) =
∞∑
k=0

wk

k!
.

This formula makes sense because only a finite number of operations is
required for the evaluation of each homogeneous component of this sum. One
can easily check that the weight systems exp(w) and exp(−w) are inverse
to each other:

exp(w) · exp(−w) = I0.

By definition, a primitive weight system w satisfies

w(D1 ·D2) = I0(D1) · w(D2) + w(D1) · I0(D2).

(In particular, a primitive weight system is always zero on a product of two
nontrivial diagrams D1 ·D2.) The exponential exp(w) of a primitive weight
system w is multiplicative (group-like). Note that it always belongs to the

completion Ŵfr, even if w belongs to Wfr.

A simple example of a homogeneous weight system of degree n is pro-
vided by the function on the set of chord diagrams which is equal to 1 on
any diagram of degree n and to 0 on chord diagrams of all other degrees.
This function clearly satisfies the four-term relations. Let us denote this
weight system by In.

4.5.4. Lemma. In · Im =
(
m+n
n

)
In+m.

This directly follows from the definition of the multiplication for weight
systems.
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4.5.5. Corollary. (i) In1
n! = In;

(ii) If we set I =
∑∞

n=0 In (that is, I is the weight system that is equal
to 1 on every chord diagram), then

exp(I1) = I.

Strictly speaking, I is not an element ofWfr = ⊕nWfr
n but of the graded

completion Ŵfr. Note that I is not the unit of Ŵfr. Its unit, as well as the
unit of W itself, is represented by the element I0.

4.5.6. Deframing the weight systems. Since A = Afr/(Θ) is a quotient
of Afr, the corresponding dual spaces are embedded one into another, W ⊂
Wfr. The elements of W take zero values on all chord diagrams with an
isolated chord. In Section 4.1 they were called unframed weight systems. The
deframing procedure for chord diagrams (Section 4.4.5) leads to a deframing
procedure for weight systems. By duality, the projector p : Afr → Afr gives

rise to a projector p∗ :Wfr →Wfr whose value on an element w ∈ Wfr
n is

defined by

w′(D) = p∗(w)(D) := w(p(D)) =
∑
J⊆[D]

w
(

(−Θ)n−|J | ·DJ

)
.

Obviously, w′(D) = 0 for any w and any chord diagram D with an isolated

chord. Hence the operator p∗ : w 7→ w′ is a projection of the space Ŵfr

onto its subspace Ŵ consisting of unframed weight systems.

The deframing operator looks especially nice for multiplicative weight
systems.

4.5.7. Exercise. Prove that for any number θ ∈ F the exponent eθI1 ∈ Ŵ
is a multiplicative weight system.

4.5.8. Lemma. Let θ = w(Θ) for a multiplicative weight system w. Then

its deframing is w′ = e−θI1 · w.

We leave the proof of this lemma to the reader as an exercise. The
lemma, together with the previous exercise, implies that the deframing of a
multiplicative weight system is again multiplicative.

4.6. Primitive elements in Afr

The algebra of chord diagrams Afr is commutative, cocommutative and
connected. Therefore, by the Milnor-Moore Theorem A.2.11, any element
of Afr is uniquely represented as a polynomial in basis primitive elements.
Let us denote the nth homogeneous component of the primitive subspace

by Pn = Afrn ∩ P(Afr) and find an explicit description of Pn for small n.
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dim = 1. P1 = Afr1 is one-dimensional and spanned by .

dim = 2. Since

δ
( )

= ⊗ + 2 ⊗ + ⊗ ,

δ
( )

= ⊗ + 2 ⊗ + ⊗ ,

the element − is primitive. It constitutes a basis of P2.

dim = 3. The coproducts of the 3 basis elements of Afr3 are

δ
( )

= ⊗ + 2 ⊗ + ⊗ + . . . ,

δ
( )

= ⊗ + ⊗ + 2 ⊗ + . . . ,

δ
( )

= ⊗ + 3 ⊗ + . . .

(Here the dots stand for the terms symmetric to the terms that are shown
explicitly.) Looking at these expressions, it is easy to check that the element

− 2 +

is the only, up to multiplication by a scalar, primitive element of Afr3 .

The exact dimensions of Pn are currently (2011) known up to n = 12 (the
last three values, corresponding to n = 10, 11, 12, were found by J. Kneissler
[Kn0]):

n 1 2 3 4 5 6 7 8 9 10 11 12

dimPn 1 1 1 2 3 5 8 12 18 27 39 55

We shall discuss the sizes of the spaces Pn, An and Vn in more detail later
(see Sections 5.5 and 14.5).

If the dimensions of Pn were known for all n, then the dimensions of An
would also be known.
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Example. Let us find the dimensions of Afrn , n 6 5, assuming that we
know the values of dimPn for n = 1, 2, 3, 4, 5, which are equal to 1, 1, 1, 2, 3,
respectively. Let pi be the basis element of Pi, i = 1, 2, 3 and denote the
bases of P4 and P5 as p41, p42 and p51, p52, p53, respectively. Nontrivial
monomials up to degree 5 that can be made out of these basis elements are:

Degree 2 monomials (1): p2
1.

Degree 3 monomials (2): p3
1, p1p2.

Degree 4 monomials (4): p4
1, p2

1p2, p1p3, p2
2.

Degree 5 monomials (7): p5
1, p3

1p2, p2
1p3, p1p

2
2, p1p41, p1p42, p2p3.

A basis of each Afrn can be made up of the primitive elements and
their products of the corresponding degree. For n = 0, 1, 2, 3, 4, 5 we get:

dimAfr0 = 1, dimAfr1 = 1, dimAfr2 = 1 + 1 = 2, dimAfr3 = 1 + 2 = 3,

dimAfr4 = 2 + 4 = 6, dimAfr5 = 3 + 7 = 10.

The partial sums of this sequence give the dimensions of the spaces

of framed Vassiliev invariants: dimVfr0 = 1, dimVfr1 = 2, dimVfr2 = 4,

dimVfr3 = 7, dimVfr4 = 13, dimVfr5 = 23.

4.6.1. Exercise. Let pn be the sequence of dimensions of primitive spaces
in a Hopf algebra and an the sequence of dimensions of the entire algebra.
Prove the relation between the generating functions

1 + a1t+ a2t
2 + · · · = 1

(1− t)p1(1− t2)p2(1− t3)p3 . . .
.

Note that primitive elements of Afr are represented by rather compli-
cated linear combinations of chord diagrams. A more concise and clear
representation can be obtained via connected closed diagrams, to be intro-
duced in the next chapter (Section 5.5).

4.7. Linear chord diagrams

The arguments of this chapter, applied to long knots (see 1.8.3), lead us
naturally to considering the space of linear chord diagrams, that is, diagrams
on an oriented line:

subject to the 4-term relations:

− = −

= − .
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Let us temporarily denote the space of linear chord diagrams with n

chords modulo the 4-term relations by (Afrn )long. The space (Afr)long of
such chord diagrams of all degrees modulo the 4T relations is a bialgebra;
the product in (Afr)long can be defined simply by concatenating the oriented
lines.

If the line is closed into a circle, linear 4-term relations become circular

(that is, usual) 4-term relations; thus, we have a linear map (Afrn )long → Afrn .
This map is evidently onto, as one can find a preimage of any circular
chord diagram by cutting the circle at an arbitrary point. This preimage, in
general, depends on the place where the circle is cut, so it may appear that
this map has a non-trivial kernel. For example, the linear diagram shown
above closes up to the same diagram as the one drawn below:

Remarkably, modulo 4-term relations, all the preimages of any circular

chord diagram are equal in (Afr3 )long (in particular, the two diagrams in

the above pictures give the same element of (Afr3 )long). This fact is proved
by exactly the same argument as the statement that the product of chord
diagrams is well-defined (Lemma 4.4.3); we leave it to the reader as an
exercise.

Summarizing, we have:

Proposition. Closing up the line into the circle gives rise to a vector space
isomorphism (Afr)long → Afr. This isomorphism is compatible with the
multiplication and comultiplication and thus defines an isomorphism of bial-
gebras.

A similar statement holds for diagrams modulo 4T and 1T relations.
Further, one can consider chord diagrams (and 4T relations) with chords
attached to an arbitrary one-dimensional oriented manifold — see Section
5.10.

4.8. Intersection graphs

4.8.1. Definition. ([CD1]) The intersection graph Γ(D) of a chord dia-
gram D is the graph whose vertices correspond to the chords of D and whose
edges are determined by the following rule: two vertices are connected by an
edge if and only if the corresponding chords intersect, and multiple edges are
not allowed. (Two chords, a and b, are said to intersect if their endpoints a1,
a2 and b1, b2 appear in the interlacing order a1, b1, a2, b2 along the circle.)

For example,
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The intersection graphs of chord diagrams are also called circle graphs
or alternance graphs. (See [Bou1]).

Note that not every graph can be represented as the intersection graph
of a chord diagram. For example, the following graphs are not intersection

graphs: , , .

4.8.2. Exercise. Prove that all graphs with no more than 5 vertices are
intersection graphs.

On the other hand, distinct diagrams may have coinciding intersection
graphs. For example, there are three different diagrams

with the same intersection graph .

A complete characterization of those graphs that can be realized as in-
tersection graphs was given by A. Bouchet [Bou2].

With each chord diagram D we can associate an oriented surface ΣD by
attaching a disc to the circle of D and thickening the chords of D. Then
the chords determine a basis in H1(ΣD,Z2) as in the picture below. The
intersection matrix for this basis coincides with the adjacency matrix of ΓD.
Using the terminology of singularity theory we may say that the intersection
graph ΓD is the Dynkin diagram of the intersection form in H1(ΣD,Z2)
constructed for the basis of H1(ΣD,Z2).

D = ΣD = ΓD =

4.8.3. Some weight systems. Intersections graphs are useful, for one
thing, because they provide a simple way to define some weight systems.
We will describe two framed weight systems which depend only on the in-
tersection graph. The reader is invited to find their deframings, using the
formulae of section 4.5.6.

1. Let ν be number of intersections of chords in a chord diagram (or,
if you like, the number of edges in its intersection graph). This number
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satisfies the four-term relations and thus descends to a well-defined mapping
ν : Afr 7→ Z.

2. Let χ(G) be a function of a natural number n which is equal to the
number of ways to colour the vertices of a graph G by t colours (not neces-
sarily using all the colours) so that the endpoints of any edge are coloured
differently. It is easy to see [Har] that χ(G) is a polynomial in t called the
chromatic polynomial of G. If D is a chord diagram, then keeping the no-
tation χ(D) for the chromatic polynomial of Γ(D), one can prove that this
function satisfies the 4T relations and therefore produces a weight system
χ : Afr → Z[t] (this follows from the deletion–contraction relation for the
chromatic polynomial and relation 14.4.2 in Section 14.4).

Exercise. Prove that the primitivization (see Exercise 10 at the end of the
chapter) of the chord diagram with complete intersection graph provides
one non-zero primitive element of Afr in each degree thus giving the first
non-trivial lower estimate on the dimensions of the spaces Afr.

Intersection graphs contain a good deal of information about chord dia-
grams. In [CDL1] the following conjecture was stated.

4.8.4. Intersection graph conjecture. If D1 and D2 are two chord di-
agrams whose intersection graphs are equal, Γ(D1) = Γ(D2), then D1 = D2

as elements of Afr (that is, modulo four-term relations).

Although wrong in general (see Section 11.1.4), this assertion is true in
some particular situations:

(1) for all diagrams D1, D2 with up to 10 chords (a direct computer
check [CDL1] up to 8 chords and [Mu] for 9 and 10 chords);

(2) when Γ(D1) = Γ(D2) is a tree (see [CDL2]) or, more generally, D1,
D2 belong to the forest subalgebra (see [CDL3]);

(3) when Γ(D1) = Γ(D2) is a graph with a single loop (see [Mel1]);

(4) for weight systems w coming from standard representations of Lie
algebras glN or soN . This means that Γ(D1) = Γ(D2) implies w(D1) =
w(D2); see Chapter 6, proposition on page 178 and exercise 16 on page 203
of the same chapter;

(5) for the universal sl2 weight system and the weight system coming
from the standard representation of the Lie superalgebra gl(1|1) (see [ChL]).

In fact, the intersection graph conjecture can be refined to the following
theorem which covers items (4) and (5) above.

Theorem ([ChL]). The symbol of a Vassiliev invariant that does not dis-
tinguish mutant knots depends on the intersection graph only.
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We postpone the discussion of mutant knots, the proof of this theorem
and its converse to Section 11.1.

4.8.5. Chord diagrams representing a given graph. To describe all
chord diagrams representing a given intersection graph we need the notion
of a share [CDL1, ChL]. Informally, a share of a chord diagram is a subset
of chords whose endpoints are separated into at most two parts by the
endpoints of the complementary chords. More formally,

Definition. A share is a part of a chord diagram consisting of two arcs of
the outer circle with the following property: each chord one of whose ends
belongs to these arcs has both ends on these arcs.

Here are some examples:

A share Not a share Two shares

The complement of a share also is a share. The whole chord diagram is its
own share whose complement contains no chords.

Definition. A mutation of a chord diagram is another chord diagram
obtained by a flip of a share.

For example, three mutations of the share in the first chord diagram
above produce the following chord diagrams:

Obviously, mutations preserve the intersection graphs of chord diagrams.

Theorem. Two chord diagrams have the same intersection graph if and
only if they are related by a sequence of mutations.

This theorem is contained implicitly in papers [Bou1, GSH] where
chord diagrams are written as double occurrence words.

Proof of the theorem. The proof uses Cunningham’s theory of graph de-
compositions [Cu].

A split of a (simple) graph Γ is a disjoint bipartition {V1, V2} of its set of
vertices V (Γ) such that each part contains at least 2 vertices, and with the
property that there are subsets W1 ⊆ V1, W2 ⊆ V2 such that all the edges
of Γ connecting V1 with V2 form the complete bipartite graph K(W1,W2)
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with the parts W1 and W2. Thus for a split {V1, V2} the whole graph Γ can
be represented as a union of the induced subgraphs Γ(V1) and Γ(V2) linked
by a complete bipartite graph.

Another way to think about splits, which is sometimes more convenient
and which we shall use in the pictures below, is as follows. Consider two
graphs Γ1 and Γ2 each with a distinguished vertex v1 ∈ V (Γ1) and v2 ∈
V (Γ2), respectively, called markers. Construct the new graph

Γ = Γ1 �(v1,v2) Γ2

whose set of vertices is V (Γ) = {V (Γ1)− v1} ∪ {V (Γ2)− v2}, and whose set
of edges is

E(Γ) = {(v′1, v′′1)∈E(Γ1) :v′1 6= v1 6= v′′1} ∪ {(v′2, v′′2)∈E(Γ2) :v′2 6= v2 6= v′′2}

∪ {(v′1, v′2) : (v′1, v1) ∈ E(Γ1) and (v2, v
′
2) ∈ E(Γ2)} .

Representation of Γ as Γ1 �(v1,v2) Γ2 is called a decomposition of Γ, the
graphs Γ1 and Γ2 are called the components of the decomposition. The
partition {V (Γ1)− v1, V (Γ2)− v2} is a split of Γ. Graphs Γ1 and Γ2 might
be decomposed further giving a finer decomposition of the initial graph Γ.
Graphically, we represent a decomposition by pictures of its components
where the corresponding markers are connected by a dashed edge.

A prime graph is a graph with at least three vertices admitting no
splits. A decomposition of a graph is said to be canonical if the following
conditions are satisfied:

(i) each component is either a prime graph, or a complete graph Kn,
or a star Sn, which is the tree with a vertex, the centre, adjacent
to n other vertices;

(ii) no two components that are complete graphs are neighbours, that
is, their markers are not connected by a dashed edge;

(iii) the markers of two components that are star graphs connected by
a dashed edge are either both centres or both not centres of their
components.

W. H. Cunningham proved [Cu, Theorem 3] that each graph with at
least six vertices possesses a unique canonical decomposition.

Let us illustrate the notions introduced above by an example of canonical
decomposition of an intersection graph. We number the chords and the
corresponding vertices in our graphs, so that the unnumbered vertices are
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The canonical decomposition

The key observation in the proof of the theorem is that components of
the canonical decomposition of any intersection graph admit a unique repre-
sentation by chord diagrams. For a complete graph and star components,
this is obvious. For a prime component, this was proved by A. Bouchet
[Bou1, Statement 4.4] (see also [GSH, Section 6] for an algorithm finding
such a representation for a prime graph).

Now, in order to describe all chord diagrams with a given intersection
graph, we start with a component of its canonical decomposition. There is
only one way to realize the component by a chord diagram. We draw the
chord corresponding to the marker as a dashed chord and call it the marked
chord. This chord indicates the places where we must cut the circle removing
the marked chord together with small arcs containing its endpoints. As a
result we obtain a chord diagram on two arcs. Repeating the same procedure
with the next component of the canonical decomposition, we get another
chord diagram on two arcs. We have to glue the arcs of these two diagrams
together in the alternating order. There are four possibilities to do this,
and they differ by mutations of the share corresponding to one of the two
components. This completes the proof of the theorem. �

To illustrate the last stage of the proof consider our standard example
and take the star 2-3-4 component first and then the triangle component.
We get
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Because of the symmetry, the four ways of glueing these diagrams produce
only two distinct chord diagrams with a marked chord:

CUT
and

CUT
.

Repeating the same procedure with the marked chord for the last 1-6 com-
ponent of the canonical decomposition, we get
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.
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Glueing this diagram into the previous two in all possible ways we get the
four mutant chord diagrams from page 119.

4.8.6. 2-term relations and the genus of a diagram. A 2-term (or
endpoint sliding) relation for chord diagrams has the form

= ,

= .

The 4-term relations are evidently a consequence of the 2-term relations;
therefore, any function on chord diagrams that satisfies 2-term relations is a
weight system. An example of such a weight system is the genus of a chord
diagram defined as follows.

Replace the outer circle of the chord diagram and all its chords by nar-
row untwisted bands — this yields an orientable surface with boundary.
Attaching a disk to each boundary component gives a closed orientable sur-
face. This is the same as attaching disks to the boundary components of the
surface ΣD from page 117. Its genus is by definition the genus of the chord
diagram. The genus can be calculated from the number of boundary com-
ponents using Euler characteristic. Indeed, the Euler characteristic of the
surface with boundary obtained by above described procedure from a chord
diagram of degree n is equal to −n. If this surface has c boundary compo-
nents and genus g, then we have −n = 2 − 2g − c while g = 1 + (n − c)/2.
For example, the two chord diagrams of degree 2 have genera 0 and 1, be-
cause the number of connected components of the boundary is 4 and 2,
respectively, as one can see in the following picture:

The genus of a chord diagram satisfies 2-term relations, since sliding
an endpoint of a chord along another adjacent chord does not change the
topological type of the corresponding surface with boundary.

An interesting way to compute the genus from the intersection graph of
the chord diagram was found by Moran (see [Mor]). Moran’s theorem states
that the genus of a chord diagram is half the rank of the adjacency matrix
over Z2 of the intersection graph. This theorem can be proved transforming a
given chord diagram to the canonical form using the following two exercises.
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Exercise. Let D1 and D2 be two chord diagrams differing by a 2-term
relation. Check that the corresponding adjacency matrices over Z2 are con-
jugate (one is obtained from the other by adding the ith column to the jth
column and the ith row to the jth row).

Exercise. A caravan of m1 “one-humped camels” and m2 “two-humped
camels is the product of m1 diagrams with one chord and m2 diagrams
with 2 crossing chords:

m1 m2

Show that any chord diagram is equivalent, modulo 2-term relations, to a
caravan. Show that the caravans form a basis in the vector space of chord
diagrams modulo 2-term relations.

The algebra generated by caravans is thus a quotient algebra of the
algebra of chord diagrams.

Remark. The last exercise is, essentially, equivalent to the classical topo-
logical classification of compact oriented surfaces with boundary by the
genus, m2, and the number of boundary components, m1 + 1.

Exercises

(1) A short chord is a chord whose endpoints are adjacent, that is, one of the
arcs that it bounds contains no endpoints of other chords. In particular,
short chords are isolated. Prove that the linear span of all diagrams
with a short chord and all four-term relation contains all diagrams with
an isolated chord. This means that the restricted one-term relations
(only for diagrams with a short chord) imply general one-term relations
provided that the four-term relations hold.

(2) Find the number of different chord diagrams of order n with n isolated
chords. Prove that all of them are equal to each other modulo the four-
term relations.

(3) Using Table 4.4.1 on page 107, find the space of unframed weight systems
W4.

Answer. The basis weight systems are:
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1 0 -1 -1 0 -1 -2

0 1 1 2 0 1 3

0 0 0 0 1 1 1

The table shows that the three diagrams , and form

a basis in the space A4.

(4)∗ Is it true that any chord diagram of order 13 is equivalent to its mirror
image modulo 4-term relations?

(5) Prove that the deframing operator ′ (Section 4.5.6) is a homomorphism
of algebras: (w1 · w2)′ = w′1 · w′2.

(6) Give a proof of Lemma 4.5.8 on page 113.

(7) Find a basis in the primitive space P4.
Answer. A possible basis consists of the elements d4

6−d4
7 and d4

2−2d4
7

from the table on page 107.

(8) Prove that for any primitive element p of degree > 1, w(p) = w′(p)
where w′ is the deframing of a weight system w.

(9) Prove that the symbol of a primitive Vassiliev invariant is a primitive
weight system.

(10) Prove that the projection onto the space of the primitive elements (see
Exercise A.2.13 on page 483) in the algebra Afr can be given by the
following explicit formula:

π(D) = D − 1!
∑

D1D2 + 2!
∑

D1D2D3 − ...,

where the sums are taken over all unordered splittings of the set of
chords of D into 2, 3, etc nonempty subsets.

(11) Let Θ be the chord diagram with a single chord. By a direct computa-

tion, check that exp(αΘ) :=
∑∞

n=0
αnΘn

n! ∈ Âfr is a group-like element
in the completed Hopf algebra of chord diagrams.

(12) (a) Prove that no chord diagram is equal to 0 modulo 4-term relations.
(b) Let D be a chord diagram without isolated chords. Prove that D 6= 0
modulo 1- and 4-term relations.

(13) Let c(D) be the number of chord intersections in a chord diagram D.
Check that c is a weight system. Find its deframing c′.
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(14) The generalized 4-term relations.
(a) Prove the following relation:

=

Here the horizontal line is a fragment of the circle of the diagram, while
the grey region denotes an arbitrary conglomeration of chords.
(b) Prove the following relation:

+ = +

or, in circular form: + = + .

(15) Using the generalized 4-term relation prove the following identity:

=

(16) Prove the proposition of Section 4.7.

(17) Check that for the chord diagram below, the intersection graph and its
canonical decomposition are as shown:

6

3

2

11

1

9

10

11

7
8

5
2

1

8 6 9
10

4

7

3

5

4

Chord diagram

9

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

4

3

68

5

1

211

10

7

�
�
�
�

Intersection graph

10
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��9

2111

4

3
68

5

7
��
��
��
��

Canonical decomposition

(18) ([LZ, example 6.4.11]) Prove that esymb(c2)(D) is equal to the number of
perfect matchings of the intersection graph Γ(D). (A perfect matching
in a graph is a set of disjoint edges covering all the vertices of the graph.)





Chapter 5

Jacobi diagrams

In the previous chapter we saw that the study of Vassiliev knot invariants, at
least complex-valued, is largely reduced to the study of the algebra of chord
diagrams. Here we introduce two different types of diagrams representing
elements of this algebra, namely closed Jacobi diagrams and open Jacobi
diagrams. These diagrams provide better understanding of the primitive
space PA and bridge the way to the applications of the Lie algebras in the
theory of Vassiliev invariants, see Chapter 6 and Section 11.4.

The name Jacobi diagrams is justified by a close resemblance of the basic
relations imposed on Jacobi diagrams (STU and IHX) to the Jacobi identity
for Lie algebras.

5.1. Closed Jacobi diagrams

5.1.1. Definition. A closed Jacobi diagram (or, simply, a closed diagram)
is a connected trivalent graph with a distinguished simple oriented cycle,
called Wilson loop1, and a fixed cyclic order of half-edges at each vertex not
on the Wilson loop. Half the number of the vertices of a closed diagram
is called the degree, or order, of the diagram. This number is always an
integer.

Remark. Some authors (see, for instance, [HM]) also include the cyclic
order of half-edges at the vertices on the Wilson loop into the structure of
a closed Jacobi diagram; this leads to the same theory.

1This terminology, introduced by Bar-Natan, makes an allusion to field theory where a Wilson
loop is an observable that assigns to a connection (field potential) its holonomy along a fixed closed

curve.
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Remark. A Jacobi diagram is allowed to have multiple edges and hanging
loops, that is, edges with both ends at the same vertex. It is the possible
presence of hanging loops that requires introducing the cyclic order on half-
edges rather than edges.

Example. Here is a closed diagram of degree 4:

The orientation of the Wilson loop and the cyclic orders of half-edges at
the internal vertices are indicated by arrows. In the pictures below, we shall
always draw the diagram inside its Wilson loop, which will be assumed to be
oriented counterclockwise unless explicitly specified otherwise. Inner vertices
will also be assumed to be oriented counterclockwise. (This convention is
referred to as the blackboard orientation.) Note that the intersection of two
edges in the centre of the diagram above is not actually a vertex.

Chord diagrams are closed Jacobi diagrams all of whose vertices lie on
the Wilson loop.

Other terms used for closed Jacobi diagrams in the literature include
Chinese character diagrams [BN1], circle diagrams [Kn0], round diagrams
[Wil1] and Feynman diagrams [KSA].

5.1.2. Definition. The vector space of closed diagrams Cn is the space
spanned by all closed diagrams of degree n modulo the STU relations:

S

=

T

−
U

.

The three diagrams S, T and U must be identical outside the shown frag-
ment. We write C for the direct sum of the spaces Cn for all n > 0.

The two diagrams T and U are referred to as the resolutions of the dia-
gram S. The choice of the plus and minus signs in front of the two resolutions
in the right-hand side of the STU relation, depends on the orientation for the
Wilson loop and on the cyclic order of the three edges meeting at the inter-
nal vertex of the S-term. Should we reverse one of them, say the orientation
of the Wilson loop, the signs of the T- and U-terms change. Indeed,

=
STU
= − = − .
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This remark will be important in Section 5.5.3 where we discuss the problem
of detecting knot orientation. One may think of the choice of the direction for
the Wilson loop in an STU relation as a choice of the cyclic order “forward-
sideways-backwards” at the vertex lying on the Wilson loop. In these terms,
the signs in the STU relation depend on the cyclic orders at both vertices
of the S-term, the relation above may be thought of as a consequence of
the antisymmetry relation AS (see 5.2.2) for the vertex on the Wilson loop,
and the STU relation itself can be regarded as a particular case of the IHX
relation (see 5.2.3).

5.1.3. Examples. There exist two different closed diagrams of order 1:

, , one of which vanishes due to the STU relation:

= − = 0 .

There are ten closed diagrams of degree 2:

, , , ,

, , , , , .

The last six diagrams are zero. This is easy to deduce from the STU re-
lations, but the most convenient way of seeing it is by using the AS relations
which follow from the STU relations (see Lemma 5.2.5 below).

Furthermore, there are at least two relations among the first four dia-
grams:

= − ;

= − = 2 .

It follows that dim C2 6 2. Note that the first of the above equalities

gives a concise representation, , for the basis primitive element of

degree 2.
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5.1.4. Exercise. Using the STU relations, rewrite the basis primitive ele-
ment of order 3 in a concise way.

Answer.

− 2 + = .

We have already mentioned that chord diagrams are a particular case
of closed diagrams. Using the STU relations, one can rewrite any closed
diagram as a linear combination of chord diagrams. (Examples were given
just above.)

A vertex of a closed diagram that lies on the Wilson loop is called ex-
ternal; otherwise it is called internal. External vertices are also called legs.
There is an increasing filtration on the space Cn by subspaces Cmn spanned
by diagrams with at most m external vertices:

C1
n ⊂ C2

n ⊂ ... ⊂ C2n
n .

5.1.5. Exercise. Prove that C1
n = 0.

Hint. In a diagram with only two legs one of the legs can go all around
the circle and change places with the second.

5.2. IHX and AS relations

5.2.1. Lemma. The STU relations imply the 4T relations for chord dia-
grams.

Proof. Indeed, writing the four-term relation in the form

− = −

and applying the STU relations to both parts of this equation, we get the
same closed diagrams. �

5.2.2. Definition. An AS (=antisymmetry) relation is:

= − .

In other words, a diagram changes sign when the cyclic order of three edges
at a trivalent vertex is reversed.
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5.2.3. Definition. An IHX relation is:

= − .

As usual, the unfinished fragments of the pictures denote graphs that are
identical (and arbitrary) everywhere but in this explicitly shown fragment.

5.2.4. Exercise. Check that the three terms of the IHX relation “have
equal rights”. For example, an H turned 90 degrees looks like an I; write an
IHX relation starting from that I and check that it is the same as the initial
one. Also, a portion of an X looks like an H; write down an IHX relation
with that H and check that it is again the same. The IHX relation is in a
sense unique; this is discussed in Exercise 15 on page 166.

5.2.5. Lemma. The STU relations imply the AS relations for the internal
vertices of a closed Jacobi diagram.

Proof. Induction on the distance (in edges) of the vertex in question from
the Wilson loop.

Induction base. If the vertex is adjacent to an external vertex, then the
assertion follows by one application of the STU relation:

= −

= − .

Induction step. Take two closed diagrams f1 and f2 that differ only by
a cyclic order of half-edges at one internal vertex v. Apply STU relations to
both diagrams in the same way so that v gets closer to the Wilson loop.

�

5.2.6. Lemma. The STU relations imply the IHX relations for the internal
edges of a closed diagram.

Proof. The argument is similar to the one used in the previous proof. We
take an IHX relation somewhere inside a closed diagram and, applying the
same sequence of STU moves to each of the three diagrams, move the IHX
fragment closer to the Wilson loop. The proof of the induction base is shown
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in these pictures:

= − = − − + ,

= − = − − + ,

= − = − − + .

Therefore,
= + .

�

5.2.7. Other forms of the IHX relation. The IHX relation can be drawn
in several forms, for example:

• (rotationally symmetric form)

+ + = 0 .

• (Jacobi form)

= + .

• (Kirchhoff form)

= + .

5.2.8. Exercise. By turning your head and pulling the strings of the dia-
grams, check that all these forms are equivalent.

The Jacobi form of the IHX relation can be interpreted as follows. Sup-
pose that to the upper 3 endpoints of each diagram we assign 3 elements of
a Lie algebra, x, y and z, while every trivalent vertex, traversed downwards,
takes the pair of “incoming” elements into their commutator:

x y

[x, y]

.

Then the IHX relation means that

[x, [y, z]] = [[x, y], z] + [y, [x, z]],
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which is the classical Jacobi identity. This observation, properly developed,
leads to the construction of Lie algebra weight systems — see Chapter 6.

The Kirchhoff presentation is reminiscent of the Kirchhoff’s law in elec-

trotechnics. Let us view the portion of the given graph as a piece

of electrical circuit, and the variable vertex as an “electron” e with a “tail”
whose endpoint is fixed. Suppose that the electron moves towards a node of
the circuit:

e

“tail”

Then the IHX relation expresses the well-known Kirchhoff rule: the sum
of currents entering a node is equal to the sum of currents going out of it.
This electrotechnical analogy is very useful, for instance, in the proof of the
generalized IHX relation:

5.2.9. Lemma. (Kirchhoff law, or generalized IHX relation). The fol-
lowing identity holds:

1
2···
k

=
k∑
i=1

1···
i···
k

,

where the grey box is an arbitrary subgraph which has only 3-valent vertices.

Proof. Fix a horizontal line in the plane and consider an immersion of the
given graph into the plane with smooth edges, generic with respect to the
projection onto this line. More precisely, we assume that (1) the projections
of all vertices onto the horizontal line are distinct, (2) when restricted to an
arbitrary edge, the projection has only non-degenerate critical points, and
(3) the images of all critical points are distinct and different from the images
of vertices.

Bifurcation points are the images of vertices and critical points of the
projection. Imagine a vertical line that moves from left to right; for every
position of this line take the sum of all diagrams obtained by attaching the
loose end to one of the intersection points. This sum does not depend on
the position of the vertical line, because it does not change when the line
crosses one bifurcation point.

Indeed, bifurcation points fall into six categories:

1) 2) 3) 4) 5) 6) .
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In the first two cases the assertion follows from the IHX relation, in cases
3 and 4 — from the AS relation. Cases 5 and 6 by a deformation of the
immersion are reduced to a combination of the previous cases (also, they
can be dealt with by one application of the IHX relation in the symmetric
form).

�

Example.

= +

= + +

= = +

Remark. The difference between inputs and outputs in the equation of
Lemma 5.2.9 is purely notational. We may bend the left-hand leg to the right
and move the corresponding term to the right-hand side of the equation,
changing its sign because of the antisymmetry relation, and thus obtain:

k+1∑
i=1

1

i

k +1

= 0 .

Or we may prefer to split the legs into two arbitrary subsets, putting
one part on the left and another on the right. Then:

k∑
i=1

1

i

k

=

l∑
i=1

1

i

l

.

5.2.10. A corollary of the AS relation. A simple corollary of the anti-
symmetry relation in the space C is that any diagram D containing a hanging
loop is equal to zero. Indeed, there is an automorphism of the diagram
that changes the two half-edges of the small circle and thus takes D to −D,
which implies that D = −D and D = 0. This observation also applies to
the case when the small circle has other vertices on it and contains a sub-
diagram, symmetric with respect to the vertical axis. In fact, the assertion
is true even if the diagram inside the circle is not symmetric at all. This is
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a generalization of Exercise 5.1.5, but cannot be proved by the same argu-
ment. In Section 5.6 we shall prove a similar statement (Lemma 5.6) about
open Jacobi diagrams; that proof also applies here.

5.3. Isomorphism Afr ' C

Let An be the set of chord diagrams of order n and Cn the set of closed
diagrams of the same order. We have a natural inclusion λ : An → Cn.

5.3.1. Theorem. The inclusion λ gives rise to an isomorphism of vector

spaces λ : Afrn → Cn.

Proof. We must check:

(A) that λ leads to a well-defined linear map from Afrn to Cn;

(B) that this map is a linear isomorphism.

Part (A) is easy. Indeed, Afrn = 〈An〉/〈4T〉, Cn = 〈Cn〉/〈STU〉, where
angular brackets denote linear span. Lemma 5.2.1 implies that λ(〈4T〉) ⊆
〈STU〉, therefore the map of the quotient spaces is well-defined.

(B) We shall construct a linear map ρ : Cn → Afrn and prove that it is
inverse to λ.

As we mentioned before, any closed diagram by the iterative use of STU
relations can be transformed into a combination of chord diagrams. This
gives rise to a map ρ : Cn → 〈An〉 which is, however, multivalued, since
the result may depend on the specific sequence of relations used. Here is an
example of such a situation (the place where the STU relation is applied is
marked by an asterisk):

* 7→ − = 2 7→ 2
(

− 2 +
)
,

*
7→ − = 2 * − 2 *

7→ 2
(

− − +
)
.

However, the combination ρ(C) is well-defined as an element of Afrn , that
is, modulo the 4T relations. The proof of this fact proceeds by induction on
the number k of internal vertices in the diagram C.
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If k = 1, then the diagram C consists of one tripod and several chords
and may look something like this:

There are 3 ways to resolve the internal triple point by an STU relation,

and the fact that the results are the same in Afrn is exactly the definition of
the 4T relation.

Suppose that ρ is well-defined on closed diagrams with < k internal
vertices. Pick a diagram in C2n−k

n . The process of eliminating the triple
points starts with a pair of neighbouring external vertices. Let us prove,
modulo the inductive hypothesis, that if we change the order of these two
points, the final result will remain the same.

There are 3 cases to consider: the two chosen points on the Wilson loop
are (1) adjacent to a common internal vertex, (2) adjacent to neighbouring
internal vertices, (3) adjacent to non-neighbouring internal vertices. The
proof for the cases (1) and (2) is shown in the pictures that follow.

(1)

∗
7−→ − ,

∗
7−→ − ,

The position of an isolated chord does not matter, because, as we know, the
multiplication in Afr is well-defined.

(2)

∗
7−→

∗
−

∗

7−→ − − + ,

∗
7−→

∗
−
∗

7−→ − − + .

After the first resolution, we can choose the sequence of further resolutions
arbitrarily, by the inductive hypothesis.
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Exercise. Give a similar proof for the case (3).

We thus have a well-defined linear map ρ : Cn → Afrn . The fact that it
is two-sided inverse to λ is clear. �

5.4. Product and coproduct in C

Now we shall define a bialgebra structure in the space C.

5.4.1. Definition. The product of two closed diagrams is defined in the
same way as for chord diagrams: the two Wilson loops are cut at arbi-
trary places and then glued together into one loop, in agreement with the
orientations:

· = .

5.4.2. Proposition. This multiplication is well-defined, that is, it does not
depend on the place of cuts.

Proof. The isomorphism Afr ∼= C constructed in Theorem 5.3.1 identifies
the product in Afr with the above product in C.

Since the multiplication is well-defined in Afr, it is also well-defined in
C. �

To define the coproduct in the space C, we need the following definition:

5.4.3. Definition. The internal graph of a closed diagram is the graph
obtained by stripping off the Wilson loop. A closed diagram is said to be
connected if its internal graph is connected. The connected components of
a closed diagram are defined as the connected components of its internal
graph.

In the sense of this definition, any chord diagram of order n consists of
n connected components — the maximal possible number.

Now, the construction of the coproduct proceeds in the same way as for
chord diagrams.

5.4.4. Definition. Let D be a closed diagram and [D] the set of its con-
nected components. For any subset J ⊆ [D] denote by DJ the closed dia-
gram with only those components that belong to J and by DJ the “comple-

mentary” diagram (J := [D] \ J). We set

δ(D) :=
∑
J⊆[D]

DJ ⊗DJ .
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Example.

δ
( )

= 1⊗ + ⊗ + ⊗ + ⊗1.

We know that the algebra C, as a vector space, is spanned by chord
diagrams. For chord diagrams, algebraic operations defined in Afr and C,
tautologically coincide. It follows that the coproduct in C is compatible
with its product and that the isomorphisms λ, ρ are, in fact, isomorphisms
of bialgebras.

5.5. Primitive subspace of C

By definition, connected closed diagrams are primitive with respect to the
coproduct δ. It may sound surprising that the converse is also true:

5.5.1. Theorem. [BN1] The primitive space P of the bialgebra C coincides
with the linear span of connected closed diagrams.

Note the contrast of this straightforward characterization of the primi-
tive space in C with the case of chord diagrams.

Proof. If the primitive space P were bigger than the span of connected
closed diagrams, then, according to Theorem A.2.11, it would contain an
element that cannot be represented as a polynomial in connected closed
diagrams. Therefore, to prove the theorem it is enough to show that every
closed diagram is a polynomial in connected diagrams. This can be done
by induction on the number of legs of a closed diagram C. Suppose that
the diagram C consists of several connected components (see 5.4.3). The
STU relation tells us that we can freely interchange the legs of C modulo
closed diagrams with fewer legs. Using such permutations we can separate
the connected components of C. This means that modulo closed diagrams
with fewer legs C is equal to the product of its connected components. �

5.5.2. Filtration of Pn. The primitive space Pn cannot be graded by the
number of legs k, because the STU relation is not homogeneous with respect
to k. However, it can be filtered :

0 = P1
n ⊆ P2

n ⊆ P3
n ⊆ · · · ⊆ Pn+1

n = Pn .
where Pkn is the subspace of Pn spanned by connected closed diagrams with
at most k legs.

The connectedness of a closed diagram with 2n vertices implies that the
number of its legs cannot be bigger than n + 1. That is why the filtration
ends at the term Pn+1

n .

The following facts about the filtration are known.
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• [ChV] The filtration stabilizes even sooner. Namely, Pnn = Pn
for even n, and Pn−1

n = Pn for odd n. Moreover, for even n the
quotient space Pnn/Pn−1

n has dimension one and is generated by the
wheel wn with n spokes:

wn =

n spokes

This fact is related to the Melvin-Morton conjecture (see Section
14.1 and Exercise 13).

• [Da1] The quotient space Pn−1
n /Pn−2

n has dimension [n/6] + 1 for
odd n, and 0 for even n.

• [Da2] For even n

dim(Pn−2
n /Pn−3

n ) =

[
(n− 2)2 + 12(n− 2)

48

]
+ 1 .

• For small degrees the dimensions of the quotient spaces Pkn/Pk−1
n

were calculated by J. Kneissler [Kn0] (empty entries in the table
are zeroes):
c
cn
k 1 2 3 4 5 6 7 8 9 10 11 12 dimPn

1 1 1

2 1 1

3 1 1

4 1 1 2

5 2 1 3

6 2 2 1 5

7 3 3 2 8

8 4 4 3 1 12

9 5 6 5 2 18

10 6 8 8 4 1 27

11 8 10 11 8 2 39

12 9 13 15 12 5 1 55

5.5.3. Detecting the knot orientation. One may notice that in the ta-
ble above all entries with odd k vanish. This means that any connected
closed diagram with an odd number of legs is equal to a suitable linear
combination of diagrams with fewer legs. This observation is closely related
to the problem of distinguishing knot orientation by Vassiliev invariants.
The existence of the universal Vassiliev invariant given by the Kontsevich
integral reduces the problem of detecting the knot orientation to a purely
combinatorial problem. Denote by τ the operation of reversing the orien-
tation of the Wilson loop of a chord diagram; its action is equivalent to a
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mirror reflection of the diagram as a planar picture. This operation descends
to A; we call an element of A symmetric, if τ acts on it as identity. Then,
Vassiliev invariants do not distinguish the orientation of knots if and only if
all chord diagrams are symmetric: D = τ(D) for all D ∈ A. The following
theorem translates this fact into the language of primitive subspaces.

Theorem. Vassiliev invariants do not distinguish the orientation of knots
if and only if Pkn = Pk−1

n for any odd k and arbitrary n.

To prove the Theorem we need to reformulate the question whether
D = τ(D) in terms of closed diagrams. Reversing the orientation of the
Wilson loop on closed diagrams should be done with some caution, see the
discussion in 5.1.2 on page 128). The correct way of doing it is carrying the
operation τ from chord diagrams to closed diagrams by the isomorphism
λ : Afr → C; then we have the following assertion:

Lemma. Let P = P ′ be a closed diagram with k external vertices.

Then

τ(P ) = (−1)k P ′ .

Proof. Represent P as a linear combination of chord diagrams using STU
relations, and then reverse the orientation of the Wilson loop of all chord
diagrams obtained. After that, convert the resulting linear combination back
to a closed diagram. Each application of the STU relation multiplies the
result by −1 because of the reversed Wilson loop (see page 128). In total,
we have to perform the STU relation 2n− k times, where n is the degree of
P . Therefore, the result gets multiplied by (−1)2n−k = (−1)k. �

In the particular case k = 1 the Lemma asserts that P1
n = 0 for all n —

this fact appeared earlier as Exercise 5.1.5.

The operation τ : C → C is, in fact, an algebra automorphism, τ(C1 ·
C2) = τ(C1) · τ(C2). Therefore, to check the equality τ = idC it is enough
to check it on the primitive subspace, that is, determine whether P = τ(P )
for every connected closed diagram P .

Corollary of the Lemma. Let P ∈ Pk =
∞⊕
n=1
Pkn be a connected closed

diagram with k legs. Then τ(P ) ≡ (−1)kP mod Pk−1.



5.6. Open Jacobi diagrams 141

Proof of the Corollary. Rotating the Wilson loop in 3-space by 180◦

about the vertical axis, we get:

τ(P ) = (−1)k P ′ = (−1)k P ′ .

The STU relations allow us to permute the legs modulo diagrams with
fewer number of legs. Applying this procedure to the last diagram we can
straighten out all legs and get (−1)kP . �

Proof of the Theorem. Suppose that the Vassiliev invariants do not
distinguish the orientation of knots. Then τ(P ) = P for every connected
closed diagram P . In particular, for a diagram P with an odd number of legs
k we have P ≡ −P mod Pk−1. Hence, 2P ≡ 0 mod Pk−1, which means
that P is equal to a linear combination of diagrams with fewer legs, and
therefore dim(Pkn/Pk−1

n ) = 0.

Conversely, suppose that Vassiliev invariants do distinguish the orien-
tation. Then there is a connected closed diagram P such that τ(P ) 6= P .
Choose such P with the smallest possible number of legs k. Let us show that
k cannot be even. Consider X = P − τ(P ) 6= 0. Since τ is an involution,
τ(X) = −X. But, in the case of even k, the non-zero element X has fewer
legs than k, and τ(X) = −X 6= X, so k cannot be minimal. Therefore, the
minimal such k is odd, and dim(Pkn/Pk−1

n ) 6= 0. �

5.5.4. Exercise. Check that, for invariants of fixed degree, the theorem
can be specialized as follows. Vassiliev invariants of degree 6 n do not
distinguish the orientation of knots if and only if Pkm = Pk−1

m for any odd k
and arbitrary m 6 n.

5.5.5. Exercise. Similarly to the filtration in the primitive space P, one can
introduce the leg filtration in the whole space C. Prove the following version
of the above theorem: Vassiliev invariants of degree n do not distinguish the
orientation of knots if and only if Ckn = Ck−1

n for any odd k and arbitrary n.

5.6. Open Jacobi diagrams

The subject of this section is the combinatorial bialgebra B which is iso-
morphic to the bialgebras Afr and C as a vector space and as a coalgebra,
but has a different natural multiplication. This leads to the remarkable fact
that in the vector space Afr ' C ' B there are two multiplications both
compatible with one and the same coproduct.

5.6.1. Definition. An open Jacobi diagram is a graph with 1- and 3-valent
vertices, cyclic order of (half-)edges at every 3-valent vertex and with at
least one 1-valent vertex in every connected component.
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An open diagram is not required to be connected. It may have loops
and multiple edges. We shall see later that, modulo the natural relations
any diagram with a loop vanishes. However, it is important to include the
diagrams with loops in the definition, because the loops may appear during
natural operations on open diagrams, and it is exactly because of this fact
that we introduce the cyclic order on half-edges, not on whole edges.

The total number of vertices of an open diagram is even. Half of this
number is called the degree (or order) of an open diagram. We denote the
set of all open diagrams of degree n by Bn. The univalent vertices will
sometimes be referred to as legs.

In the literature, open diagrams are also referred to as 1-3-valent dia-
grams, Jacobi diagrams, web diagrams and Chinese characters.

Definition. An isomorphism between two open diagrams is a one-to-one
correspondence between their respective sets of vertices and half-edges that
preserves the vertex-edge adjacency and the cyclic order of half-edges at
every vertex.

Example. Below is the complete list of open diagrams of degree 1 and 2,
up to isomorphism just introduced.

B1 = { , }

B2 =
{

, , , , , ,

, ,
}

Most of the elements listed above will be of no importance to us, as they
are killed by the following definition.

5.6.2. Definition. The space of open diagrams of degree n is the quotient
space

Bn := 〈Bn〉/〈AS, IHX〉,
where 〈Bn〉 is the vector space formally generated by all open diagrams of
degree n and 〈AS, IHX〉 stands for the subspace spanned by all AS and IHX
relations (see 5.2.2, 5.2.3). By definition, B0 is one-dimensional, spanned by

the empty diagram, and B :=
∞⊕
n=0
Bn.

Just as in the case of closed diagrams (Section 5.2.10), the AS relation
immediately implies that any open diagram with a loop ( ) vanishes in B.
Let us give a most general statement of this observation — valid, in fact,
both for open and for closed Jacobi diagrams.
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Definition. An anti-automorphism of a Jacobi diagram b ∈ Bn is a graph
automorphism of b such that the cyclic order of half-edges is reversed in an
odd number of vertices.

5.6.3. Lemma. If a diagram b ∈ Bn admits an anti-automorphism, then
b = 0 in the vector space B.

Proof. Indeed, it follows from the definitions that in this case b = −b. �

Example.

= 0 .

Exercise. Show that dimB1 = 1, dimB2 = 2.

The relations AS and IHX imply the generalized IHX relation, or Kirch-
hoff law (Lemma 5.2.9) and many other interesting identities among the
elements of the space B. Some of them are proved in the next chapter (Sec-
tion 7.2.4) in the context of the algebra Γ. Here is one more assertion that
makes sense only in B, as its formulation refers to univalent vertices (legs).

Lemma. If b ∈ B is a diagram with an odd number of legs, all of which
are attached to one and the same edge, then b = 0 modulo AS and IHX
relations.

Example.

= 0 .

Note that in this example the diagram does not have an anti-automorphism,
so the previous lemma does not apply.

Proof. Any diagram satisfying the premises of the lemma can be put into
the form on the left of the next picture. Then by the generalized IHX
relation it is equal to the diagram on the right which obviously possesses an
anti-automorphism and therefore is equal to zero:

=

where the grey region is an arbitrary subdiagram. �

In particular, any diagram with exactly one leg vanishes in B. This is
an exact counterpart of the corresponding property of closed diagrams (see
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Exercise 5.1.5); both facts are, furthermore, equivalent to each other in view
of the isomorphism C ∼= B that we shall speak about later (in Section 5.7).

Conjecture. Any diagram with an odd number of legs is 0 in B.

This important conjecture is equivalent to the conjecture that Vassiliev
invariants do not distinguish the orientation of knots (see Section 5.8.3).

Relations AS and IHX, unlike STU, preserve the separation of vertices
into 1- and 3-valent. Therefore, the space B has a much finer grading than
Afr. Apart from the main grading by half the number of vertices, indicated
by the subscript in B, it also has a grading by the number of univalent
vertices

B =
⊕
n

⊕
k

Bkn,

indicated by the superscript in B, so that Bkn is the subspace spanned by all
diagrams with k legs and 2n vertices in total.

For disconnected diagrams the second grading can, in turn, be refined
to a multigrading by the number of legs in each connected component of the
diagram:

B =
⊕
n

⊕
k16...6km

Bk1,...,kmn .

Yet another important grading in the space B is the grading by the
number of loops in a diagram, that is, by its first Betti number. In fact, we
have a decomposition:

B =
⊕
n

⊕
k

⊕
l

lBkn,

where l can also be replaced by m (the number of connected components)
because of the relation l + k = n + m, which can be proved by a simple
argument involving the Euler characteristic.

The abundance of gradings makes the work with the space B more con-
venient than with C, although both are isomorphic, as we shall soon see.

5.6.4. The bialgebra structure on B. Both the product and the coprod-
uct in the vector space B are defined in a rather straightforward way. We
first define the product and coproduct on diagrams, then extend the oper-
ations by linearity to the free vector space spanned by the diagrams, and
then note that they are compatible with the AS and IHX relations and thus
descend to the quotient space B.

5.6.5. Definition. The product of two open diagrams is their disjoint
union.

Example. · = .
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5.6.6. Definition. Let D be an open diagram and [D] — the set of its
connected components. For a subset J ⊆ [D], denote by DJ the union of
the components that belong to J and by DJ — the union of the components
that do not belong to J . We set

δ(D) :=
∑
J⊆[D]

DJ ⊗DJ .

Example.

δ
( )

= 1⊗ + ⊗ + ⊗ + ⊗ 1,

As the relations in B do not intermingle different connected components
of a diagram, the product of an AS or IHX combination of diagrams by an
arbitrary open diagram belongs to the linear span of the relations of the
same types. Also, the coproduct of any AS or IHX relation vanishes modulo
these relations. Therefore, we have well-defined algebraic operations in the
space B, and they are evidently compatible with each other. The space B
thus becomes a graded bialgebra.

5.7. Linear isomorphism B ' C

In this section we construct a linear isomorphism between vector spaces Bn
and Cn. The question whether it preserves multiplication will be discussed
later (Section 5.8). Our exposition follows [BN1], with some details omitted,
but some examples added.

To convert an open diagram into a closed diagram, we join all of its
univalent vertices by a Wilson loop. Fix k distinct points on the circle.
For an open diagram with k legs D ∈ Bk

n there are k! ways of glueing its
legs to the Wilson loop at these k points, and we set χ(D) to be equal to
the arithmetic mean of all the resulting closed diagrams. Thus we get the
symmetrization map

χ : B→ C.
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For example,

χ
( )

=
1

24

(
+ + + + +

+ + + + + +

+ + + + + +

+ + + + + +

)
.

Scrutinizing these pictures, one can see that 16 out of 24 summands are
equivalent to the first diagram, while the remaining 8 are equivalent to the
second one. Therefore,

χ( ) =
1

3
+

2

3
.

Exercise. Express this element via chord diagrams, using the isomorphism
C ' Afr.

Answer: − 10

3
+

4

3
.

5.7.1. Theorem. The symmetrization map χ : B→ C descends to a linear
map χ : B → C, which is a graded isomorphism between the vector spaces B
and C.

The theorem consists of two parts:

• Easy part: χ is well-defined.

• Difficult part: χ is bijective.

The proof of bijectivity of χ is difficult because not every closed diagram
can be obtained by a symmetrization of an open diagram. For example, the

diagram is not a symmetrization of any open diagram, even though

it looks very much symmetric. Notice that symmetrizing the internal graph
of this diagram we get 0.

Easy part of the theorem. To prove the easy part, we must show
that the AS and IHX combinations of open diagrams go to 0 in the space
C. This follows from lemmas 5.2.5 and 5.2.6.
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Difficult part of the theorem. To prove the difficult part, we con-
struct a linear map τ from C to B, inverse to χ. This will be done inductively
by the number of legs of the diagrams. We shall write τk for the restriction
of τ to the subspace spanned by diagrams with at most k legs.

There is only one way to attach the only leg of an open diagram to the
Wilson loop. Therefore, we can define τ1 on a closed diagram C with one
leg as the internal graph of C. (In fact, both open and closed diagrams with
one leg are all zero in B and C respectively, see Exercise 5.1.5 and Lemma
5.6). For diagrams with two legs the situation is similar. Every closed
diagram with two legs is a symmetrization of an open diagram, since there

is only one cyclic order on the set of two elements. For example, is

the symmetrization of the diagram . Therefore, for a closed diagram
C with two legs we can define τ2(C) to be the internal graph of C.

In what follows, we shall often speak of the action of the symmetric
group Sk on closed diagrams with k legs. This action preserves the internal
graph of a closed diagram and permutes the points where the legs of the
internal graph are attached to the Wilson loop. Strictly speaking, to define
this action we need the legs of the diagrams to be numbered. We shall
always assume that such numbering is chosen; the particular form of this
numbering will be irrelevant.

The difference of a closed diagram D and the same diagram whose legs
are permuted by some permutation σ, is equivalent, modulo STU relations,
to a combination of diagrams with a smaller number of external vertices.
For every given D and σ we fix such a linear combination.

Assuming that the map τ is defined for closed diagrams having less than
k legs, we define it for a diagram D with exactly k legs by the formula:

(5.7.1) τk(D) = D̃ +
1

k!

∑
σ∈Sk

τk−1(D − σ(D)) ,

where D̃ is the internal graph of D, and D − σ(D) is represented as a
combination of diagrams with less than k legs according to the choice above.
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For example, we know that τ
( )

= , and we want to find

τ
( )

. By the above formula, we have:

τ3

( )
= + 1

6

(
τ2

(
−

)
+ τ2

(
−

)

+τ2

(
−

)
+ τ2

(
−

)

+τ2

(
−

)
+ τ2

(
−

))

= 1
2τ2

( )
= 1

2 .

We have to prove the following assertions:

(i) The value τk−1(D − σ(D)) in the formula (5.7.1) does not depend
on the presentation of D−σ(D) as a combination of diagrams with
a smaller number of external vertices.

(ii) The map τ respects STU relations.

(iii) χ ◦ τ = idC and τ is surjective.

The first two assertions imply that τ is well-defined and the third means
that τ is an isomorphism. The rest of the section is dedicated to the proof
of these statements.

In the vector space spanned by all closed diagrams (with no relations
imposed) let Dk be the subspace spanned by all diagrams with at most k
external vertices. We have a chain of inclusions

D0 ⊂ D1 ⊂ D2 ⊂ . . . .

We denote by Ik be the subspace in Dk spanned by all STU, IHX and anti-
symmetry relations that do not involve diagrams with more than k external
vertices.

5.7.2. Action of permutations on closed diagrams. The action of
the symmetric group Sk on closed diagrams with k legs can be represented
graphically as the “composition” of a closed diagram with the diagram of
the permutation:

k = 4 ; σ = (4132) = ; D = ;
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σD = = .

5.7.3. Lemma. Let D ∈ Dk.

• Modulo Ik, the difference D − σD belongs to Dk−1.

• Any choice Uσ of a presentation of σ as a product of transpositions
determines in a natural way an element ΓD(Uσ) ∈ Dk−1 such that

ΓD(Uσ) ≡ D − σD mod Ik.

• Furthermore, if Uσ and U ′σ are two such presentations, then ΓD(Uσ)
is equal to ΓD(U ′σ) modulo Ik−1.

This is Lemma 5.5 from [BN1]. Rather than giving the details of the
proof (which can be found in [BN1]) we illustrate it on a concrete example.

Take the permutation σ = (4132) and let D be the diagram considered
above. Choose two presentations of σ as a product of transpositions:

Uσ = (34)(23)(34)(12) = ; U ′σ = (23)(34)(23)(12) = .

(Here, reading the product from left to right corresponds to moving from
bottom to top in the pictures.)

For each of these products we represent D − σD as a sum:

D − σD = (D − (12)D) + ((12)D − (34)(12)D) + ((34)(12)D − (23)(34)(12)D)
+((23)(34)(12)D − (34)(23)(34)(12)D)

and

D − σD = (D − (12)D) + ((12)D − (23)(12)D) + ((23)(12)D − (34)(23)(12)D)
+((34)(23)(12)D − (23)(34)(23)(12)D) .

Here, the two terms in every pair of parentheses differ only by a transposition
of two neighbouring legs, so their difference is the right-hand side of an STU
relation. Modulo the subspace I4 each difference can be replaced by the
corresponding left-hand side of the STU relation, which is a diagram in D3.
We get

ΓD(Uσ) = + + +

ΓD(U ′σ) = + + +
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Now the difference ΓD(Uσ)− ΓD(U ′σ) equals(
−

)
+
(

−
)

+
(

−
)

Using the STU relation in I3 we can represent it in the form

ΓD(Uσ)− ΓD(U ′σ) = + − = 0

which is zero because of the IHX relation.

5.7.4. Proof of assertions (i) and (ii). Let us assume that the map τ ,
defined by the formula (5.7.1), is (1) well-defined on Dk−1 and (2) vanishes
on Ik−1.

Define τ ′(D) to be equal to τ(D) if D ∈ Dk−1, and if D ∈ Dk − Dk−1

set

τ ′(D) = D̃ +
1

k!

∑
σ∈Sk

τ(ΓD(Uσ)) .

Lemma 5.7.3 means that for any given D ∈ Dk with exactly k external
vertices τ(ΓD(Uσ))) does not depend on a specific presentation Uσ of the
permutation σ as a product of transpositions. Therefore, τ ′ gives a well-
defined map Dk → B.

Let us now show that τ ′ vanishes on Ik. It is obvious that τ ′ vanishes
on the IHX and antisymmetry relations since these relations hold in B. So
we only need to check the STU relation which relates a diagram Dk−1 with
k − 1 external vertices and the corresponding two diagrams Dk and UiD

k

with k external vertices, where Ui is a transposition Ui = (i, i + 1). Let us
apply τ ′ to the right-hand side of the STU relation:

τ ′(Dk − UiDk) = D̃k + 1
k!

∑
σ∈Sk

τ(ΓDk(Uσ))

−ŨiDk − 1
k!

∑
σ′∈Sk

τ(ΓUiDk(Uσ′)) .

Note that D̃k = ŨiDk. Reparametrizing the first sum, we get

τ ′(Dk − UiDk) =
1

k!

∑
σ∈Sk

τ(ΓDk(UσUi)− ΓUiDk(Uσ)) .

Using the obvious identity ΓD(UσUi) = ΓD(Ui) + ΓUiDk(Uσ) and the fact

that Dk−1 = ΓD(Ui), we now obtain

τ ′(Dk − UiDk) =
1

k!

∑
σ∈Sk

τ(Dk−1) = τ(Dk−1) = τ ′(Dk−1) ,
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which means that τ ′ vanishes on the STU relation, and, hence, on the whole
of Ik.

Now, it follows from the second part of Lemma 5.7.3 that τ ′ = τ on Dk.
In particular, this means that τ is well-defined on Dk and vanishes on Ik.
By induction, this implies the assertions (i) and (ii).

5.7.5. Proof of assertion (iii). Assume that χ ◦ τ is the identity for
diagrams with at most k − 1 legs. Take D ∈ Dk representing an element of
C. Then

(χ ◦ τ)(D) = χ
(
D̃ + 1

k!

∑
σ∈Sk

τ(ΓD(Uσ))
)

= 1
k!

∑
σ∈Sk

(
σD + (χ ◦ τ)(ΓD(Uσ))

)
.

Since ΓD(Uσ) is a combination of diagrams with at most k − 1 legs, by the
induction hypothesis χ ◦ τ(ΓD(Uσ)) = ΓD(Uσ) and, hence,

(χ ◦ τ)(D) =
1

k!

∑
σ∈Sk

(
σD + ΓD(Uσ)

)
=

1

k!

∑
σ∈Sk

(
σD +D − σD

)
= D .

The surjectivity of τ is clear from the definition, so we have established
that χ is a linear isomorphism between B and C. �

5.8. Relation between B and C

It is easy to check that the isomorphism χ is compatible with the coproduct
in the algebras B and C. (Exercise: pick a decomposable diagram b ∈ B and
check that δA(χ(b)) and χ(δB(b)) coincide.) However, χ is not compatible
with the product. For example,

χ( ) = .

The square of the element in B is . However, the corre-
sponding element of C

χ( ) =
1

3
+

2

3

is not equal to the square of .

We can, of course, carry the natural multiplication of the algebra B to the
algebra C with the help of the isomorphism χ, thus obtaining a bialgebra with
two different products, both compatible with one and the same coproduct.
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By definition, any connected diagram p ∈ B is primitive. Similarly to
Theorem 5.5.1 we have:

5.8.1. Theorem. The primitive space of the bialgebra B is spanned by con-
nected open diagrams.

Proof. The same argument as in the proof of Theorem 5.5.1, with a simpli-
fication that in the present case we do not have to prove that every element
of B has a polynomial expression in terms of connected diagrams: this holds
by definition. �

Although the isomorphism χ does not respect the multiplication, the two
algebras B and C are isomorphic. This is clear from what we know about
their structure: by Milnor–Moore theorem both algebras are commutative
polynomial algebras over the corresponding primitive subspaces. But the
primitive subspaces coincide, since χ preserves the coproduct! An explicit
algebra isomorphism between B and C will be the subject of Section 11.3.

Situations of this kind appear in the theory of Lie algebras. Namely, the
bialgebra of invariants in the symmetric algebra of a Lie algebra L has a
natural map into the centre of the universal enveloping algebra of L. This
map, which is very similar in spirit to the symmetrization map χ, is an
isomorphism of coalgebras, but does not respect the multiplication. In fact,
this analogy is anything but superficial. It turns out that the algebra C is
isomorphic to the centre of the universal enveloping algebra for a certain
Casimir Lie algebra in a certain tensor category. For further details see
[HV].

5.8.2. Unframed version of B. The unframed version of the algebras
Afr and C are obtained by taking the quotient by the ideal generated by the
diagram with 1 chord Θ. Although the product in B is different, it is easy
to see that multiplication in C by Θ corresponds to multiplication in B by
the strut s: the diagram of degree 1 consisting of 2 univalent vertices and
one edge. Therefore, the unframed version of the algebra B is its quotient
by the ideal generated by s and we have: B′ := B/(s) ∼= C/(Θ) =: C′.

5.8.3. Grading in PB and filtration in PC. The space of primitive
elements PB is carried by χ isomorphically onto PC. The space PC = P is
filtered (see Section 5.5.2), the space PB is graded (page 144). It turns out
that χ intertwines the grading on B with the filtration on C; as a corollary,
the filtration on PC comes from a grading. Indeed, the definition of χ and



5.9. The three algebras in small degrees 153

the construction of the inverse mapping τ imply two facts:

χ(PBi) ⊂ P i ⊂ Pk, if i < k,

τ(Pk) ⊂
k⊕
i=1

PBk.

Therefore, we have an isomorphism

τ : Pkn −→ PB1
n ⊕ PB2

n ⊕ . . .⊕ PBk−1
n ⊕ PBkn .

and, hence, an isomorphism Pkn/Pk−1
n
∼= PBkn.

Using this fact, we can give an elegant reformulation of the theorem
about detecting the orientation of knots (Section 5.5.3, page 140):

Corollary. Vassiliev invariants do distinguish the orientation of knots if
and only if PBkn 6= 0 for an odd k and some n.

Let us clarify that by saying that Vassiliev invariants do distinguish the
orientation of knots we mean that there exists a knot K non-equivalent to
its inverse K∗ and a Vassiliev invariant f such that f(K) 6= f(K∗).

Exercise. Check that in the previous statement the letter P can be dropped:
Vassiliev invariants do distinguish the orientation of knots if and only if
Bkn 6= 0 for an odd k and some n.

The relation between C and B in this respect can also be stated in the
form of a commutative diagram:

B χ−−−−→ C

τB

y yτC
B −−−−→

χ
C

where χ is the symmetrization isomorphism, τC is the orientation reversing
map in C defined by the lemma in Section 5.5.3, while τB on an individual
diagram from B acts as multiplication by (−1)k where k is the number of
legs. The commutativity of this diagram is a consequence of the corollary
to the above mentioned lemma (see page 140).

5.9. The three algebras in small degrees

Here is a comparative table which displays some linear bases of the algebras
Afr, C and B in small degrees.
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n Afr C B

0 ∅

1

2

3

4

In every order up to 4, for each of the three algebras, this table displays
a basis of the corresponding homogeneous component. Starting from order
2, decomposable elements (products of elements of smaller degree) appear
on the left, while the new indecomposable elements appear on the right.
The bases of C and B are chosen to consist of primitive elements and their
products. We remind that the difference between the Afr and C columns
is notational rather than anything else, since chord diagrams are a special
case of closed Jacobi diagrams, the latter can be considered as linear com-
binations of the former, and the two algebras are in any case isomorphic.

5.10. Jacobi diagrams for tangles

In order to define chord diagrams and, more generally, closed Jacobi dia-
grams, for arbitrary tangles it suffices to make only minor adjustments to the
definitions. Namely, one simply replaces the Wilson loop with an arbitrary
oriented one-dimensional manifold (the skeleton of the Jacobi diagram). In
the 4-term relations the points of attachment of chords are allowed to belong
to different components of the skeleton, while the STU relations remain the
same.

The Vassiliev invariants for tangles with a given skeleton can be de-
scribed with the help of chord diagrams or closed diagrams with the same
skeleton; in fact the Vassiliev-Kontsevich Theorem is valid for tangles and
not only for knots.
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Open Jacobi diagrams can also be defined for arbitrary tangles. If we
consider tangles whose skeleton is not connected, the legs of correspond-
ing open diagrams have to be labeled by the connected components of the
skeleton. Moreover, for such tangles there are mixed spaces of diagrams,
some of whose legs are attached to the skeleton, while others are “hanging
free”. Defining spaces of open and mixed diagrams for tangles is a more
delicate matter than generalizing chord diagrams: here new relations, called
link relations may appear in addition to the STU, IHX and AS relations.

5.10.1. Jacobi diagrams for tangles.

Definition. Let X be a tangle skeleton (see page 28). A tangle closed Jacobi
diagram D with skeleton X is a unitrivalent graph with a distinguished
oriented subgraph identified with X, a fixed cyclic order of half-edges at
each vertex not on X, and such that:

• it has no univalent vertices other than the boundary points of X;

• each connected component of D contains at least one connected
component of X.

A tangle Jacobi diagram whose all vertices belong to the skeleton, is called
a tangle chord diagram. As with usual closed Jacobi diagrams, half the
number of the vertices of a closed diagram is called the degree, or order, of
the diagram.

Example. A tangle diagram whose skeleton consists of a line segment and
a circle: x

1

x
2

The vector space of tangle closed Jacobi diagrams with skeleton X mod-
ulo the STU relations is denoted by C(X), or by C(x1, . . . ,xn) where the xi
are the connected components of X. The space Cn(X) is the subspace of
C(X) spanned by diagrams of degree n. It is clear that for any X the space
Cn(X) is spanned by chord diagrams with n chords.

For an arbitrary skeleton X, the space C(X) is a coalgebra, but, in
general, not an algebra. Its quotient over the one-term relations is also a
coalgebra, denoted by A(X) and referred to as the coalgebra of tangle chord
diagrams.

Two tangle diagrams are considered to be equivalent if there is a graph
isomorphism between them which preserves the skeleton and the cyclic order
of half-edges at the trivalent vertices outside the skeleton.
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Weight systems of degree n for tangles with skeleton X can now be
defined as linear functions on Cn(X). The Fundamental Theorem 4.2.1
extends to the present case:

Theorem. Each tangle weight system of degree n is a symbol of some degree
n Vassiliev invariant of framed tangles.

In fact, we shall prove this, more general version of the Fundamental
Theorem in Chapter 8 and deduce the corresponding statement for knots as
a corollary.

Now, assume that X is a union of connected components xi and yj and
suppose that the yj have no boundary.

Definition. A mixed tangle Jacobi diagram is a unitrivalent graph with a
distinguished oriented subgraph (the skeleton) identified with ∪xi, with all
univalent vertices, except those on the skeleton, labeled by elements of the
set {yj} and a fixed cyclic order of edges at each trivalent vertex not on the
skeleton, and such that each connected component either contains at least
one of the xi, or at least one univalent vertex. A leg of a mixed diagram is
a univalent vertex that does not belong to the skeleton.

Here is an example of a mixed Jacobi diagram:

y y

yy

y

y
x

Mixed Jacobi diagrams, apart from the usual STU, IHX and antisym-
metry relations, are subject to a new kind of relations, called link relations,
see [BGRT]. To obtain a link relation, take a mixed diagram, choose one
of its legs and one label y. For each y-labeled vertex, attach the chosen leg
to the edge, adjacent to this vertex, sum all the results and set this sum
to be equal to 0. The attachment is done according to the cyclic order as
illustrated by the following picture:

yy y

......

......

+

yy y

......

......

+ · · ·+
......

y y

......

y

= 0.
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Here the shaded parts of all diagrams coincide, the skeleton is omitted from
the pictures and the unlabeled legs are assumed to have labels distinct from
y.

Note that when the skeleton is empty and y is the only label (that is,
we are speaking about the usual open Jacobi diagrams), the link relations
are an immediate consequence from the Kirchhoff law.

Now, define the vector space C(x1, . . . ,xn |y1, . . . ,ym) to be spanned by
all mixed diagrams with the skeleton ∪xi and labels yj , modulo the STU,
IHX, antisymmetry and link relations.

Both closed and open diagrams are particular cases of this construction.
In particular, C(x1, . . . ,xn | ∅) = C(X) and C(∅ |y) = B. The latter equality
justifies the notation B(y1, . . . ,ym) or just B(m) for the space of m-coloured
open Jacobi diagrams C(∅ |y1, . . . ,ym).

Given a diagram D in C(x1, . . . ,xn |y1, . . . ,ym) we can perform “sym-
metrization of D with respect to the label ym” by taking the average of all
possible ways of attaching the ym-legs of D to a circle with the label ym.
This way we get the map

χym : C(x1, . . . ,xn |y1, . . . ,ym)→ C(x1, . . . ,xn,ym |y1, . . . ,ym−1).

Theorem. The symmetrization map χym is an isomorphism of vector spaces.

In particular, iterating χym we get the isomorphism between the spaces
C(x1, . . . ,xn |y1, . . . ,ym) and C(X ∪ Y ), where X = ∪xi and Y = ∪yj .

Let us indicate the idea of the proof; this will also clarify the origin of
the link relations.

Consider the vector space C(x1, . . . ,xn |y1, . . . ,y
∗
m) defined just like

C(x1, . . . ,xn |y1, . . . ,ym) but without the link relations on the ym-legs.
Also, define the space C(x1, . . . ,xn,y

∗
m |y1, . . . ,ym−1) in the same way as

C(x1, . . . ,xn,ym |y1, . . . ,ym−1) but with an additional feature that all dia-
grams have a marked point on the component ym.

Then we have the symmetrization map

χy∗m : C(x1, . . . ,xn |y1, . . . ,y
∗
m)→ C(x1, . . . ,xn,y

∗
m |y1, . . . ,ym−1)

which consists in attaching, in all possible ways, the ym-legs to a pointed
circle labeled ym, and taking the average of all the results.

Exercise. Prove that χy∗m is an isomorphism.

Now, consider the map

C(x1, . . . ,xn,y
∗
m |y1, . . . ,ym−1)→ C(x1, . . . ,xn,ym |y1, . . . ,ym−1)
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that simply forgets the marked point on the circle ym. The kernel of this
map is spanned by differences of diagrams of the form

− .

(The diagrams above illustrate the particular case of 4 legs attached to the
component ym.) By the STU relations the above is equal to the following
“attached link relation”:

+ + .

Exercise. Show that the symmetrization map χy∗m identifies the sub-
space of link relations in C(x1, . . . ,xn |y1, . . . ,y

∗
m) with the subspace of

C(x1, . . . ,xn,y
∗
m |y1, . . . ,ym−1) spanned by all “attached link relations”.

5.10.2. Pairings on diagram spaces. There are several kinds of pairings
on diagram spaces. The first pairing is induced by the product on tangles; it
generalizes the multiplication in the algebra C. This pairing exists between
the vector spaces C(X1) and C(X2) such that the bottom part of X1 coin-
cides with the top part of X2 and these manifolds can be concatenated into
an oriented 1-manifold X1 ◦X2. In this case we have the bilinear map

C(X1)⊗ C(X2)→ C(X1 ◦X2),

obtained by putting one diagram on top of another.

If X is a collection of n intervals, with one top and one bottom point
on each of them, X ◦X is the same thing as X and in this case we have an
algebra structure on C(X). This is the algebra of closed Jacobi diagrams
for string links on n strands. When n = 1, we, of course, come back to the
algebra C.

Remark. While C(X) is not necessarily an algebra, it is always a coalgebra
with the coproduct defined in the same way as for the usual closed Jacobi
diagrams:

δ(D) :=
∑
J⊆[D]

DJ ⊗DJ ,

where [D] is the set of connected components of the internal graph of D.

The second multiplication is the tensor product of tangle diagrams. It is
induced the tensor product of tangles, and consists in placing the diagrams
side by side.
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There is yet another pairing on diagram spaces, which is sometimes
called “inner product”. For diagrams C ∈ C(x |y) and D ∈ B(y) define the
diagram 〈C,D〉y ∈ C(x) as the sum of all ways of glueing all the y-legs of
C to the y-legs of D. If the numbers of y-legs of C and D are not equal,
we set 〈C,D〉y to be zero. It may happen that in the process of glueing we
get closed circles with no vertices on them (this happens if C and D contain
intervals with both ends labeled by y). We set such diagrams containing
circles to be equal to zero.

5.10.3. Lemma. The inner product

〈 , 〉y : C(x |y)⊗ B(y)→ C(x)

is well-defined.

Proof. We need to show that the class of the resulting diagram in C(x)
does not change if we modify the second argument of 〈 , 〉y by IHX or
antisymmetry relations, and the first argument — by STU or link relations.
This is clear for the first three kinds of relations. For link relations it follows
from the Kirchhoff rule and the antisymmetry relation. For example, we
have

+ + =

= − + + = 0.

�

The definition of the inner product can be extended. For example, if
two diagrams C,D have the same number of y1-legs and the same number
of y2-legs, they can be glued together along the y1-legs and then along the
y2-legs. The sum of the results of all such glueings is denoted by 〈C,D〉y1,y2

.
This construction, clearly, can be generalized further.

5.10.4. Actions of C and B on tangle diagrams. While the coalgebra
C(X), in general, does not have a product, it carries an algebraic struc-
ture that generalizes the product in C. Namely, for each component x
of X, there is an action of C(x) on C(X), defined as the connected sum
along the component x. We denote this action by #, as if it were the
usual connected sum. More generally, the spaces of mixed tangle diagrams
C(x1, . . . ,xn |y1, . . . ,ym) are two-sided modules over C(xi) and B(yj). The
algebra C(xi) acts, as before, by the connected sum on the component xi,
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while the action of B(yj) consists in taking the disjoint union with diagrams
in B(yj). We shall denote the action of B(yj) by ∪.

We cannot expect the relation of the module structures on the space of
mixed diagrams with the symmetrization map to be straightforward, since
the symmetrization map from B to C fails to be multiplicative. We shall
clarify this remark in 11.3.9.

Exercise. Prove that the above actions are well-defined. In particular,
prove that the action of C(xi) does not depend on the location where the
diagram is inserted into the corresponding component of the tangle diagram,
and show that the action of B(yj) respects the link relations.

5.10.5. Sliding property. There is one important corollary of the IHX
relation (Kirchhoff law), called sliding property ([BLT]), which holds in the
general context of tangle Jacobi diagrams. To formulate it, we need to define

the operation ∆
(n)
x : C(x∪Y )→ C(x1∪· · ·∪xn∪Y ). By definition, ∆

(n)
x (D)

is the lift of D to the nth disconnected cover of the line x, that is, for each
x-leg of the diagram D we take the sum over all ways to attach it to xi for
any i = 1, . . . , n (the sum consists of nk terms, if k is the number of vertices
of D belonging to x). Example:

∆
(2)
x

( x )
=

x1 x2

+

x1 x2

+

x1 x2

+

x1 x2

.

Proposition. (Sliding relation) Suppose that D ∈ C(x ∪ Y ); let D1 =

∆
(n)
x (D). Then for any diagram D2 ∈ C(x1 ∪ · · · ∪ xn) we have D1D2 =

D2D1. In pictures:

x1···x2

D1

D2

Y =

x1···x2

D1

D2

Y

Proof. Indeed, take the leg in D1 which is closest to D2 and consider the
sum of all diagrams on x1 ∪ · · · ∪ xn ∪ Y where this leg is attached to xi,
i = 1, . . . , n, while all the other legs are fixed. By Kirchhoff law, this sum
is equal to the similar sum where the chosen leg has jumped over D2. In
this way, all the legs jump over D2 one by one, and the commutativity
follows. �

5.10.6. Closing a component of a Jacobi diagram. Recall that long
knots can be closed up to produce usual knots. This closure induces a
bijection of the corresponding isotopy classes and an isomorphism of the
corresponding diagram spaces.
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This fact can be generalized to tangles whose skeleton consists of one
interval and several circles.

Theorem. Let X be a tangle skeleton with only one interval component,
and X ′ be a skeleton obtained by closing this component into a circle. The
induced map

C(X)→ C(X ′)
is an isomorphism of vector spaces.

The proof of this theorem consists in applying the Kirchhoff’s law and
we leave it to the reader.

We should point out that closing one component of a skeleton with
more that one interval component does not produce an isomorphism of the
corresponding diagram spaces. Indeed, let us denote by A(2) the space of
chord diagrams for string links on 2 strands. A direct calculation shows that
the two diagrams of order 2 below on the left are different in A(2), while
their images under closing one strand of the skeleton are obviously equal:

6= =

The above statements about tangle diagrams, of course, are not arbi-
trary, but reflect the following topological fact that we state as an exercise:

Exercise. Define the map of closing one component on isotopy classes of
tangles with a given skeleton and show that it is bijective if and only if it is
applied to tangles whose skeleton has only one interval component.

5.11. Horizontal chord diagrams

There is yet another diagram algebra which will be of great importance in
what follows, namely, the algebra Ah(n) of horizontal chord diagrams on n
strands.

A horizontal chord diagram on n strands is a tangle diagram whose
skeleton consists of n vertical intervals (all oriented, say, upwards) and all of
whose chords are horizontal. Two such diagrams are considered to be equiv-
alent if one can be deformed into the other through horizontal diagrams.

A product of two horizontal diagrams is clearly a horizontal diagram; by
definition, the algebra Ah(n) is generated by the equivalence classes of all
such diagrams modulo the horizonal 4T relations 4.1.4 (see Section 4.1). We
denote by 1n the the empty diagram in Ah(n) which is the multiplicative
unit.

Each horizontal chord diagram is equivalent to a diagram whose chords
are all situated on different levels, that is, to a product of diagrams of degree
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1. Set

ujk =

kj

, 1 6 j < k 6 n,

and for 1 6 k < j 6 n set ujk = ukj . Then Ah(n) is generated by the
ujk subject to the following relations (infinitesimal pure braid relations, first
appeared in [Koh2])

[ujk, ujl + ukl] = 0, if j, k, l are different,

[ujk, ulm] = 0, if j, k, l,m are different.

Indeed, the first relation is just the horizontal 4T relation. The second rela-
tion is similar to the far commutativity relation in braids. The products of
the ujk up to this relation are precisely the equivalence classes of horizontal
diagrams.

The algebra Ah(2) is simply the free commutative algebra on one gen-
erator u12.

5.11.1. Proposition. Ah(3) is a direct product of the free algebra on two
generators u12 and u23, and the free commutative algebra on one generator

u = u12 + u23 + u13.

In particular, Ah(3) is highly non-commutative.

Proof. Choose u12, u23 and u as the set of generators for Ah(3). In terms
of these generators all the relations in Ah(3) can be written as

[u12, u] = 0, and [u23, u] = 0 .

�

For n > 3 the multiplicative structure of the algebra Ah(n) is rather
more involved, even though it admits a simple description as a vector space.
We shall treat this subject in more detail in Chapter 12, as the algebra
Ah(n) plays the same role in the theory of finite type invariants for pure
braids as the algebra A in the theory of the Vassiliev knot invariants.

We end this section with one property of Ah(n) which will be useful in
Chapter 10.

5.11.2. Lemma. Let J,K ⊆ {1, . . . , n} be two non-empty subsets with
J ∩ K = ∅. Then the element

∑
j∈J,k∈K ujk commutes in Ah(n) with any

generator upq with p and q either both in J or both in K.
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Proof. It is clearly sufficient to prove the lemma for the case when K con-
sists of one element, say k, and both p and q are in J . Now, any ujk com-
mutes with upq if j is different from both p and q. But upk + uqk commutes
with upq by the horizontal 4T relation, and this proves the lemma. �

5.11.3. Horizontal diagrams and string link diagrams. Denote by
A(n) be the algebra of closed diagrams for string links. Horizontal diagrams
are examples of string link diagrams and the horizontal 4T relations are a
particular case of the usual 4T relations, and, hence, there is an algebra
homomorphism

Ah(n)→ A(n).

This homomorphism is injective, but this is a surprisingly non-trivial fact;
see [BN8, HM]. We shall give a proof of this in Chapter 12, see page 376.

Exercise.

(a) Prove that the chord diagram consisting of one chord connecting
the two components of the skeleton belongs to the centre of the
algebra A(2).

(b) Prove that any chord diagram consisting of two intersecting chords
belongs to the centre of the algebra A(2).

(c) Prove that Lemma 5.11.2 is also valid for A(n). Namely, show
that the element

∑
j∈J,k∈K ujk commutes in A(n) with any chord

diagram whose chords have either both ends on the strands in J or
on the strands in K.

Exercises

(1) Prove that =
1

4
.

(2) Let a1 = , a2 = , a3 = , a4 = , a5 = .

(a) Find a relation between a1 and a2.
(b) Represent the sum a3 + a4 − 2a5 as a connected closed diagram.
(c) Prove the linear independence of a3 and a4 in C.

(3) Express the primitive elements , and of degrees 3 and

4 as linear combinations of chord diagrams.
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(4) Prove the following identities in the algebra C:

= − 1

2
;

= − +
1

4
;

= − 3

2
+

3

4
− 1

8
;

= − 3

2
+

1

2
+

1

4
− 1

8
;

= − 2 + +
1

2
− 1

2
+ .

(5) Show that the symbols of the coefficients of the Conway polynomial
(Section 2.3) take the following values on the basis primitive diagrams
of degree 3 and 4.

symb(c3)
( )

= 0,

symb(c4)
( )

= 0, symb(c4)
( )

= −2.

(6) Show that the symbols of the coefficients of the Jones polynomial (Sec-
tion 3.6.2) take the following values on the basis primitive diagrams of
degrees 3 and 4.

symb(j3)
( )

= −24,

symb(j4)
( )

= 96, symb(j4)
( )

= 18.

(7) ([ChV]) Let tn ∈ Pn+1 be the closed diagram
shown on the right. Prove the following iden-
tity

tn =
1

2n

n bubbles

tn =

n legs

Deduce that tn ∈ P2
n+1.
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(8) Express tn as a linear combination of chord diagrams. In particular,
show that the intersection graph of every chord diagram that occurs in
this expression is a forest.

(9) ([ChV]) Prove the following identity in the space C of closed diagrams:

=
3

4
− 1

12
− 1

48
.

Hint. Turn the internal pentagon of the left-hand side of the identity
in the 3-space by 180◦ about the vertical axis. The result will represent
the same graph with the cyclic orders at all five vertices of the pentagon
changed to the opposite:

= (−1)5 = − + (terms with at most 4 legs) .

The last equality follows from the STU relations which allow us to rear-
range the legs modulo diagrams with a smaller number of legs. To finish
the solution, the reader must figure out the terms in the parentheses.

(10) Prove the linear independence of the three elements in the right-hand
side of the last equality, using Lie algebra invariants defined in Chapter
6.

(11) ([ChV]) Prove that the primitive space in the algebra C is generated by
the closed diagrams whose internal graph is a tree.

(12) ([ChV]) With each permutation σ of n objects associate a closed di-
agram Pσ acting as in Section 5.7.2 by the permutation on the lower
legs of a closed diagram P(12...n) = tn from problem 7. Here are some
examples:

P(2143) = ; P(4123) = ; P(4132) = .

Prove that the diagrams Pσ span the vector space Pn+1.

(13) ([ChV]) Prove that
• Pnn = Pn for even n, and Pn−1

n = Pn for odd n;
• for even n the quotient space Pnn/Pn−1

n has dimension one and
generated by the wheel wn.

(14) Let b1 = , b2 = , b3 = , b4 = .

Which of these diagrams are zero in B, that is, vanish modulo AS and
IHX relations?
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(15) Prove that the algebra generated by all open diagrams modulo the AS
and the modified IHX equation I = aH−bX, where a and b are arbitrary
complex numbers, is isomorphic (equal) to B if and only if a = b = 1, in
all other cases it is a free polynomial algebra on one generator.

(16) • Indicate an explicit form of the isomorphisms Afr ∼= C ∼= B in the
bases given in Section 5.9.
• Compile the multiplication table for Bm×Bn → Bm+n, m+ n 6 4,

for the second product in B (the one pulled back from C along the
isomorphism C ∼= B).

• Find some bases of the spaces Afrn , Cn, Bn for n = 5.

(17) (J. Kneissler). Let Bun be the space of open diagrams of degree n with

u univalent vertices. Denote by ωi1i2...ik the element of Bi1+···+ik
i1+···+ik+k−1

represented by a caterpillar diagram consisting of k body segments with
i1, . . . , ik “legs”, respectively. Using the AS and IHX relations, prove
that ωi1i2...ik is well-defined, that is, for inner segments it makes no
difference on which side of the body they are drawn. For example,

ω0321 = =

(18)∗ (J. Kneissler) Is it true that any caterpillar diagram in the algebra B
can be expressed through caterpillar diagrams with even indices i1, . . . ,
ik? Is it true that the primitive space P(B) (that is, the space spanned
by connected open diagrams) is generated by caterpillar diagrams?

(19) Prove the equivalence of the two claims:
• all chord diagrams are symmetric modulo one- and four-term rela-

tions.

• all chord diagrams are symmetric modulo only four-term relations.

(20) Similarly to symmetric chord diagrams (page 139), we can speak of
anti-symmetric diagrams: an element D of A or Afr is anti-symmetric
if τ(D) = −D. Prove that under the isomorphism χ−1 : Afr → B:
• the image of a symmetric chord diagram is a linear combination of

open diagrams with an even number of legs,
• the image of an anti-symmetric chord diagram in is a linear combi-

nation of open diagrams with an odd number of legs.

(21)∗ (The simplest unsolved case of Conjecture 5.6). Is it true that an open
diagram with 3 univalent vertices is always equal to 0 as an element of
the algebra B?

(22) Prove that the diagram 1

1

2

is equal to 0 in the space B(2).
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(23) Let uij be the diagram in A(3) with one chord connecting the ith and
the jth component of the skeleton. Prove that for any k the combination
uk12 + uk23 + uk13 belongs to the centre of A(3).

(24) Let D3 =
y
∈ C(X,y) and D4 =

y
∈ C(X,y) be tangle

diagrams with exactly three and four y-legs respectively. Show that

C(X|y) 3 χ−1
y (D3) =

y y y

+ 1
2

y y

=
y y y

+ 1
2

y y

=
y y y

− 1
2

y y

;

C(X|y) 3 χ−1
y (D4) =

yyyy

+ 1
2

yyy

+ 1
2
yyy

+ 1
8
y y

+ 5
24

y y

.

Hint. Follow the proof of Theorem 5.7.1 on page 147 and then use
link relations.





Chapter 6

Lie algebra weight
systems

Given a Lie algebra g equipped with a non-degenerate invariant bilinear
form, one can construct a weight system with values in the centre of the
universal enveloping algebra U(g). In a similar fashion one can define a
map from the space B into the ad-invariant part of the symmetric algebra
S(g). These constructions are due to M. Kontsevich [Kon1], with basic ideas
already appearing in [Pen]. If, in addition, we have a finite dimensional re-
presentation of the Lie algebra then taking the trace of the corresponding
operator we get a numeric weight system. It turns out that these weight
systems are the symbols of the quantum group invariants (Section 3.6.6).
The construction of weight systems based on representations first appeared
in D. Bar-Natan’s paper [BN0]. The reader is invited to consult the Ap-
pendix for basics on Lie algebras and their universal envelopes.

A useful tool to compute Lie algebra weight systems is Bar-Natan’s
computer program called main.c and available online at [BN5]. The tables
in this chapter were partially obtained using that program.

There is another construction of weight systems, also invented by Kont-
sevich: the weight systems coming from marked surfaces. As proved in
[BN1], this construction gives the same set of weight systems as the classi-
cal Lie algebras, and we shall not speak about it here.

6.1. Lie algebra weight systems for the algebra Afr

6.1.1. Universal Lie algebra weight systems. Kontsevich’s construc-
tion proceeds as follows. Let g be a metrized Lie algebra over R or C, that

169
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is, a Lie algebra with an ad-invariant non-degenerate bilinear form 〈·, ·〉 (see
A.1.1). Choose a basis e1, . . . , em of g and let e∗1, . . . , e

∗
m be the dual basis

with respect to the form 〈·, ·〉.
Given a chord diagram D with n chords, we first choose a base point on

its Wilson loop, away from the chords of D. This gives a linear order on the
endpoints of the chords, increasing in the positive direction of the Wilson
loop. Assign to each chord a an index, that is, an integer-valued variable, ia.
The values of ia will range from 1 to m, the dimension of the Lie algebra.
Mark the first endpoint of the chord with the symbol eia and the second
endpoint with e∗ia .

Now, write the product of all the eia and all the e∗ia , in the order in
which they appear on the Wilson loop of D, and take the sum of the mn

elements of the universal enveloping algebra U(g) obtained by substituting
all possible values of the indices ia into this product. Denote by ϕg(D) the
resulting element of U(g).

For example,

ϕg

( )
=

m∑
i=1

eie
∗
i =: c

is the quadratic Casimir element associated with the chosen invariant form.
The next theorem shows, in particular, that the Casimir element does not
depend on the choice of the basis in g. Another example: if

D =
*k

j
i ,

then

ϕg(D) =

m∑
i=1

m∑
j=1

m∑
k=1

eiejeke
∗
i e
∗
ke
∗
j .

6.1.2. Theorem. The above construction has the following properties:

(1) the element ϕg(D) does not depend on the choice of the base point
on the diagram;

(2) it does not depend on the choice of the basis {ei} of the Lie algebra;

(3) it belongs to the ad-invariant subspace

U(g)g = {x ∈ U(g) | xy = yx for all y ∈ g}

of the universal enveloping algebra U(g) (that is, to the centre
ZU(g));

(4) the function D 7→ ϕg(D) satisfies 4-term relations;

(5) the resulting map ϕg : Afr → ZU(g) is a homomorphism of alge-
bras.



6.1. Lie algebra weight systems for the algebra Afr 171

Proof. (1) Introducing a base point means that a circular chord diagram
is replaced by a linear chord diagram (see Section 4.7). Modulo 4-term
relations, this map is an isomorphism, and, hence, the assertion follows
from (4).

(2) An exercise in linear algebra: take two different bases {ei} and {fj}
of g and reduce the expression for ϕg(D) in one basis to the expression in
another using the transition matrix between the two bases. Technically,
it is enough to do this exercise only for m = dim g = 2, since the group
of transition matrices GL(m) is generated by linear transformations in the
2-dimensional coordinate planes.

This also follows from the invariant construction of this weight system
in Section 6.1.3 which does not use any basis.

(3) It is enough to prove that ϕg(D) commutes with any basis element
er. By property (2), we can choose the basis to be orthonormal with respect
to the ad-invariant form 〈·, ·〉, so that e∗i = ei for all i. Now, the commutator
of er and ϕg(D) can be expanded into a sum of 2n expressions, similar to
ϕg(D), only with one of the ei replaced by its commutator with er. Due
to the antisymmetry of the structure constants cijk (Lemma A.1.3 on page
463), these expressions cancel in pairs that correspond to the ends of each
chord.

To take a concrete example,

[er,
∑
ij

eiejeiej ]

=
∑
ij

[er, ei]ejeiej +
∑
ij

ei[er, ej ]eiej +
∑
ij

eiej [er, ei]ej +
∑
ij

eiejei[er, ej ]

=
∑
ijk

crikekejeiej +
∑
ijk

crjkeiekeiej +
∑
ijk

crikeiejekej +
∑
ijk

crjkeiejeiek

=
∑
ijk

crikekejeiej +
∑
ijk

crjkeiekeiej +
∑
ijk

crkiekejeiej +
∑
ijk

crkjeiekeiej .

Here the first and the second sums cancel with the third and the fourth
sums, respectively.

(4) We still assume that the basis {ei} is 〈·, ·〉–orthonormal. Then one
of the pairwise differences of the chord diagrams that constitute the 4 term
relation in equation (4.1.3) (page 98) is sent by ϕg to∑

cijk . . . ei . . . ej . . . ek . . . ,

while the other goes to∑
cijk . . . ej . . . ek . . . ei · · · =

∑
ckij . . . ei . . . ej . . . ek . . .
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By the cyclic symmetry of the structure constants cijk in an orthonormal
basis (again see Lemma A.1.3), these two expressions are equal.

(5) Using property (1), we can place the base point in the product
diagram D1 · D2 between D1 and D2. Then the identity ϕg(D1 · D2) =
ϕg(D1)ϕg(D2) becomes evident. �

Remark. If D is a chord diagram with n chords, then

ϕg(D) = cn + {terms of degree less than 2n in U(g)},

where c is the quadratic Casimir element as on page 170. Indeed, we can
permute the endpoints of chords on the circle without changing the highest
term of ϕg(D) since all the additional summands arising as commutators
have degrees smaller than 2n. Therefore, the highest degree term of ϕg(D)
does not depend on D. Finally, if D is a diagram with n isolated chords,
that is, the nth power of the diagram with one chord, then ϕg(D) = cn.

The centre ZU(g) of the universal enveloping algebra is precisely the
g-invariant subspace U(g)g ⊂ U(g), where the action of g on U(g) consists
in taking the commutator. According to the Harish-Chandra theorem (see
[Hum]), for a semi-simple Lie algebra g, the centre ZU(g) is isomorphic
to the algebra of polynomials in certain variables c1 = c, c2, . . . , cr, where
r = rank(g).

6.1.3. The construction of Lie algebra weight systems can be described
without referring to any particular basis.

A based chord diagram D with n chords gives a permutation σD of the
set {1, 2, . . . , 2n} as follows. As we have noted before, the endpoints of
chords of a based chord diagram are ordered, so we can order the chords of
D by their first endpoint. Let us number the chords from 1 to n, and their
endpoints from 1 to 2n, in the increasing order. Then, for 1 6 i 6 n the
permutation σD sends 2i−1 to the (number of the) first endpoint of the ith
chord, and 2i to the second endpoint of the same chord. In the terminology
of Section 5.7.2, page 148, the permutation σD sends the diagram with n
consecutive isolated chords into D. For instance:

1

32 4 5 61

32 4 5 6

D

σD σD = (132546)

The bilinear form 〈·, ·〉 on g is a tensor in g∗ ⊗ g∗. The algebra g is
metrized, so we can identify g∗ with g and think of 〈·, ·〉 as an element of
g⊗ g. The permutation σD acts on g⊗2n by interchanging the factors. The
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value of the universal Lie algebra weight system ϕg(D) is then the image of
the nth tensor power 〈·, ·〉⊗n under the map

g⊗2n σD−→ g⊗2n → U(g),

where the second map is the natural projection of the tensor algebra on g
to its universal enveloping algebra.

6.1.4. The universal sl2 weight system. Consider the Lie algebra sl2 of
2×2 matrices with zero trace. It is a three-dimensional Lie algebra spanned
by the matrices

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
with the commutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H .

We shall use the symmetric bilinear form 〈x, y〉 = Tr(xy):

〈H,H〉 = 2, 〈H,E〉 = 0, 〈H,F 〉 = 0, 〈E,E〉 = 0, 〈E,F 〉 = 1, 〈F, F 〉 = 0.

One can easily check that it is ad-invariant and non-degenerate. The corre-
sponding dual basis is

H∗ =
1

2
H, E∗ = F, F ∗ = E,

and, hence, the Casimir element is c = 1
2HH + EF + FE.

The centre ZU(sl2) is isomorphic to the algebra of polynomials in a
single variable c. The value ϕsl2(D) is thus a polynomial in c. In this
section, following [ChV], we explain a combinatorial procedure to compute
this polynomial for a given chord diagram D.

The algebra sl2 is simple, hence, any invariant form is equal to λ〈·, ·〉 for
some constant λ. The corresponding Casimir element cλ, as an element of
the universal enveloping algebra, is related to c = c1 by the formula cλ = c

λ .
Therefore, the weight system

ϕsl2(D) = cn + an−1c
n−1 + an−2c

n−2 + · · ·+ a2c
2 + a1c

and the weight system corresponding to λ〈·, ·〉

ϕsl2,λ(D) = cnλ + an−1,λc
n−1
λ + an−2,λc

n−2
λ + · · ·+ a2,λc

2
λ + a1,λcλ

are related by the formula ϕsl2,λ(D) = 1
λn · ϕsl2(D)|

c=λ·cλ
, or

an−1 = λan−1,λ, an−2 = λ2an−2,λ, . . . a2 = λn−2a2,λ, a1 = λn−1a1,λ.
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Theorem. Let ϕsl2 be the weight system associated with sl2, with the in-
variant form 〈·, ·〉. Take a chord diagram D and choose a chord a of D.
Then

ϕsl2(D) = (c− 2k)ϕsl2(Da) + 2
∑

16i<j6k

(
ϕsl2(Di,j)− ϕsl2(D×i,j)

)
,

where:
• k is the number of chords that intersect the chord a;
• Da is the chord diagram obtained from D by deleting the chord a;
• Di,j and D×i,j are the chord diagrams obtained from Da in the following
way. Draw the diagram D so that the chord a is vertical. Consider an
arbitrary pair of chords ai and aj different from a and such that each of
them intersects a. Denote by pi and pj the endpoints of ai and aj that lie
to the left of a and by p∗i , p

∗
j the endpoints of ai and aj that lie to the right.

There are three ways to connect the four points pi, p
∗
i , pj , p

∗
j by two chords.

Da is the diagram where these two chords are (pi, p
∗
i ), (pj , p

∗
j ), the diagram

Di,j has the chords (pi, pj), (p
∗
i , p
∗
j ) and D×i,j has the chords (pi, p

∗
j ), (p

∗
i , pj).

All other chords are the same in all the diagrams:

D =
pi

pj

p∗i

p∗j

ai

aj

a ; Da =
pi

pj

p∗i

p∗j
; Di,j =

pi

pj

p∗i

p∗j
; D×i,j =

pi

pj

p∗i

p∗j
.

The theorem allows one to compute ϕsl2(D) recursively, as each of the
three diagrams Da, Di,j and D×i,j has one chord less than D.

Examples.

(1) ϕsl2

( )
= (c− 2)c. In this case, k = 1 and the sum in the right

hand side is zero, since there are no pairs (i, j).

(2)

ϕsl2

( )
= (c− 4)ϕsl2

( )
+ 2ϕsl2

( )
− 2ϕsl2

( )
= (c− 4)c2 + 2c2 − 2(c− 2)c = (c− 2)2c.

(3)

ϕsl2

( )
= (c− 4)ϕsl2

( )
+ 2ϕsl2

( )
− 2ϕsl2

( )
= (c− 4)(c− 2)c+ 2c2 − 2c2 = (c− 4)(c− 2)c.
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Remark. Choosing the invariant form λ〈·, ·〉, we obtain a modified relation

ϕsl2,λ(D) =
(
cλ −

2k

λ

)
ϕsl2,λ(Da) +

2

λ

∑
16i<j6k

(
ϕsl2,λ(Di,j)− ϕsl2,λ(D×i,j)

)
.

If k = 1, the second summand vanishes. In particular, for the Killing form
(λ = 4) and k = 1 we have

ϕg(D) = (c− 1/2)ϕg(Da).

It is interesting that the last formula is valid for any simple Lie algebra g
with the Killing form and any chord a which intersects precisely one other
chord. See Exercise 8 for a generalization of this fact in the case g = sl2.

Exercise. Deduce the theorem of this section from the following lemma by
induction (in case of difficulty see the proof in [ChV]).

Lemma (6-term relations for the universal sl2 weight system). Let ϕsl2 be
the weight system associated with sl2 and the invariant form 〈·, ·〉. Then

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
;

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
;

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
;

ϕsl2

(
− − +

)
= 2ϕsl2

(
−

)
.

These relations also provide a recursive way to compute ϕsl2(D) as the
two chord diagrams on the right-hand side have one chord less than the
diagrams on the left-hand side, and the last three diagrams on the left-hand
side are simpler than the first one since they have less intersections between
their chords. See Section 6.2.3 for a proof of this lemma.

6.1.5. Weight systems associated with representations. The con-
struction of Bar-Natan, in comparison with that of Kontsevich, uses one
additional ingredient: a representation of a Lie algebra (see A.1.1).

A linear representation T : g→ End(V ) extends to a homomorphism of
associative algebras U(T ) : U(g) → End(V ). The composition of following
three maps (with the last map being the trace)

A ϕg→ U(g)
U(T )→ End(V )

Tr→ C
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by definition gives the weight system associated with the representation

ϕTg = Tr ◦U(T ) ◦ ϕg

(by abuse of notation, we shall sometimes write ϕVg instead of ϕTg ).

The map ϕTg is not in general multiplicative (the reader may check this
for the diagram Θ and its square in the standard representation of the alge-
bra glN , see Section 6.1.7). However, if the representation T is irreducible,
then, according to the Schur Lemma [Hum], every element of the centre
ZU(g) is represented (via U(T )) by a scalar operator µ · idV . Therefore, its

trace equals ϕTg (D) = µdimV . The number µ =
ϕTg (D)

dimV , as a function of the
chord diagram D, is a weight system which is clearly multiplicative.

6.1.6. Algebra sl2 with the standard representation. Consider the
standard 2-dimensional representation St of sl2. Then the Casimir element
is represented by the matrix

c =
1

2
HH + EF + FE =

(
3/2 0
0 3/2

)
=

3

2
· id2.

In degree 3 we have the following weight systems

D

ϕsl2(D) c3 c3 c2(c− 2) c(c− 2)2 c(c− 2)(c− 4)

ϕStsl2(D) 27/4 27/4 −9/4 3/4 15/4

ϕ′Stsl2
(D) 0 0 0 12 24

Here the last row represents the unframed weight system obtained from
ϕStsl2 by the deframing procedure from Section 4.5.6. A comparison of this
computation with the one from Section 3.6.2 shows that on these elements
symb(j3) = −1

2ϕ
′St
sl2

. See Exercises 13 and 14 at the end of the chapter for
more information about these weight systems.

6.1.7. Algebra glN with the standard representation. Consider the
Lie algebra g = glN of all N ×N matrices and its standard representation
St. Fix the trace of the product of matrices as the preferred ad-invariant
form: 〈x, y〉 = Tr(xy).

The algebra glN is linearly spanned by matrices eij with 1 on the intersec-

tion of ith row with jth column and zero elsewhere. We have 〈eij , ekl〉 = δliδ
k
j ,

where δ is the Kronecker delta. Therefore, the duality between glN and
(glN )∗ defined by 〈·, ·〉 is given by the formula e∗ij = eji.

Exercise. Prove that the form 〈· , ·〉 is equal 2(N−1) times the Killing form.
(Hint: It is enough to compute the trace of just one operator (ade11)2.)
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One can verify that [eij , ekl] 6= 0 only in the following cases:

• [eij , ejk] = eik, if i 6= k,

• [eij , eki] = −ekj , if j 6= k,

• [eij , eji] = eii − ejj , if i 6= j,

This gives the following formula for the Lie bracket as a tensor in gl∗N ⊗
gl∗N ⊗ glN :

[· , ·] =

N∑
i,j,k=1

(e∗ij ⊗ e∗jk ⊗ eik − e∗ij ⊗ e∗ki ⊗ ekj).

When transferred to glN ⊗ glN ⊗ glN via the above mentioned duality, this
tensor takes the form

J =

N∑
i,j,k=1

(eji ⊗ ekj ⊗ eik − eji ⊗ eik ⊗ ekj).

This formula will be used later in Section 6.2.

D. Bar-Natan found the following elegant way of computing the weight
system ϕStglN .

Theorem ([BN0]). Denote by s(D) the number of connected components
of the curve obtained by doubling all chords of a chord diagram D.

.

Then ϕStglN (D) = N s(D) .

Remark. By definition, the number s(D) equals c−1, where c is the number
of boundary components of the surface described in Section 4.8.6.

Example. For D = we obtain the picture . Here s(D) = 2,

hence ϕStglN (D) = N2.

Proof. We take the matrices eij as the chosen basis of glN . The values of
the index variables associated with the chords are pairs (ij); each chord has
one end labeled by a matrix eij and the other end by eji = e∗ij .

Now, consider the curve γ obtained by doubling the chords. Given a
chord whose ends are labeled by eij and eji, we can label the two copies of
this chord in γ, as well as the four pieces of the Wilson loop adjacent to its
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endpoints, by the indices i and j as follows:

eij eji
i

j

i

j

i

j
.

To compute the value of the weight system ϕStglN (D), we must sum up the

products . . . eijekl . . . . Since we are dealing with the standard representation
of glN , the product should be understood as genuine matrix multiplication,
rather than the formal product in the universal enveloping algebra. Since
eij · ekl = δjk · eil, we get a non-zero summand only if j = k. This means
that the labels of the chords must follow the pattern:

eij ejl i j j l

i j j l

.

Therefore, all the labels on one and the same connected component of the
curve γ are equal. If we take the whole product of matrices along the circle,
we get the operator eii whose trace is 1. Now, we must sum up the traces
of all such operators over all possible labelings. The number of labelings is
equal to the number of values the indices i, j, l, . . . take on the connected
components of the curve γ. Each component gives exactly N possibilities,
so the total number is N s(D). �

Proposition. The weight system ϕStglN (D) depends only on the intersection

graph of D.

Proof. The value ϕStglN (D) is defined by the number s(D) = c− 1 (where c

has the meaning given on page 122), therefore it is a function of the genus of
the diagram D. In Section 4.8.6 we proved that the genus depends only on
the intersection graph. See also Exercise 9 at the end of this Chapter. �

6.1.8. Algebra slN with the standard representation. Here we de-
scribe the weight system ϕStslN (D) associated with the Lie algebra slN , its
standard representation by N ×N matrices with zero trace and the invari-
ant form 〈x, y〉 = Tr(xy), Following Section 3.6.2, introduce a state σ for
a chord diagram D as an arbitrary function on the set [D] of chords of D
with values in the set {1,− 1

N }. With each state σ we associate an immersed
plane curve obtained from D by resolutions of all its chords according to s:

c , if σ(c) = 1; c , if σ(c) = − 1

N
.

Let |σ| denote the number of components of the curve obtained in this way.
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Theorem. ϕStslN (D) =
∑
σ

(∏
c

σ(c)
)
N |σ| , where the product is taken over

all n chords of D, and the sum is taken over all 2n states for D.

One can prove this theorem in the same way as we did for glN by picking
an appropriate basis for the vector space slN and then working with the
product of matrices (see Exercise 12). However, we prefer to prove it in
a different way, via several reformulations, using the algebra structure of
weight systems which is dual to the coalgebra structure of chord diagrams
(Section 4.5).

Reformulation 1. For a subset J ⊆ [D] (the empty set and the whole
[D] are allowed) of chords of D, denote by |J | the cardinality of J , and let
n− |J | = |J | stand for the number of chords in J = [D] \ J . Write DJ for
the chord diagram formed by the chords from J , and denote by s(DJ) the
number of connected components of the curve obtained by doubling all the
chords of DJ . Then

ϕStslN (D) =
∑
J⊆[D]

(−1)n−|J |N s(DJ )−n+|J |.

This assertion is obviously equivalent to the Theorem: for every state s,
the subset J consists of all chords c with value s(c) = 1.

Consider the weight system e−
I1
N from Section 4.5.6, which is equal to

the constant 1
(−N)n on any chord diagram with n chords.

Reformulation 2.

ϕStslN = e−
I1
N · ϕStglN .

Indeed, by the definition of the product of weight systems (Section 4.5),(
e−

I1
N · ϕStglN

)
(D) =

(
e−

I1
N ⊗ ϕStglN

)
(δ(D)) ,

where δ(D) is the coproduct (Section 4.4) of the chord diagram D. It splits
D into two complementary parts DJ and DJ : δ(D) =

∑
J⊆[D]

DJ ⊗ DJ .

The weight system ϕStglN (DJ) gives N s(DJ ). The remaining part is given

by e−
I1
N (DJ).

Reformulation 3.

ϕStglN = e
I1
N · ϕStslN .
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The equivalence of this and the foregoing formulae follows from the fact

that the weight systems eI1/N and e−I1/N are inverse to each other as ele-
ments of the completed algebra of weight systems.

Proof. We shall prove the theorem in Reformulation 3. The Lie algebra glN
is a direct sum of slN and the trivial one-dimensional Lie algebra generated
by the identity matrix idN . Its dual is id∗N = 1

N idN . We can choose a basis
for the vector space glN consisting of the basis for slN and the unit matrix
idN . To every chord we must assign either a pair of dual basis elements of
slN , or the pair (idN ,

1
N idN ), which is equivalent to forgetting the chord and

multiplying the obtained diagram by 1
N . This means precisely that we are

applying the weight system eI1/N to the chord subdiagram DJ formed by

the forgotten chords, and the weight system ϕStslN to the chord subdiagram
DJ formed by the remaining chords. �

6.1.9. Algebra soN with the standard representation. In this case a
state σ for D is a function on the set [D] of chords of D with values in the
set {1/2,−1/2}. The rule for the resolution of a chord according to its state
is

c , if σ(c) =
1

2
; c , if σ(c) = −1

2
.

As before, |σ| denotes the number of components of the obtained curve.

Theorem ([BN0, BN1]). For the invariant form 〈x, y〉 = Tr(xy),

ϕStsoN (D) =
∑
σ

(∏
c

σ(c)
)
N |σ| ,

where the product is taken over all n chords of D, and the sum is taken over
all 2n states for D.

We leave the proof of this theorem to the reader as an exercise (number
15 at the end of the chapter, to be precise). Alternatively, one can view a
chord diagram as a closed Jacobi diagram and use the theorem on page 191.
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Here is the table of values of ϕStsoN (D) for some basis elements of Afr of
small degree:

D

ϕStsoN (D) 1
2

(N2−N) 1
4

(N2−N) 1
8

(N2−N) 1
8
N(−N2+4N−3)

D

ϕStsoN (D) 1
16
N(3N2−8N+5) 1

16
(2N3−5N2+3N) 1

16
N(N3−4N2+6N−3)

Exercises 16–20 contain additional information about this weight system.

6.1.10. Algebra sp2N with the standard representation. It turns out
that

ϕStsp2N (D) = (−1)n+1ϕso−2N (D),

where the last notation means the formal substitution of −2N instead of
the variable N in the polynomial ϕsoN (D), and n, as usual, is the degree
of D. This implies that the weight system ϕStsp2N does not provide any new

knot invariant. Some details about it can be found in [BN0, BN1].

It would be interesting to find a combinatorial description of the weight
systems for the exceptional simple Lie algebras E6, E7, E8, F4, G2.

6.2. Lie algebra weight systems for the algebra C

Since every closed diagram is a linear combination of chord diagrams, the
weight system ϕg can be treated as a function on C with values in U(g). It
turns out that ϕg can be evaluated on any closed diagram directly, often in
a more convenient way.

The STU relation (Section 5.1.2), which defines the algebra C, gives us
a hint how to do it. Namely, if we assign elements ei, ej to the endpoints of
chords of the T- and U- diagrams from the STU relations,

ei ej

e∗i e∗j

T
−

ej ei

e∗i e∗j

U
=

[ei,ej ]

e∗i e∗j

S
,

then it is natural to assign the commutator [ei, ej ] to the trivalent vertex on
the Wilson loop of the S-diagram.

Strictly speaking, [ei, ej ] may not be a basis vector. A diagram with
an endpoint marked by a linear combination of the basis vectors should
be understood as a corresponding linear combination of diagrams marked
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by basis vectors. For this reason it will be more convenient to use the
description of ϕg given in 6.1.3, which does not depend of the choice of a
basis. The formal construction goes as follows.

Let C ∈ Cn be a closed Jacobi diagram with a base point and V =
{v1, . . . , vm} be the set of its external vertices ordered according to the
orientation of the Wilson loop. We shall construct a tensor Tg(C) ∈ g⊗m

whose ith tensor factor g corresponds to the element vi of the set V . The
weight system ϕg evaluated on C is the image of Tg(C) in U(g) under the
natural projection.

In order to construct the tensor Tg(C), consider the internal graph of C
and cut all the edges connecting the trivalent vertices of C. This splits the
internal graph of C into a union of elementary pieces of two types: chords
and tripods, the latter consisting of one trivalent vertex and three legs with
a fixed cyclic order. Here is an example:

.

To each leg of a chord or of a tripod we associate a copy of g, marked
by this leg. Just as in 6.1.3, to each chord we can assign the tensor 〈· , ·〉
considered as an element of g⊗g, where the copies of g in the tensor product
are labeled by the ends of the chord. Similarly, to a tripod we associate the
tensor −J ∈ g⊗g⊗g defined as follows. The Lie bracket [· , ·] is an element of
g∗⊗g∗⊗g. Identifying g∗ and g by means of 〈· , ·〉 we see that it corresponds
to a tensor in g⊗g⊗g which we denote by J . The order on the three copies
of g should be consistent with the cyclic order of legs in the tripod.

Now, take the tensor product T̃g(C) of all the tensors assigned to the
elementary pieces of the internal graph of C, with an arbitrary order of the
factors. It is an element of the vector space g⊗(m+2k) which has one copy of
g for each external vertex vi of C and two copies of g for each of the k edges
where the internal graph of C has been cut. The form 〈· , ·〉, considered now
as a bilinear map of g⊗ g to the ground field, induces a map

g⊗(m+2k) → g⊗m

by contracting a tensor over all pairs of coinciding labels. Apply this con-

traction to T̃g(C); the result is a tensor in g⊗m where the factors are indexed
by the vi, but possibly in a wrong order. Finally, re-arranging the factors in
g⊗m according to the cyclic order of vertices on the Wilson loop, we obtain
the tensor Tg(C) we were looking for.

Remark. Note that we associate the tensor −J , not J , to each tripod. This
is not a matter of choice, but a reflection of our convention for the default
cyclic order at the 3-valent vertices and the signs in the STU relation.
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Remark. The construction of the tensor Tg(C) consists of two steps: taking
the product of the tensors that correspond to the elementary pieces of the
internal graph of C, and contracting these tensors on the coinciding labels.
These two steps can be performed “locally”. For instance, let

C = .

The internal graph of C consists of 3 tripods. To obtain Tg(C) we first take
the tensor product of two copies of −J and contract the resulting tensor
on the coinciding labels, thus obtaining a tensor in g⊗4. Graphically, this
could be illustrated by glueing together the two tripods into a graph with
four univalent vertices. Next, this graph is glued to the remaining tripod;
this means taking product of the corresponding tensors and contracting it
on a pair of labels:

g
g

g
g g

g

g g

g

g
g

g g

g

g g

g g

g g

g

The result is, of course, the same as if we took first the tensor product of
all 3 copies of −J and then performed all the contractions.

The only choice involved in the construction of Tg(C) is the order of the
factors in the tensor product g⊗3 that corresponds to a tripod. The following
exercise shows that this order does not matter as long as it is consistent with
the cyclic order of legs:

6.2.1. Exercise. Use the properties of [· , ·] and 〈· , ·〉 to prove that the ten-
sor J is skew-symmetric under the permutations of the three tensor factors
(for the solution see Lemma A.1.3 on page 463; note that we have already
used this fact earlier in the proof of Theorem 6.1.2).

This shows that Tg(C) is well-defined. Moreover, it produces a weight
system: the definition of the commutator in the universal enveloping algebra
implies that the element ϕg(C), which is the image of Tg(C) in U(g), satisfies
the STU relation. If C is a chord diagram, this definition of ϕg(C) coincides
with the definition given in 6.1.3.

Since the STU relation implies both the AS and the IHX relations, ϕg

satisfies these relations too. Moreover, it is easy to see that the AS and the
IHX relations are already satisfied for the function C 7→ Tg(C):

• the AS relation follows from the fact that the tensor J changes sign
under odd permutations of the three factors in g⊗ g⊗ g.
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• the IHX relation is a corollary of the Jacobi identity in g.

6.2.2. Let us show how the construction of Tg works on an example and
prove the following lemma that relates the tensor corresponding to a “bub-
ble” with the quadratic Casimir tensor.

Lemma. For the Killing form 〈· , ·〉K as the preferred invariant form, the
tensor Tg does not change if a bubble is inserted into an internal edge of a
diagram:

Tg( ) = Tg( ) .

Proof. The fragment of a closed diagram on the right hand side is obtained
from two tripods by contracting the corresponding two copies of the tensor
−J . This gives the following tensor written in an orthonormal basis {ei}:

ei

ek ek′

ej ej′

el ∑
i,l

∑
k,j,k′,j′

cijkclk′j′〈ek, ek′〉K〈ej , ej′〉Kei ⊗ el

=
∑
i,l

(∑
j,k

cijkclkj

)
ei ⊗ el ,

where cijk are the structure constants: J =
d∑

i,j,k=1

cijkei ⊗ ej ⊗ ek.

To compute the coefficient
(∑
j,k

cijkclkj

)
let us find the value of the Killing

form
〈ei, el〉K = Tr(adeiadel) .

Since
adei(es) =

∑
k

ciskek and adel(et) =
∑
k

cltkek ,

the (j, r)-entry of the matrix of the product adeiadel will be
∑
k

cikjclrk.

Therefore,

〈ei, el〉K =
∑
k,j

cikjcljk =
∑
j,k

cijkclkj .

Orthonormality of the basis {ei} implies that∑
j,k

cijkclkj = δi,l.

This means that the tensor on the left-hand side in the statement of the
lemma equals ∑

i

ei ⊗ ei ,
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which is the quadratic Casimir tensor from the right-hand side. �

Remark. If in the above lemma we use the bilinear form µ〈·, ·〉K instead
of the Killing form, the rule changes as follows:

Tg( ) =
1

µ
Tg( ).

6.2.3. The universal sl2 weight system for C.

Theorem ([ChV]). For the invariant form 〈x, y〉 = Tr(xy) the tensor Tsl2
satisfies the following skein relation:

Tsl2( ) = 2Tsl2( )− 2Tsl2( ) .

If the chosen invariant form is λ〈·, ·〉, then the coefficient 2 in this equa-
tion is replaced by 2

λ .

Proof. For the algebra sl2 the Casimir tensor and the Lie bracket tensor
are

C =
1

2
H ⊗H + E ⊗ F + F ⊗ E ;

−J = −H⊗F⊗E+F⊗H⊗E+H⊗E⊗F−E⊗H⊗F−F⊗E⊗H+E⊗F⊗H.
Then the tensor corresponding to the elementary pieces on the right-hand
side is equal to (we enumerate the vertices according to the tensor factors)

Tsl2

( 1

2

4

3

)
= −H⊗F⊗H⊗E+H⊗F⊗E⊗H+F⊗H⊗H⊗E−F⊗H⊗E⊗H

−H⊗E⊗H⊗F+H⊗E⊗F⊗H+E⊗H⊗H⊗F−E⊗H⊗F⊗H
+2F⊗E⊗F⊗E−2F⊗E⊗E⊗F−2E⊗F⊗F⊗E+2E⊗F⊗E⊗F

= 2
(

1
4
H⊗H⊗H⊗H+ 1

2
H⊗E⊗F⊗H+ 1

2
H⊗F⊗E⊗H+ 1

2
E⊗H⊗H⊗F

+E⊗E⊗F⊗F+E⊗F⊗E⊗F+ 1
2
F⊗H⊗H⊗E+F⊗E⊗F⊗E+F⊗F⊗E⊗E

)
−2
(

1
4
H⊗H⊗H⊗H+ 1

2
H⊗E⊗H⊗F+ 1

2
H⊗F⊗H⊗E+ 1

2
E⊗H⊗F⊗H

+E⊗E⊗F⊗F+E⊗F⊗F⊗E+ 1
2
F⊗H⊗E⊗H+F⊗E⊗E⊗F+F⊗F⊗E⊗E

)
= 2Tsl2

( 1

2

4

3

)
− 2Tsl2

( 1

2

4

3

)
.

�

Remark. While transforming a closed diagram according to this theorem
a closed circle different from the Wilson loop may occur (see the example
below). In this situation the circle should be replaced by the numeric fac-
tor 3 = dim sl2, which is the trace of the identity operator in the adjoint
representation of sl2.
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Remark. In the context of weight systems this relation was first noted in
[ChV]; afterwards, it was rediscovered several times. In a more general
context of graphical notation for tensors it appeared already in R. Pen-
rose’s paper [Pen]. In a certain sense, this relation goes back to Euler and
Lagrange because it is an exact counterpart of the classical “bac− cab” rule,

a× (b× c) = b(a · c)− c(a · b),

for the ordinary cross product of vectors in 3-space.

Example.

ϕsl2

( )
= 2ϕsl2

( )
− 2ϕsl2

( )
= 4ϕsl2

( )
−4ϕsl2

( )
− 4ϕsl2

( )
+ 4ϕsl2

( )
= 12c2 − 4c2 − 4c2 + 4c2 = 8c2 .

The next corollary implies the 6-term relation from Section 6.1.4.

Corollary.

ϕsl2

( )
= 2ϕsl2

(
−

)
; ϕsl2

( )
= 2ϕsl2

(
−

)
;

ϕsl2

( )
= 2ϕsl2

(
−

)
; ϕsl2

( )
= 2ϕsl2

(
−

)
.

6.2.4. The universal glN weight system for C. Let us apply the general
procedure of the beginning of this section to the Lie algebra glN equipped
with the bilinear form 〈eij , ekl〉 = δilδjk so that e∗ij = eji. The corresponding
universal weight system ϕglN can be calculated with the help of a graphical
calculus similar to that invented by R. Penrose in [Pen]. (A modification of
this calculus is used in [BN1] to treat the standard representation of glN ,
see Section 6.2.5 below).

According to the general procedure, in order to construct TglN we first
erase the Wilson loop of the diagram, then place a copy of the tensor

−J =
N∑

i,j,k=1

(eij ⊗ ejk ⊗ eki − eij ⊗ eki ⊗ ejk)

into each trivalent vertex and, finally, make contractions along all edges. Any
interval component (that is, chord) of the internal graph of the diagram is
replaced simply by a copy of the bilinear form understood as the element∑
eij ⊗ eji. The cyclic order of the endpoints is remembered. The universal

weight system ϕglN is the image of TglN in the universal enveloping algebra
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U(glN ); in order to obtain it we simply omit the symbol of the tensor product
in the above expressions:

−J =
N∑

i,j,k=1

(eijejkeki − eijekiejk) .

Now, the formula for −J can be represented graphically as

−J =
i

i

j

k

k

j
− k

k j

i

i
j

<

One should imagine a basis element eij attached to any pair of adjacent
endpoints marked i and j, with i on the incoming line and j on the outgoing
line. More generally, one may encode tensors by pictures as follows: specify
k pairs of points, each point connected to some other point with an arrow.
Each of the k arrows carries an index and each of the k pairs carries the
generator eij , where i is the index of the incoming arrow and j is the index
of the outgoing arrow. The tensor that corresponds to such a picture is
obtained by fixing an order on the set of pairs (for closed Jacobi diagrams
the order is defined below), taking the product of the n elements eij that
correspond to the pairs, in the corresponding order, and then taking the
sum over all the possible values of all the indices.

Choose one of the two pictures as above for each trivalent vertex (this
may be thought of as “resolving” the trivalent vertex in a positive or negative
way). The contraction along the edges means that we must glue together
the small pictures. This is done in the following manner. For any edge
connecting two trivalent vertices, the contraction along it always gives zero
except for the case when we have 〈eij , eji〉 = 1. Graphically, this means that
we must connect the endpoints of the tripods and write one and the same
letter on each connected component of the resulting curve. Note that the
orientations on the small pieces of curves (that come from the cyclic order
of the edges at every vertex) always agree for any set of resolutions, so that
we get a set of oriented curves. We shall, further, add small intervals at
each univalent vertex (now doubled) thus obtaining one connected oriented
curve for every connected component of the initial diagram. To convert this
curve into an element of the universal enveloping algebra, we write, at every
univalent vertex, the element eij where the subscripts i and j are written
in the order induced by the orientation on the curve. Then we take the
product of all such elements in the order coming from the cyclic order of
univalent vertices on the Wilson loop. As we know, the result is invariant
under cyclic permutations of the factors. Finally, we sum up these results
over all resolutions of the triple points.
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Example. Let us compute the value of ϕ on the diagram

C =

We have:

C 7−→
++
−

+
_ − _

+
+

_ _

7−→
j

j l

l
i

k k

i

−
j

j

i

k l
i

l

k

−

i

j

k

k

l

ji
l

+

i

j

k
i

k

j

l

l

7−→
N∑

i,j,k,l=1

(eijejkekleli − eijejkeliekl − eijekiejlelk + eijekielkejl) .

As we know, ϕglN of any diagram always belongs to the centre of U(glN ),
so it can be written as a polynomial in N commuting variables c1, . . . , cN
(the generalized Casimir elements, see, for instance, [Zh]):

cs =

N∑
i1,...,ij=1

ei1i2ei2i3 . . . eis−1iseisi1 .

In the graphical notation

cs =

︸ ︷︷ ︸
s pairs

.

In particular,

c1 = =
N∑
i=1

eii

is the unit matrix (note that it is not the unit of the algebra U(g)),

c2 = =

N∑
i,j=1

eijeji

is the quadratic Casimir element. It is convenient to extend the list c1, . . . , cN
of our variables by setting c0 = N ; the graphical notation for c0 will be
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a circle. This is especially useful when speaking about the direct limit
gl∞ = limN→∞ glN .

For instance, the first term in the expansion of ϕ(C) in the previous
example is nothing but c4; the whole alternating sum, after some transfor-
mations, turns out to be equal to c2

0(c2 − c2
1). Expressing the values of ϕ

on closed Jacobi diagrams via the generators ci is, in general, a non-trivial
operation; a much clearer description exists for the analog of the map ϕ
defined for the algebra of open diagrams, see Section 6.3.4.

Remark. If the resulting picture contains curves which have no univalent
vertices, then, in the corresponding element of U(glN ) every such curve is
replaced by the numerical factor N . This happens because every such curve
leads to a sum where one of the indices does not appear among the subscripts
of the product ei1i1 . . . eisjs , but the summation over this index still must
be done. The proof is similar to that of the general lemma in Section 6.2.2,
where a different bilinear form is used. For the diagram C given in that
section as an example, we obtain

ϕ(C) =
N∑

i,j,k=1

eijeji = N
N∑

i,j=1

eijeji.

6.2.5. Algebra glN with the standard representation. The procedure
for the closed diagrams repeats what we did with chord diagrams in Sec-
tion 6.1.7. For a closed diagram C ∈ Cn with the set IV of t internal trivalent
vertices we double each internal edge and count the number of components
of the resulting curve as before. The only problem here is how to connect
the lines near an internal vertex. This can be decided by means of a state
function s : IV → {−1, 1}.

Theorem ([BN1]). Let ϕStglN be the weight system associated with the stan-

dard representation of the Lie algebra glN with the invariant form 〈x, y〉 =
Tr(xy).

For a closed diagram C and a state s : IV → {−1, 1} double every
internal edge and connect the lines together in a neighbourhood of a vertex
v ∈ IV according to the state s:

v
, if s(v) = 1;

v
, if s(v) = −1;

and replace each external vertex as follows .
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Let |s| denote the number of components of the curve obtained in this
way. Then

ϕStglN (C) =
∑
s

(∏
v

s(v)
)
N |s| ,

where the product is taken over all t internal vertices of C, and the sum is
taken over all the 2t states for C.

A straightforward way to prove this theorem is to use the STU relation
and the theorem of Section 6.1.7. We leave the details to the reader.

Example. Let us compute the value ϕStglN

( )
. There are four resolu-

tions of the triple points:

∏
s(v)=1

|s|=4

∏
s(v)=−1

|s|=2

∏
s(v)=−1

|s|=2

∏
s(v)=1

|s|=2

Therefore, ϕStglN

( )
= N4 −N2.

Other properties of the weight system ϕStglN are formulated in exercises
28 – 32.

6.2.6. Algebra soN with standard representation. Here, a state for
C ∈ Cn will be a function s : IE → {−1, 1} on the set IE of internal edges
(those which are not on the Wilson loop). The value of a state indicates the
way of doubling the corresponding edge:

e , if s(e) = 1; e , if s(e) = −1.

In the neighbourhoods of trivalent and external vertices we connect the lines
in the standard fashion as before. For example, if the values of the state on
three edges e1, e2, e3 meeting at a vertex v are s(e1) = −1, s(e2) = 1, and
s(e3) = −1, then we resolve it as follows:

v
e1

e2

e3 .

As before, |s| denotes the number of components of the curve obtained in
this way.
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Theorem ([BN1]). Let ϕStsoN be the weight system associated with the stan-
dard representation of the Lie algebra soN with the invariant form 〈x, y〉 =
Tr(xy). Then

ϕStsoN (C) = 2− degC
∑
s

(∏
e

s(e)
)
N |s| ,

where the product is taken over all internal edges of C and the sum is taken
over all the states s : IE(C)→ {1,−1}.

Proof. First let us note that degC = #(IE)−#(IV ), where #(IV ) and
#(IE) denote the numbers of internal vertices and edges respectively. We
prove the Theorem by induction on #(IV ).

If #(IV ) = 0 then C is a chord diagram. In this case the Theorem
coincides with the Theorem of Section 6.1.9, page 180.

If #(IV ) 6= 0 we can use the STU relation to decrease the number of
internal vertices. Thus it remains to prove that the formula for ϕStsoN satisfies
the STU relation. For this we split the 8 resolutions of the S diagram
corresponding to the various values of s on the three edges of S into two
groups which can be deformed to the corresponding resolutions of the T and
the U diagrams:

S

(
− − +

)

−

(
− − +

)
;

T − − + ;

U − − + .

�

Example.

ϕStsoN

( )
=

1

4
(N3 − 3N2 + 2N) =

1

4
N(N − 1)(N − 2) .
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6.2.7. A small table of values of ϕ. The following table shows the values
of ϕ on the generators of the algebra C of degrees 6 4:

t1 = , t2 = , t3 = , t4 = , w4 =

for the simple Lie algebras A1, A2, A3, A4, B2, B3, C3, D4, G2, computed
by A. Kaishev [Kai].

t1 t2 t3 t4 w4

A1 c 2c 4c 8c 8c2

A2 c 3c 9c 27c 9c2 + 9c

A3 c 4c 16c 64c e

A4 c 5c 25c 125c e

B2 c 3/2c 9/4c 27/8c d

B3 c 5/2c 25/4c 125/8c d

C3 c 4c 16c 64c d

D4 c 3c 9c 27c 3c2 + 15c

G2 c 2c 4c 8c 5/2c2 + 11/3c

For the algebras Ai, the bilinear form Tr(xy) is used, for the series B,
C and D — the form 1

2 Tr(xy), while for the algebra G2, the form 1
6 Tr(xy)

(for A, B, C, D, the tautological representation is used, for G2, the stan-
dard inclusion into B3). Here c is the quadratic Casimir element of the
corresponding enveloping algebra U(g), while d and e are the following (by
degree) independent generators of ZU(g). Note that in this table all d’s and
e’s have degree 4 and are defined modulo elements of smaller degrees. The
exact expressions for d and e can be found in [Kai].

A look at the table shows that the mapping ϕ for almost all simple Lie
algebras has a non-trivial kernel. In fact, ϕg(t1t3 − t22) = 0.

6.2.8. Exercise. Find a metrized Lie algebra g such that the mapping ϕg

has a non-trivial cokernel.

6.3. Lie algebra weight systems for the algebra B

The construction of the Lie algebra weight systems for open Jacobi diagrams
is very similar to the procedure for closed diagrams. For a metrized Lie
algebra g we construct a weight system ρg : B → S(g), defined on the space
of open diagrams B and taking values in the symmetric algebra of the vector
space g (in fact, even in its g-invariant subspace S(g)g).

Let O ∈ B be an open diagram. Choose an order on the set of its
univalent vertices; then O can be treated as the internal graph of some
closed diagram CO. Following the recipe of Section 6.2, construct a tensor
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Tg(CO) ∈ g⊗m, where m is the number of legs of the diagram O. Now we
define ρg(O) as the image of the tensor Tg(CO) in Sm(g) under the natural
projection of the tensor algebra on g onto S(g).

The choice of an order on the legs of O is of no importance. Indeed,
it amounts to choosing an order on the tensor factors in the space g⊗m to
which the tensor Tg(CO) belongs. Since the algebra S(g) is commutative,
the image of Tg(CO) is always the same.

6.3.1. The formal PBW theorem. The relation between the Lie alge-
bra weight systems for the open diagrams and for the closed diagrams is
expressed by the following theorem.

Theorem. For any metrized Lie algebra g the diagram

B ρg−−−−→ S(g)

χ

y yβg
C −−−−→

ϕg

U(g)

commutes.

Proof. The assertion becomes evident as soon as one recalls the definitions
of all the ingredients of the diagram: the isomorphism χ between the alge-
bras C and B described in section 5.7, the weight systems ϕg and ρg, defined
in sections 6.1 and 6.3, and βg, the Poincaré–Birkhoff–Witt isomorphism
taking an element x1x2...xn into the arithmetic mean of xi1xi2 ...xin over
all permutations (i1, i2, ..., in) of the set {1, 2, . . . , n}. Its restriction to the
invariant subspace S(g)g is a vector space isomorphism with the centre of
U(g). �

6.3.2. Example. Let g be the Lie algebra so3. It has a basis {a, b, c}
which is orthonormal with respect to the Killing form 〈·, ·〉K and with the
commutators [a, b] = c, [b, c] = a, [c, a] = b. As a metrized Lie algebra so3 is
isomorphic to the Euclidean 3-space with the cross product as a Lie bracket.
The tensor that we put in every trivalent vertex in this case is

−J = −a ∧ b ∧ c
= −a⊗ b⊗ c− b⊗ c⊗ a− c⊗ a⊗ b+ b⊗ a⊗ c+ c⊗ b⊗ a+ a⊗ c⊗ b.

Since the basis is orthonormal, the only way to get a non-zero element
in the process of contraction along the edges is to choose the same basis
element on either end of each edge. On the other hand, the formula for J
shows that in every vertex we must choose a summand with different basis
elements corresponding to the 3 edges. This leads to the following algorithm
for computing the tensor Tso3(O) for a given diagram O: one must list all
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3-colourings of the edges of the graph by 3 colours a, b, c such that the 3
colours at every vertex are always different, then sum up the tensor products
of the elements written on the legs, each taken with the sign (−1)s, where s
is the number of negative vertices (that is, vertices where the colours, read
counterclockwise, come in the negative order a, c, b).

For example, consider the diagram (the Pont-Neuf diagram with param-
eters (1, 3, 0) in the terminology of O. Dasbach [Da3], see also page 435
below):

O =

It has 18 edge 3-colourings, which can be obtained from the following three
by permutations of (a, b, c):

*

c

c

b

c

a

b

c
a

b

c

a

b

a

c

*

c

a

a

c

a

b

c
a

b

c

a

b

c

b

*

b

a
c

c

a

b

c
a

b

c

a

b

b

c

In these pictures, negative vertices are marked by small empty circles. Writ-
ing the tensors in the counterclockwise order starting from the marked point,
we get:

2(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b+ c⊗ c⊗ c⊗ c)
+a⊗ b⊗ b⊗ a+ a⊗ c⊗ c⊗ a+ b⊗ a⊗ a⊗ b
+b⊗ c⊗ c⊗ b+ c⊗ a⊗ a⊗ c+ c⊗ b⊗ b⊗ c
+a⊗ a⊗ b⊗ b+ a⊗ a⊗ c⊗ c+ b⊗ b⊗ a⊗ a
+b⊗ b⊗ c⊗ c+ c⊗ c⊗ a⊗ a+ c⊗ c⊗ b⊗ b.

Projecting onto the symmetric algebra, we get:

ρso3(O) = 2(a2 + b2 + c2)2.

This example shows that the weight system defined by the Lie algebra
so3, is closely related to the 4-colour theorem, see [BN3] for details.
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6.3.3. Example. For an arbitrary metrized Lie algebra g let us calculate
ρg(wn) where wn ∈ B is the wheel with n spokes:

wn :=
n spokes

Note that n must be even; otherwise by Lemma 5.6.3 wn = 0.

Dividing the wheel into n tripods, contracting the resulting tensors of
rank 3 and projecting the result to S(g) we get

cj1i1j2 . . . cjninj1 · ei1 . . . ein = Tr (ad ei1 . . . ad ein) · ei1 . . . ein ,

where {ei} is an orthonormal basis for g, and the summation by repeating
indices is implied.

6.3.4. The universal glN weight system for the algebra B. The glN
weight system for the algebra B of open Jacobi diagrams is computed in
exactly the same way as for the closed diagrams (see Section 6.2.4), only now
we treat the variables eij as commuting elements of S(glN ). For instance, the

diagram B = obtained by stripping the Wilson loop off the diagram

C of Section 6.2.4, goes to 0 under the mapping ρglN , because all the four
summands in the corresponding alternating sum become now equal.

In general, as we know that the invariant part S(glN )glN of the algebra
S(glN ) is isomorphic to the centre of U(glN ), it is also freely generated by
the Casimir elements c1, . . . , cN . Here is an example, where we, as above,
write c0 instead of N :

Example.

ρglN

( )
= − − +

= − − + = 2(c0c2 − c2
1).

6.3.5. Invariants of string links and the algebra of necklaces. Recall
that the algebra A(n) of closed diagrams for string links on n strands (see
5.11.3). has a B-analog, denoted by B(n) and called the algebra of coloured
open Jacobi diagrams, see page 157. In this section we shall describe the
weight system generalizing ρglN : B → S(glN ) to a mapping

ρ
(n)
glN

: B(n)→ S(glN )⊗n.

A diagram in B(n) is an open Jacobi diagram with univalent vertices
marked by numbers between 1 and n (or coloured by n colours). The vector
space spanned by these elements modulo AS and IHX relations is what we
call B(n). The colour-respecting averaging map χn : B(n) → A(n), defined
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similarly to the simplest case χ : B → A (see Section 5.7), is a linear
isomorphism (see [BN4]).

Given a coloured open Jacobi diagram, we consider positive and negative
resolutions of all its t trivalent vertices and get the alternating sum of 2t

pictures as on page 188 with the univalent legs marked additionally by the
colours. For each resolution, mark the connected components by different
variables i, j etc, then add small arcs near the univalent vertices and obtain
a set of oriented closed curves. To each small arc (which was a univalent
vertex before) there corresponds a pair of indices, say i and j. Write eij in
the tensor factor of S(glN )⊗n whose number is the number of that univalent
vertex, and where i and j go in the order consistent with the orientation on
the curve. Then take the sum over all subscripts from 1 to N .

To make this explanation clearer, let us illustrate it on a concrete exam-
ple. Take the coloured diagram

D = 1

3

1

2

2

with the blackboard (counterclockwise) cyclic order of edges meeting at
trivalent vertices. Resolving all the trivalent vertices positively, we get the
following collection of directed curves:

i

j
j
k
k
i

l

m m

lp

which, according to the above procedure, after filling in the gaps at univalent
vertices, transcribes as the following element of S(glN )⊗3:

N∑
i,j,k,l,m,p=1

elmejk⊗emleij⊗eki = N ·
N∑

i,j,k=1

ejk⊗eij⊗eki ·
N∑

l,m=1

elm⊗eml⊗1.

We see that the whole expression is the product of three elements corre-
sponding to the three connected components of the closed curve. In partic-
ular, the factor N corresponds to the circle without univalent vertices and
can be represented alternatively as multiplication by

∑N
p=1 1⊗ 1⊗ 1.

As the choice of notations for the summation indices does not matter,
we can write the obtained formula schematically as the product of three
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necklaces:

· 2 1 ·
3

2

1

An n-coloured necklace is an arrangement of several beads, numbered
between 1 to n, along an oriented circle (the default orientation is coun-
terclockwise). A necklace can be uniquely denoted by a letter, say x, with
a subscript consisting of the sequence of bead numbers chosen to be lexi-
cographically smallest among all its cyclic shifts. Any n-coloured necklace
corresponds to an element of the tensor power of S(glN ) according to the
following rule. Mark each arc of the circle between two beads by a different
integer variable i, j, etc. To each bead we assign the element eij , where i is
the variable written on the incoming arc and j, on the outgoing arc. Then
compose the tensor product of all these eij ’s putting each into the tensor
factor of S(glN )⊗n whose number is the number of the bead under consid-
eration, and take the sum of these expressions where each integer variable
runs from 1 to N .

Examples (for n = 3):

x123 :=
2

3

1 7→
N∑

i,j,k=1

eij ⊗ ejk ⊗ eki

x132 :=
3

2

1 7→
N∑

i,j,k=1

ejk ⊗ eij ⊗ eki

x12123 :=
1

2

1

3
2

7→
N∑

i,j,k,l.m=1

eijekl ⊗ ejkelm ⊗ emi

(All the circles are oriented counterclockwise.)

We will call such elements of S(glN )⊗n the necklace elements. By a theo-
rem of S. Donkin [Don], the glN -invariant subspace of the algebra S(glN )⊗n

is generated by the necklace elements, and the algebraic relations between
them may exist for small values of N , but disappear as N → ∞, so that
the invariant subspace of the direct limit S(gl∞)⊗n is isomorphic to the free
polynomial algebra generated by n-coloured necklaces.

Summing up, we can formulate the algorithm of finding the image of any
given diagram in S(gl∞)⊗n immediately in terms of necklaces. For a given
coloured B-diagram, take the alternating sum over all resolutions of the triple
points. For each resolution convert the obtained picture into a collection of
oriented closed curves, put the numbers (1,. . . ,n) of the univalent vertices
on the places where they were before closing and thus get a product of
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necklaces. For instance:

1 2

2

1

3

7−→ xx12x132.

Exercise. Find a direct proof, without appealing to Lie algebras, that the
described mapping ρ into the necklace algebra provides a weight system,
that is, satisfies the AS and IHX relations. Hint: see [Da3], where this is
done for the case n = 1.

One application of (unicoloured) necklace weight system is the lower
bound on the dimensions of the spaces Vn for knots, see Section 14.5.4.

Another application — of the 2-coloured necklace weight system — is
the proof that there exists a degree 7 Vassiliev invariant that is capable to
detect the change of orientation in two-component string links, see [DK].
This fact follows from the computation

ρ
(

2

1

1
2

2

21

)
= x(x1121222 − x1122212) + 3x2(x112212 − x112122)

which implies that the depicted diagram is non-zero in B(2).

6.4. Lie superalgebra weight systems

The construction of Lie algebra weight systems works for algebraic structures
more general than Lie algebras [Vai3, FKV, HV], namely for the analogs
of metrized Lie algebras in categories more general than the category of
vector spaces. An example of such a category is that of super vector spaces;
Lie algebras in this category are called Lie superalgebras. The definition and
basic properties of Lie superalgebras are discussed in Appendix A.1.8; we
refer the reader to [Kac1, Kac2] for more details.

6.4.1. Weight systems for Lie superalgebras. Recall the construction
of the Lie algebra weight systems for the closed diagrams as described in
Sections 6.1.3 and 6.2. It consists of several steps. First, the internal graph
of the diagram is cut into tripods and chords. Then to each tripod we
assign a tensor in g⊗3 coming from the Lie bracket, and to each chord –
a tensor in g⊗2 coming from the invariant form. Next, we take the tensor

product T̃g of all these tensors and perform contractions on the pairs of
indices corresponding to the points where the diagram was cut. Finally, we
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re-arrange the factors in the tensor product and this gives the tensor Tg
whose image in U(g) is the weight system we were after.

If g is a metrized Lie superalgebra, the very same construction works
with only one modification: re-arranging the factors in the final step should
be done with certain care. Instead of simply permuting the factors in the
tensor product one should use a certain representation of the symmetric
group Sm on m letters that exists on the mth tensor power of any super
vector space.

This representation is defined as follows. Let

S : g⊗ g→ g⊗ g

be the linear map that sends u ⊗ v to (−1)p(u)p(v)v ⊗ u, where u, v are
homogeneous (that is, purely even or purely odd) elements of g and p(x)
stands for the parity of x. The map S is an involution; in other words, it
defines a representation of the symmetric group S2 on the vector space g⊗2.
More generally, the representation of Sm on g⊗m is defined by sending the
transposition (i, i+ 1) to id⊗i−1 ⊗ S ⊗ idm−i−1. If the odd part of g is zero,
this representation simply permutes the factors in the tensor product.

We shall use the same notation ϕg for the resulting weight system.

Example. Let g be a metrized Lie superalgebra with the orthonormal bases
e1, . . . , em and f1, . . . , fr for the even and the odd parts, respectively. Denote

by D the diagram . Then

ϕg(D) =

m∑
i=1

m∑
j=1

eiejeiej −
m∑
i=1

r∑
j=1

(eifjeifj + fjeifjei) +

r∑
i=1

r∑
j=1

fifjfifj .

Exercise. Write down the expression for ϕg

( )
. This exercise is re-

solved in [FKV] (Example 2 in Section 1.3) though with a different base
point and a not necessarily orthonormal basis.

Exercise. Show that ϕg is a well-defined weight system with values in the
(super) centre of U(g). In particular, prove that ϕg satisfies the 4T relation.

6.4.2. The gl(1|1) weight system. The simplest non-trivial example of a
Lie superalgebra is the space gl(1|1) of endomorphisms of the super vector
space of dimension 1 + 1. The universal weight system for gl(1|1) can be
calculated with the help of a recursive formula similar to the formula for sl2
(see Section 6.1.4).

The (super) centre of U(gl(1|1)) is a polynomial algebra in two gener-
ators c and h, where c is the quadratic Casimir element and h ∈ gl(1|1) is
the identity matrix.
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Theorem ([FKV]). Let ϕgl(1|1) be the weight system associated with gl(1|1)
with the invariant form 〈x, y〉 = sTr(xy).

Take a chord diagram D and choose a chord a of D. Then

ϕgl(1|1)(D) = cϕgl(1|1)(Da) + h2
∑

16i6k

ϕgl(1|1)(Di)

−h2
∑

16i<j6k

(
ϕgl(1|1)(D

+−
i,j ) + ϕgl(1|1)(D

−+
i,j )− ϕgl(1|1)(D

l
i,j)− ϕgl(1|1)(D

r
i,j)
)
,

where:
• k is the number of chords that intersect the chord a;
• Da is the chord diagram obtained from D by deleting the chord a;
• for each chord ai that intersects a, the diagram Di is obtained from D by
deleting the chords a and ai;
• D+−

i,j , D−+
i,j , Dl

i,j and Dr
i,j are the chord diagrams obtained from Da in the

following way. Draw the diagram D so that the chord a is vertical. Consider
an arbitrary pair of chords ai and aj different from a and such that each of
them intersects a. Denote by pi and pj the endpoints of ai and aj that lie
to the left of a and by p∗i , p

∗
j the endpoints of ai and aj that lie to the right.

Delete from D the chords a, ai and aj and insert one new chord: (pi, p
∗
j ) for

D+−
i,j , (pj , p

∗
i ) for D−+

i,j , (pi, pj) for Dl
i,j and (p∗i , p

∗
j ) for Dr

i,j:

D =
pi

pj

p∗i

p∗j

ai

aj

a ; Da =
pi

pj

p∗i

p∗j
; Di =

pi

pj

p∗i

p∗j
;

D+−
i,j = ; D−+

i,j = ; Dl
i,j = ; Dr

i,j = .

In particular, ϕgl(1|1)(D) is a polynomial in c and h2.

We refer to [FKV] for the proof.

6.4.3. Invariants not coming from Lie algebras. Lie algebra weight
systems produce infinite series of examples of Vassiliev invariants. J. Kneissler
has shown in [Kn0] that all invariants up to order 12 come from Lie alge-
bras. However, in general, this is not the case. P. Vogel [Vo1] has used
the family of Lie superalgebras D(1, 2, α) depending on the parameter α; he
showed that these algebras produce invariants which cannot be expressed as
combinations of invariants coming from Lie algebras. (J. Lieberum [Lieb]
gave an example of an order 17 closed diagram detected by D(1, 2, α) but not
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by semisimple Lie algebra weight systems.) Moreover, there exist Vassiliev
invariants that do no come from Lie (super) algebras [Vo1, Lieb].

The main technical tool for proving these results is the algebra Λ con-
structed by Vogel. In the next chapter we shall consider the algebra of
3-graphs closely related to Vogel’s algebra Λ.

Exercises

(1) Let (g1, 〈·, ·〉1) and (g2, 〈·, ·〉2) be two metrized Lie algebras. Then their
direct sum g1⊕g2 is also a metrized Lie algebra with respect to the form
〈·, ·〉1 ⊕ 〈·, ·〉2. Prove that ϕg1⊕g2 = ϕg1 · ϕg2 .

The general aim of exercises (2)-(8) is to compare the behaviour of ϕsl2 (D) with that

of the chromatic polynomial of a graph. In these exercises we use the form 〈x, y〉 = 2 Tr(xy)

as the invariant form.

(2) (S. Chmutov, S.Lando [ChL]). Prove that ϕsl2(D) depends only on the
intersection graph Γ(D) of the chord diagram D.

(3) Prove that the polynomial ϕsl2(D) has alternating coefficients.

(4) Show that for any chord diagram D the polynomial ϕsl2(D) is divisible
by c.

(5)∗Prove that the sequence of coefficients of the polynomial ϕsl2(D) is uni-
modal (that is, its absolute values form a sequence with only one maxi-
mum).

(6) Let D be a chord diagram with n chords for which Γ(D) is a tree. Prove
that ϕsl2(D) = c(c− 1)n−1.

(7) Prove that the highest three terms of the polynomial ϕsl2(D) are

ϕsl2(D) = cn − e · cn−1 + (e(e− 1)/2− t+ 2q) · cn−2 − . . . ,

where e is the number of intersections of chords of D; t and q are the
numbers of triangles and quadrangles of D respectively. A triangle is a
subset of three chords of D with all pairwise intersections. A quadrangle
of D is an unordered subset of four chords a1, a2, a3, a4 which form a
cycle of length four. This means that, after a suitable relabeling, a1

intersects a2 and a4, a2 intersects a3 and a1, a3 intersects a4 and a2,
a4 intersects a1 and a3 and any other intersections are allowed. For
example,

e
( )

= 6, t
( )

= 4, q
( )

= 1 .
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(8) (A. Vaintrob [Vai2]). Define vertex multiplication of chord diagrams as
follows:

* ∨ * := = .

Of course, the result depends of the choice of vertices where multiplica-
tion is performed. Prove that for any choice

ϕsl2(D1 ∨D2) =
ϕsl2(D1) · ϕsl2(D2)

c
.

(9) (S. Lando, B. Mellor [Mel2]). Let s(D) be
the number of connected components of the
curve obtained by doubling all chords of a
chord diagram D, and N be a formal variable. Consider the adjacency
matrix M of the intersection graph of D as a matrix over the field of
two elements F2 = {0, 1}. Prove that s(D)− 1 is equal to the corank of
M (over F2), and deduce from this that ϕStglN (D) depends only on the

intersection graph Γ(D).
Essentially the same weight system was independently rediscovered

by B. Bollobás and O. Riordan [BR2] who used it to produce a poly-
nomial invariant of ribbon graphs generalizing the Tutte polynomial
[BR3].

(10) (D. Bar-Natan, S. Garoufalidis [BNG]) Let cn be the coefficient of tn in
the Conway polynomial and D a chord diagram of degree n. Prove that
symb(cn)(D) is equal, modulo 2, to the determinant of the adjacency
matrix for the intersection graph Γ(D).

(11) Let Dn be the chord diagram with n chords
whose intersection graph is a circle, n > 3.
Prove that ϕStglN (Dn) = ϕStglN (Dn−2). De-

duce that ϕStglN (Dn) = N2 for odd n and

ϕStglN (Dn) = N3 for even n.

Dn =

n chords

(12) Work out a proof of the theorem from Section 6.1.8 about the slN
weight system with standard representation, similar to the one given
in Section 6.1.7. Use the basis of the vector space slN consisting of the
matrices eij for i 6= j and the matrices eii − ei+1,i+1.

(13) Prove that ϕ′StslN
≡ ϕ′StglN

.

Hint. ϕ′StslN
= e−

N2−1
N

I1 · ϕStslN = e−NI1 · ϕStglN = ϕ′StglN
.
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(14) Compare the symbol of the coefficient jn of the Jones polynomial (Sec-
tion 3.6.2) with the weight system coming form sl2, and prove that

symb(jn) =
(−1)n

2
ϕ′Stsl2 .

Hint. Compare the formula for ϕ′Stsl2
from the previous problem and

the formula for symb(jn) from Section 3.6.2, and prove that

(|s| − 1) ≡ #{chords c such that s(c) = 1} mod 2 .

(15) Work out a proof of the theorem from Section 6.1.9 about the soN
weight system in standard representation. Use the basis of soN formed
by matrices eij−eji for i < j. (In case of difficulty consult [BN0, BN1].)

(16) Work out a proof, similar to the proof of the Proposition from Sec-
tion 6.1.7, that ϕStsoN (D) depends only on the intersection graph of D.

(17) (B. Mellor [Mel2]). For any subset J ⊆ [D], let MJ denote the marked
adjacency matrix of the intersection graph of D over the filed F2 , that
is the adjacency matrix M with each diagonal element corresponding to
an element of J replaced by 1. Prove that

ϕStsoN (D) =
Nn+1

2n

∑
J⊆[D]

(−1)|J |N−rank(MJ ) ,

where the rank is computed as the rank of a matrix over F2. This gives
another proof of the fact that ϕStsoN (D) depends only on the intersection
graph Γ(D).

(18) Show that N = 0 and N = 1 are roots of the polynomial ϕStsoN (D) for
any chord diagram D.

(19) Let D be a chord diagram with n chords, such that the intersection
graph Γ(D) is a tree. Show that ϕStsoN (D) = 1

2nN(N − 1).

(20) Let Dn be the chord diagram from Exercise 11. Prove that
(a) ϕStsoN (Dn) = 1

2

(
ϕStsoN (Dn−2)− ϕStsoN (Dn−1)

)
;

(b) ϕStsoN (Dn) = 1
(−2)nN(N − 1)(an−1N − an), where the recurrent se-

quence an is defined by a0 = 0, a1 = 1, an = an−1 + 2an−2.

(21) Compute the values of ϕsl2 on the closed diagrams and ,

and show that these two diagrams are linearly independent.
Answer: 16c2, 64c.

(22) Let tn ∈ Cn+1 be a closed diagram with n legs
as shown in the figure.
Show that ϕsl2(tn) = 2nc.

tn :=

n legs
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(23) Let wn ∈ Cn be a wheel with n spokes.
Show that
ϕsl2(w2) = 4c, ϕsl2(w3) = 4c, and

wn :=

n spokes

ϕsl2(wn) = 2c · ϕsl2(wn−2) + 2ϕsl2(wn−1)− 2n−1c.

(24) Let w2n ∈ B2n be a wheel with 2n spokes and
( )n ∈ Bn be the nth power of the element

in the algebra B.
Show that for the tensor Tsl2 as in 6.2.3 the

w2n :=

2n spokes

( )n :=
}
n segments

following equality holds: Tsl2(w2n) = 2n+1 Tsl2(( )n). Therefore,
ρsl2(w2n) = 2n+1 ρsl2(( )n).

(25) Let p ∈ Pkn ⊂ Cn be a primitive element of degree n > 1 with at most
k external vertices. Show that ϕsl2(p) is a polynomial in c of degree
6 k/2.

Hint. Use the theorem from 6.2.3 and the calculation of ϕsl2(t3) from
Exercise (22).

(26) Let ϕ′sl2 be the deframing of the weight system ϕsl2 according to the
procedure of Section 4.5.6. Show that for any element D ∈ An, the
value ϕ′sl2(D) is a polynomial in c of degree 6 [n/2].

Hint. Use the previous exercise, Exercise 8 of Chapter 4, and Sec-
tion 5.5.2.

(27) Denote by Vk the (k + 1)-dimensional irreducible representation of sl2
(see Appendix A.1.4). Let ϕ′Vksl2

be the corresponding weight system.

Show that for any element D ∈ An of degree n, ϕ′Vksl2
(D)/k is a polyno-

mial in k of degree at most n.

Hint. The Casimir number (see page 465) in this case is k2−1
2 .

(28) Let D ∈ Cn (n > 1) be a connected closed diagram. Prove that
ϕStglN (D) = ϕStslN (D).

Hint. For the Lie algebra glN the tensor J ∈ gl⊗3
N lies in the subspace

sl⊗3
N .

(29) Consider a closed diagram D ∈ Cn and a glN -state s for it (see page 189).
Construct a surface Σs(D) by attaching a disk to the Wilson loop, re-
placing each edge by a narrow band and glueing the bands together at
the trivalent vertices with a twist if s = −1, and without a twist if s = 1.
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Here is an example:

D =
+

−
−

+ =: Σs(D) .

(a) Show that the surface Σs(D) is orientable.
(b) Compute the Euler characteristic of Σs(D) in terms of D, and show

that it depends only on the degree n of D.
(c) Prove that ϕStglN (D) is an odd polynomial for even n, and it is an

even polynomial for odd n.

(30) Show that N = 0, N = −1, and N = 1 are roots of the polynomial
ϕStglN (D) for any closed diagram D ∈ Cn (n > 1).

(31) Compute ϕStglN (tn), where tn is the closed diagram from Exercise 22.

Answer. For n > 1, ϕStglN (tn) = Nn(N2 − 1).

(32) For the closed diagram wn as in Exercise 23, prove that ϕStglN (wn) =

N2(Nn−1 − 1) for odd n, and ϕStglN (wn) = N(Nn +N2 − 2) for even n.

Hint. Prove the recurrent formula ϕStglN (wn) = Nn−1(N2 − 1) +

ϕStglN (wn−2) for n > 3.

(33) Extend the definition of the weight system symb(cn) of the coefficient
cn of the Conway polynomial to Cn, and prove that

symb(cn)(D) =
∑
s

(∏
v

s(v)
)
δ1,|s| ,

where the states s are precisely the same as in the theorem of Sec-
tion 6.2.5 for the weight system ϕStglN . In other words, prove that symb(cn)(D)

is equal to the coefficient of N in the polynomial ϕStglN (D). In particular,

show that symb(cn)(wn) = −2 for even n, and symb(cn)(wn) = 0 for
odd n.

(34) (a) Let D ∈ C be a closed diagram with at least one internal trivalent
vertex. Prove that N = 2 is a root of the polynomial ϕStsoN (D).

(b) Deduce that ϕStso2(D) = 0 for any primitive closed diagram D.
Hint. Consider the eight states that differ only on three edges meet-

ing at an internal vertex (see page 191). Show that the sum over these

eight states,
∑

sign(s)2|s|, equals zero.

(35) Prove that ϕStsoN (tn) = N−2
2 ϕStsoN (tn−1) for n > 1, where tn is as in

Exercise 22.
In particular, ϕStsoN (tn) = (N−2)n

2n+1 N(N − 1).

(36) Using some bases in C2 and B2, find the matrix of the isomorphism χ,
then calculate (express as polynomials in the standard generators) the
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values on the basis elements of the weight systems ϕg and ρg for the
Lie algebras g = so3 and g = glN and check the validity of the relation
β ◦ ρ = ϕ ◦ χ in this particular case.

(37) Prove that the map ρ : B → S(g) is well-defined.



Chapter 7

Algebra of 3-graphs

The algebra of 3-graphs Γ, introduced in [DKC], is related to the diagram
algebras C and B. The difference between 3-graphs and closed diagrams
is that 3-graphs do not have a distinguished cycle (Wilson loop); neither
they have univalent vertices, which distinguishes them from open diagrams.
Strictly speaking, there are two different algebra structures on the space
of 3-graphs, given by the edge (Section 7.2) and the vertex (Section 7.3)
products. The space Γ is closely related to the Vassiliev invariants in several
ways:

• The vector space Γ is isomorphic to the subspace P2 of the prim-
itive space P ⊂ C spanned by the connected diagrams with 2 legs
(Section 7.4.2).

• The algebra Γ acts on the primitive space P in two ways, via the
edge, and via the vertex products (see Sections 7.4.1 and 7.4.3).
These actions behave nicely with respect to Lie algebra weight sys-
tems (see Chapter 6); as a consequence, the algebra Γ is as good a
tool for the proof of existence of non-Lie-algebraic weight systems
as the algebra Λ in Vogel’s original approach (Section 7.6.5).

• The vector space Γ describes the combinatorics of finite type invari-
ants of integral homology 3-spheres in much the same way as the
space of chord diagrams describes the combinatorics of Vassiliev
knot invariants. This topic, however, lies outside of the scope of
our book and we refer an interested reader to [Oht1].

Unlike C and B, the algebra Γ does not have any natural coproduct.

207
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7.1. The space of 3-graphs

A 3-graph is a connected 3-valent graph with a fixed cyclic order of half-
edges at each vertex. Two 3-graphs are isomorphic if there exists a graph
isomorphism between them that preserves the cyclic order of half-edges at
every vertex. The degree, or order of a 3-graph is defined as half the number
of its vertices. It will be convenient to consider a circle with no vertices on it
as a 3-graph of degree 0 (even though, strictly speaking, it is not a graph).

Example. Up to an isomorphism, there are three different 3-graphs of de-
gree 1:

Remark. Graphs with a cyclic order of half-edges at each vertex are often
called ribbon graphs (see [LZ]), as every such graph can be represented as
an orientable surface with boundary obtained by “thickening” the graph:

To be more precise, given a graph, we replace each of its vertices and each
of its edges by an oriented disk (imagine that the disks for the vertices are
“round” while the disks for the edges are “oblong”). The disks are glued
together along segments of their boundary in agreement with the orientation
and with the prescribed cyclic order at each vertex; the cyclic order at a
vertex is taken in the positive direction of the vertex-disk boundary.

Definition. The space of 3-graphs Γn is the Q-vector space spanned by all
3-graphs of degree n modulo the AS and IHX relations (see page 130).

In particular, the space Γ0 is one-dimensional and spanned by the circle.

Exercise.
Check that the 3-graph on the right is equal to zero as an
element of the space Γ3.

7.2. Edge multiplication

In the graded space

Γ = Γ0 ⊕ Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ . . .

there is a natural structure of a commutative algebra.

Let G1 and G2 be two 3-graphs. Choose arbitrarily an edge in G1 and
an edge in G2. Cut each of these two edges in the middle and re-connect
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them in any other way so as to get a 3-graph.

G1

G2

G1

G2

= G1 ·G2 .

The resulting 3-graph is called the edge product of G1 and G2.

The edge product of 3-graphs can be thought of as the connected sum
of G1 and G2 along the chosen edges, or as the result of insertion of one
graph, say G1, into an edge of G2.

Remark. The product of two connected graphs may yield a disconnected
graph, for example:

× =

This happens, however, only in the case when each of the two graphs be-
comes disconnected after cutting the chosen edge, and in this case both
graphs are 0 modulo AS and IHX relations (see Lemma 7.2.6(b) below).

7.2.1. Theorem. The edge product of 3-graphs, viewed as an element of
the space Γ, is well-defined.

Note that, as soon as this assertion is proved, one immediately sees that
the edge product is commutative.

The claim that the product is well-defined consists of two parts. Firstly,
we need to prove that modulo the AS and the IHX relations the product
does not depend on the choice of the two edges of G1 and G2 which are
cut and re-connected. Secondly, we must show that the product does not
depend on the way they are re-connected (clearly, the two loose ends of G1

can be glued to the two loose ends of G2 in two different ways). These two
facts are established in the following two lemmas.

7.2.2. Lemma. Modulo the AS and the IHX relations, a subgraph with two
legs can be carried through a vertex:

G
=

G
.

Proof. This lemma is a particular case (k = 1) of the Kirchhoff law (see
page 133). �
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Lemma 7.2.2 shows that given an insertion of a 3-graph G1 into an edge
of G2, there exists an equivalent insertion of G1 into any adjacent edge. Since
G2 is connected, it only remains to show that the two possible insertions of
G1 into an edge of G2 give the same result.

7.2.3. Lemma. The two different ways to re-connect two 3-graphs produce
the same element of the space Γ:

G1

G2

=

G1

G2

.

Proof. At a vertex of G1 which lies next to the subgraph G2 in the product,
one can, by Lemma 7.2.2, perform the following manoeuvres:

G1

G2

= G1

G
2

= G1

G2

= G1

G2

.

Therefore,
G1

G2

=

G1
G2

=

G1

G2

.

The lemma is proved, and the edge multiplication of 3-graphs is thus well-
defined. �

The edge product of 3-graphs extends by linearity to the whole space Γ.

Corollary. The edge product in Γ is well-defined and associative.

This follows from the fact that a linear combination of either AS or IHX
type relations, when multiplied by an arbitrary graph, is a combination of
the same type. The associativity is obvious.

7.2.4. Some identities. There are two natural operations defined on the
space Γ: the insertion of a bubble into an edge:

.

and the insertion of a triangle into a vertex:

.

Inserting a bubble into an edge of a 3-graph is the same thing as multiplying
this graph by β = iq q ∈ Γ1. In particular, this operation is well-defined
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and does not depend on the edge where the bubble is created. Inserting a
triangle into a vertex can be expressed in a similar fashion via the vertex
multiplication discussed below in 7.3. The following lemma implies that
inserting a triangle into a vertex is a well-defined operation:

7.2.5. Lemma. A triangle is equal to one half of a bubble:

=
1

2
=

1

2
=

1

2
.

Proof.

= + = −

= −

�
Remark. It was proved by Pierre Vogel [Vo2] that the operator of bubble
insertion has non-trivial kernel. He exhibited an element of degree 15 which
is killed by inserting a bubble.

The second lemma describes two classes of 3-graphs which are equal to
0 in the algebra Γ, that is, modulo the AS and IHX relations.

7.2.6. Lemma.
(a) A graph with a loop is 0 in Γ. = 0

(b) More generally, if the edge connectivity
of the graph γ is 1, that is, if it becomes
disconnected after removal of an edge, then
γ = 0 in Γ.

γ = = 0

Proof. (a) A graph with a loop is zero because of the antisymmetry relation.
Indeed, changing the cyclic order at the vertex of the loop produces a graph
which is, on one hand, isomorphic to the initial graph, and on the other
hand, differs from it by a sign.

(b) Such a graph can be represented as a product of two graphs, one of
which is a graph with a loop that vanishes according to (a):

γ = G1 G2 = G1 × G2 = 0 .
�
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n dn additive generators

1 1

2 1

3 1

4 2

5 2

6 3

7 4

8 5

9 6

10 8

11 9

Table 7.2.1. Additive generators of the algebra of 3-graphs Γ

7.2.7. The Zoo. Table 7.2.1 shows the dimensions dn and displays the
bases of the vector spaces Γn for n 6 11, obtained by computer calculations.

Note that the column for dn coincides with the column for k = 2 in
the table of primitive spaces on page 139. This will be proved in Proposi-
tion 7.4.2.

One can see from the table that the multiplicative generators of the alge-
bra Γ up to degree 11 can be chosen as follows (here β stands for “bubble”,
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ωi — for “wheels”, δ — for “dodecahedron”):

1 4 6 7 8 9 10 11

β ω4 ω6 ω7 ω8 ω9 ω10 δ ω11

The reader may have noticed that the table of additive generators does
not contain the elements ω2

4 of degree 8 and ω4ω6 of degree 10. This is due
to the following relations (found by A. Kaishev [Kai]) in the algebra Γ:

ω2
4 =

5

384
β8 − 5

12
β4ω4 +

5

2
β2ω6 −

3

2
βω7,

ω4ω6 =
305

27648
β10 − 293

864
β6ω4 +

145

72
β4ω6 −

31

12
β3ω7 + 2β2ω8 −

3

4
βω9.

In fact, as we shall see in Section 7.3, it is true in general that the product
of an arbitrary pair of homogeneous elements of Γ of positive degree belongs
to the ideal generated by β.

Since there are non-trivial relations between the generators, the algebra
of 3-graphs, in contrast to the algebras A, B and C, is commutative but
not free commutative and, hence, does not possess the structure of a Hopf
algebra.

7.3. Vertex multiplication

Apart from the edge product, the space

Γ>1 = Γ1 ⊕ Γ2 ⊕ Γ3 ⊕ Γ4 ⊕ . . .

spanned by all the 3-graphs of non-zero degree has another commutative
and associative product.

Let G1 and G2 be two 3-graphs of positive degree. Choose arbitrarily
a vertex in G1 and a vertex in G2. Cut out each of these two vertices and
attach the three loose ends that appear on G1 to the three loose ends on G2.
There are six possible ways of doing this. Take the alternating average of
all of them, assigning the negative sign to those three cases where the cyclic
order on the loose ends of G1 agrees with that for G2, and the positive sign
to the other three cases. This alternating average is called the vertex product
of G1 and G2.

Pictorially, if the graphs G1, G2 are drawn as G1 =
G1

, G2 =
G2

, then,

in order to draw their vertex product we have to merge them, inserting a
permutation of the three strands in the middle. Then we take the result
with the sign of the permutation and average it over all six permutations:
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G1 ∨
G2

=
1

6

[
G2

G1

−
G2

G1

−
G2

G1

−
G2

G1

+
G2

G1

+
G2

G1
]
.

As an example, let us compute the vertex product with the theta graph:

β ∨
G

= ∨
G

=
1

6

[
G
−

G
−

G
−

G
+

G
+

G

]
=

G
,

since all the summands in the brackets (taken with their signs) are equal
to each other due to the AS relation. Therefore, β will be the unit for the
vertex product on Γ>1.

In order to simplify the notation, we shall use diagrams with shaded
disks, understanding them as alternating linear combinations of six graphs
as above. For example:

G1 ∨
G2

=
G2

G1

=
G2

G1

.

7.3.1. Theorem. The vertex product in Γ>1 is well-defined, commutative
and associative.

Proof. It is sufficient to prove that the the AS and the IHX relations imply
the following equality:

X1 = G = G = X2.

where G denotes an arbitrary subgraph with three legs (and each picture is
the alternating sum of six diagrams).

By the Kirchhoff law we have:

*

G =
*

G +

*

G

= G + G + G + G

(the stars indicate the place where the tail of the “moving electron” is fixed in
Kirchhoff’s relation). Now, in the last line the first and the fourth diagrams
are equal to X2, while the sum of the second and the third diagrams is
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equal to −X1 (again, by an application of Kirchhoff’s rule). We thus have
2X1 = 2X2 and therefore X1 = X2.

Commutativity and associativity are obvious. �

7.3.2. Remark. Unlike the edge product, which respects the grading on Γ,
the vertex multiplication is an operation of degree −1:

Γn ∨ Γm ⊂ Γn+m−1.

7.3.3. Relation between the two products in Γ.

Proposition. The edge product · in the algebra of 3-graphs Γ is related to
the vertex product ∨ on Γ>1 as follows:

G1 ·G2 = β · (G1 ∨G2).

Proof. Choose a vertex in each of the given graphs G1 and G2 and call its
complement G′1 and G′2, respectively:

G1 =
G′1

=
G′1

, G2 =
G′2

,

where, as explained above, the shaded region indicates the alternating av-
erage over the six permutations of the three legs.

Then, by Theorem 7.3.1 we have:

G1 ·G2 =
G′1

G1

G′2

G2

=
G′1 G′2

= β ·
G′1 G′2

= β · (G1 ∨G2) .

�

7.4. Action of Γ on the primitive space P

7.4.1. Edge action of Γ on P. As we know (Section 5.5) the space P of
the primitive elements in the algebra C is spanned by connected diagrams,
that is, closed Jacobi diagrams which remain connected after the Wilson loop
is stripped off. It is natural to define the edge action of Γ on a primitive
diagram D ∈ P simply by taking the edge product of a graph G ∈ Γ with
D as if D were a 3-graph, using an internal edge of D. The resulting graph
G ·D is again a closed diagram; moreover, it lies in P. Since D is connected,
Lemmas 7.2.2 and 7.2.3 imply that G ·D does not depend on the choice of
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the edge in G and of the internal edge in D. Therefore, we get a well-defined
action of Γ on P, which is clearly compatible with the gradings:

Γn · Pm ⊂ Pn+m.

7.4.2. Proposition. The vector space Γ is isomorphic as a graded vector
space (with the grading shifted by one) to the subspace P2 ⊂ P of primitive
closed diagrams spanned by connected diagrams with 2 legs: Γn ∼= P2

n+1 for
all n > 0.

Proof. The isomorphism Γ→ P2 is given by the edge action of 3-graphs on
the element Θ ∈ P2 represented by the chord diagram with a single chord,
G 7→ G · Θ. The inverse map is equally simple. For a connected closed
diagram D with two legs strip off the Wilson loop and glue together the two
loose ends of the resulting diagram, obtaining a 3-graph of degree one less
than D. Obviously, this map is well-defined and inverse to the edge action
on Θ. �

7.4.3. Vertex action of Γ on P. In order to perform the vertex multi-
plication, we need at least one vertex in each of the factors. Therefore, we
shall define an action of the algebra Γ>1 (with the vertex product) on the
space P>1 of primitive elements of degree strictly greater than 1.

The action G∨D of G on D is the alternated average over all six ways of
inserting G, with one vertex removed, into D with one internal vertex taken
out. Again, since D is connected, the proof of Theorem 7.3.1 works to show
that this action is well-defined. Note that the vertex action decreases the
total grading by 1 and preserves the number of legs:

Γn ∨ Pkm ⊂ Pkn+m−1.

The simplest element of P on which Γ>1 acts in this way is the “Mercedes-
Benz diagram”

t1 = .

7.4.4. Lemma.

(a) The map Γ>1 → P defined as G 7→ G ∨ t1 is injective.

(b) For all G ∈ Γ>q we have

G ∨ t1 =
1

2
G ·Θ.

Proof. Indeed, t1 = 1
2β ·Θ. Therefore,

G ∨ t1 =
1

2
(G ∨ β) ·Θ =

1

2
G ·Θ.
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Since the map G 7→ G · Θ is an isomorphism (Proposition 7.4.2), the map
G 7→ G ∨ t1 is also an isomorphism Γ>1

∼= P2
>1. �

7.4.5. A product on the primitive space P. In principle, the space
of primitive elements P of the algebra C does not possess any a priori de-
fined multiplicative structure. Primitive elements only generate the algebra
C much in the same way as the variables x1, . . . , xn generate the polynomial
algebra R[x1, . . . , xn]. However, the link between the space P and the alge-
bra of 3-graphs Γ allows to introduce a (non-commutative) multiplication in
P.

There is a projection π : Pn → Γn, which consists in introducing a cyclic
order on the half-edges at the vertices of the Wilson loop according to the
rule “forward–sideways–backwards” and then forgetting the fact that the
Wilson loop was distinguished. The edge action Γ× P → P then gives rise
to an operation ∗ : P × P → P defined by the rule

p ∗ q = π(p) · q.

where π : P → Γ is the homomorphism of forgetting the Wilson loop defined
above.

The operation ∗ is associative, but, in general, non-commutative:

∗ = , but ∗ = .

These two elements of the space P are different; they can be distin-
guished, for instance, by the sl2-invariant (see Exercise 21 at the end of
Chapter 6). However, π projects these two elements into the same element
β · ω4 ∈ Γ5.

7.5. Lie algebra weight systems for the algebra Γ

A weight system for 3-graphs is a function on 3-graphs that satisfies the
antisymmetry and the IHX relations. Lie algebras (and super Lie algebras)
give rise to weight systems for 3-graphs in the very same fashion as for the
algebra C (Section 6.2), using the structure tensor J . Since 3-graphs have
no univalent vertices, these weight systems take values in the ground field
(here assumed to be C). For a graph G ∈ Γ we put

ϕg(G) := Tg(G) ∈ g0 ∼= C.

In particular, the weight system ϕg evaluated on the circle (the 3-graph
without vertices, which is the unit in Γ) gives the dimension of the Lie
algebra.
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Remark. This circle should not be confused with the circles appearing in
the state sum formulae for ϕslN and ϕsoN from Sections 6.2.5 and 6.2.6.
The contribution of these circles to the values of ϕslN and ϕsoN is equal to
N while the dimensions of the corresponding Lie algebras are N2 − 1 and
1
2N(N − 1), respectively.

7.5.1. Changing the bilinear form. From the construction of ϕg it is
easy to see that the function ϕg,λ corresponding to the form λ〈·, ·〉 is a
multiple of ϕg:

ϕg,λ(G) = λ−nϕg(G)

for G ∈ Γn.

7.5.2. Multiplicativity with respect to the edge product in Γ.

Proposition. For a simple Lie algebra g and any choice of an ad-invariant
non-degenerate symmetric bilinear form 〈·, ·〉 the function 1

dim gϕg : Γ → C
is multiplicative with respect to the edge product in Γ.

Proof. This is a consequence of the fact that, up to a constant, the qua-
dratic Casimir tensor of a simple Lie algebra is the only ad-invariant, sym-
metric, non-degenerate tensor in g⊗ g.

Consider two graphs G1, G2 ∈ Γ and chose an orthonormal basis ei
for the Lie algebra g. Cut an arbitrary edge of the graph G and consider
the tensor that corresponds to the resulting graph G′1 with two univalent
vertices. This tensor is a scalar multiple of the quadratic Casimir tensor
c ∈ g⊗ g:

a · c = a

dim g∑
i=1

ei ⊗ ei .

Now, ϕg,K(G1) is obtained by contracting these two tensor factors. This

gives ϕg,K(G1) = a dim g, and a = 1
dim gϕg(G1). Similarly, for the graph

G2 we get the tensor 1
dim gϕg(G2) · c. Now, if we join together one pair of

univalent vertices of the graphs G′1 and G′2 (where G′2 is obtained from G2

by cutting an edge), the partial contraction of the element c⊗2 ∈ g⊗4 will
give

1

(dim g)2
ϕg(G1)ϕg(G2) · c ∈ g⊗ g.

But, on the other hand, this tensor equals

1

dim g
ϕg(G1 ·G2) · c ∈ g⊗ g.

This shows that 1
dim gϕg is multiplicative. �
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7.5.3. Compatibility with the edge action of Γ on C. Recall the defi-
nition of the edge action of 3-graphs on closed diagrams (see Section 7.4.1).
We choose an edge in G ∈ Γ and an internal edge in D ∈ C, and then take
the connected sum of G and D along the chosen edges. In fact, this action
depends on the choice of the connected component of the internal graph of D
containing the chosen edge. It is well defined only on the primitive subspace
P ⊂ C. In spite of this indeterminacy we have the following lemma.

Lemma. For any choice of the glueing edges, ϕg(G ·D) =
ϕg(G)
dim g ϕg(D).

Proof. Indeed, in order to compute ϕg(D) we assemble the tensor Tg(D)
from tensors that correspond to tripods and chords. The legs of these ele-
mentary pieces are glued together by contraction with the quadratic Casimir
tensor c, which corresponds to the metric on the Lie algebra. By the previous
argument, to compute the tensor Tg(G ·D) one must use for the chosen edge
the tensor 1

dim gϕg(G) · c instead of c. This gives the coefficient 1
dim gϕg(G)

in the expression for ϕg(G ·D) as compared with ϕg(D). �

One particular case of the edge action of Γ is especially interesting: when
the graph G varies, while D is fixed and equal to Θ, the chord diagram with
only one chord. In this case the action is an isomorphism of the vector space
Γ with the subspace P2 of the primitive space P generated by connected
closed diagrams with 2 legs (section 7.4.2).

Corollary. For the weight systems associated with a simple Lie algebra g
and the Killing form 〈·, ·〉K :

ϕg,K(G) = ϕadg,K(G ·Θ) ,

where ϕadg,K is the weight system corresponding to the adjoint representation
of g.

Proof. Indeed, according to the Lemma, for the universal enveloping alge-
bra invariants we have

ϕg,K(G ·Θ) =
1

dim g
ϕg(G)ϕg,K(Θ) =

1

dim g
ϕg(G)

dim g∑
i=1

eiei ,

where {ei} is a basis orthonormal with respect to the Killing form. Now to
compute ϕadg,K(G · Θ) we take the trace of the product of operators in the
adjoint representation:

ϕadg,K(G ·Θ) =
1

dim g
ϕg(G)

dim g∑
i=1

Tr(adeiadei) = ϕg(G)

by the definition of the Killing form. �
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7.5.4. Multiplicativity with respect to the vertex product in Γ.

Proposition. Let w : Γ → C be an edge-multiplicative weight system, and
w(β) 6= 0. Then 1

w(β)w : Γ → C is multiplicative with respect to the ver-

tex product. In particular, for a simple Lie algebra g, 1
ϕg(β)ϕg is vertex-

multiplicative.

Proof. According to 7.3.3 the edge product is related to the vertex product
as G1 ·G2 = β · (G1 ∨G2). Therefore,

w(G1) · w(G2) = w(β · (G1 ∨G2)) = w(β) · w(G1 ∨G2) .

This means that the weight system 1
w(β)w : Γ → C is multiplicative with

respect to the vertex product. �

Corollary. The weight systems 1
2N(N2−1)

ϕslN ,
2

N(N−1)(N−2)ϕsoN : Γ → C
associated with the ad-invariant form 〈x, y〉 = Tr(xy) are multiplicative with
respect to the vertex product in Γ.

This follows from a direct computation for the “bubble”:

ϕslN (β) = 2N(N2 − 1), and ϕsoN (β) =
1

2
N(N − 1)(N − 2).

7.5.5. Compatibility with the vertex action of Γ on C. The vertex
action G ∨D of a 3-graph G ∈ Γ on a closed diagram D ∈ C with at least
one vertex (see Section 7.4.3) is defined as the alternating sum of 6 ways to
glue the graph G with the closed diagram D along chosen internal vertices
in D and G. Again, this action is well-defined only on the primitive space
P>1.

Lemma. Let g be a simple Lie algebra. Then for any choice of the glueing
vertices in G and D:

ϕg(G ∨D) =
ϕg(G)

ϕg(β)
ϕg(D) .

Proof. Using the edge action (Section 7.5.3) and its relation to the vertex
action we can write

ϕg(G)

dim g
ϕg(D) = ϕg(G ·D) = ϕg(β · (G1 ∨D)) =

ϕg(β)

dim g
ϕg(G1 ∨D) ,

which is what we need. �
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7.5.6. slN - and soN -polynomials. The slN - and soN -polynomials are the
weight systems ϕslN (with respect to the bilinear form 〈x, y〉 = Tr(xy)),
and ϕsoN (with the bilinear form 〈x, y〉 = 1

2Tr(xy)). In the case of soN
the choice of half the trace as the bilinear form is more convenient since
it gives polynomials in N with integral coefficients. In particular, for this
form ϕsoN (β) = N(N − 1)(N − 2), and in the state sum formula from the
Theorem of Section 6.2.6 the coefficient in front of the sum equals 1.

The polynomial ϕslN (G) (= ϕglN (G)) is divisible by 2N(N2 − 1) (Exer-
cise 10 in the end of this chapter) and the quotient is a multiplicative func-
tion with respect to the vertex product. We call this quotient the reduced

sl-polynomial and denote it by s̃l(G). Dividing the so-polynomial ϕsoN (G)
by N(N − 1)(N − 2) (see Exercise 11), we obtain the reduced so-polynomial
s̃o(G), which is also multiplicative with respect to the vertex product.

A. Kaishev [Kai] computed the values of s̃l-, and s̃o-polynomials on
the generators of Γ of small degrees (for s̃o-polynomial the substitution
M = N − 2 is used in the table):

deg s̃l-polynomial s̃o-polynomial

1 β 1 1

4 ω4 N3+12N M3−3M2+30M−24

6 ω6 N5+32N3+48N M5−5M4+80M3−184M2+408M−288

7 ω7 N6+64N4+64N2 M6−6M5+154M4−408M3+664M2−384

8 ω8 N7+128N5+128N3

+192N

M7−7M6+294M5−844M4+1608M3−2128M2

+4576M−3456

9 ω9 N8+256N6+256N4

+256N2

M8−8M7+564M6−1688M5+3552M4−5600M3

−5600M3+6336M2+6144M−9216

10 ω10 N9+512N7+512N5

+512N3+768N

M9−9M8+1092M7−3328M6+7440M5−13216M4

+18048M3−17920M2+55680M−47616

10 δ N9+11N7+114N5

−116N3

M9−9M8+44M7−94M6+627M5+519M4

−2474M3−10916M2+30072M−17760

11 ω11 N10+1024N8+1024N6

+1024N4+1024N2

M10−10M9+2134M8−6536M7+15120M6

−29120M5+45504M4−55040M3+48768M2

+145408M−165888

There are recognizable patterns in this table. For example, we see that

s̃l(ωn) = Nn−1 + 2n−1(Nn−3 + · · ·+N2), for odd n > 5;

s̃l(ωn) = Nn−1 + 2n−1(Nn−3 + · · ·+N3) + 2n−23N , for even n > 4.
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It would be interesting to know if these observations are particular cases of
some general statements.

7.6. Vogel’s algebra Λ

Diagrams with 1- and 3-valent vertices can be considered with different ad-
ditional structures on the set of univalent vertices. If there is no structure,
then we get the notion of an open Jacobi diagram; open diagrams are con-
sidered modulo AS and IHX relations. If the legs are attached to a circle or
a line, then we obtain closed Jacobi diagrams; for the closed diagrams, AS,
IHX and STU relations are used. Connected diagrams with a linear order
(numbering) on the set of legs and a cyclic order on the half-edges at each
3-valent vertex, considered modulo AS and IHX, but without STU relations,
will be referred to as fixed diagrams. The set X of all fixed diagrams has
two gradings: by the number of legs (denoted by a superscript) and by half
the total number of vertices (denoted by a subscript).

Definition. The Q-vector space spanned by fixed diagrams with k legs
modulo the usual AS and IHX relations

X kn = 〈Xk
n〉/〈AS, IHX〉,

is called the space of fixed diagrams of degree n with k legs.

We shall write X k for the direct sum ⊕nX kn .

Remark. The spaces X k for different values of k are related by various
operations. For example, one may think about the diagram as of a
linear operator from X 4 to X 3. Namely, it acts on an element G of X 4 as
follows:

: G

123 4

7→
G

1 23

.

7.6.1. Exercise.

(a) Prove the following relation

+ + = 0,

among the three linear operators from X 4 to X 3.

(b) Prove that

=

as linear maps from X 3 to X 4.



7.6. Vogel’s algebra Λ 223

The space of open diagrams Bk studied in Chapter 5 is the quotient
of X k by the action of the symmetric group Sk which permutes the legs
of a fixed diagram. The quotient map X → B has a nontrivial kernel; for
example, a tripod, which is nonzero in X 3, becomes zero in B:

0 6=
21

3

7−→ = 0.

7.6.2. The algebra Λ. The algebra Λ is the subspace of X 3 that consists
of all elements antisymmetric with respect to permutations of their legs.
The product in Λ is similar to the vertex product in Γ. Given a connected
fixed diagram and an element of Λ, we remove an arbitrary vertex in the
diagram and insert the element of Λ instead — in compliance with the cyclic
order at the vertex. This operations extends to a well-defined product on Λ,
and this fact is proved in the same way as for the vertex multiplication in Γ.
Since antisymmetry is presupposed, we do not need to take the alternated
average over the six ways of insertion, as in Γ, — all the six summands will
be equal to each other.

Example.

1 2

3

∨

1 2

3

=

1 2

3

.

Conjecturally, the antisymmetry requirement in this definition is super-
fluous:

7.6.3. Conjecture. Λ = X 3, that is, any fixed diagram with 3 legs is anti-
symmetric with respect to leg permutations.

Remark. Note the sign difference in the definitions of the product in Λ
and the vertex product in Γ: in Γ when two graphs are glued together in
compliance with the cyclic order of half-edges, the corresponding term is
counted with a negative sign.

Remark. Vogel in [Vo1] defines the spaces X k and the algebra Λ over
the integers, rather than over Q. In this approach, the equality (b) of
Exercise 7.6.1 no longer follows from the AS and IHX relations. It has to
be postulated separately as one of the equations defining Λ in X 3 in order
to make the product in Λ well-defined.

The product in the algebra Λ naturally generalizes to the action of Λ
on different spaces generated by 1- and 3-valent diagrams, such as the space
of connected open diagrams PB and the space of 3-graphs Γ. The same
argument as above shows that these actions are well-defined.
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7.6.4. Relation between Λ and Γ. Recall that the space Γ>1 of all 3-
graphs of degree at least one is an algebra with respect to the vertex product.

Proposition. The algebra Λ is isomorphic to (Γ>1,∨).

Proof. There two mutually inverse maps between Λ and Γ>1. The map
from Λ to Γ>1 glues the three legs of an element of Λ to a new vertex so
that the cyclic order of edges at this vertex is opposite to the order of legs:

1

2

3

7→ (−1) · .

In order to define a map from Γ>1 to Λ, we choose an arbitrary vertex of a
3-graph, delete it and antisymmetrize:

7→ 1

6

[
−

1

2
3

+

2

1
3

+

1

3
2

+

3

2
1

−

2

3
1

−

3

1
2
]
.

It is easy to see that this is indeed a well-defined map (Hint: use part (b)
of Exercise 7.6.1).

It is evident from the definitions that both maps are inverse to each
other and send products to products. �

Remark. If Conjecture 7.6.3 is true for k = 3 then all the six terms (to-
gether with their signs) in the definition of the map Γ>1 → Λ are equal to
each other. This means that there is no need to antisymmetrize. What we
do is remove one vertex (with a small neighbourhood) and number the three
legs obtained according to their cyclic ordering at the deleted vertex. This
would also simplify the definition of the vertex product in Section 7.3 as in
this case

G = G ,

and we simply insert one graph in a vertex of another.

Conjecture ([Vo1]). The algebra Λ is generated by the elements t and xk
with odd k = 3, 5, ...:

1 2

3

1 2

3

1 2

3

1 2

3

· · ·

t x3 x4 x5 · · ·
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7.6.5. Weight systems not coming from Lie algebras. In order to
construct a weight system which would not be a combination of Lie algebra
weight systems, it is sufficient to find a non-zero element in C on which all
the Lie algebra weight systems vanish. The same is true, of course, for super
Lie algebras.

In [Vo1] Vogel produces diagrams that cannot be detected by (super) Lie
algebra weight systems. Vogel’s work involves heavy calculations of which
we shall give no details here. His construction can be (very briefly) described
as follows.

First, he gives a list of super Lie algebras with the property that when-
ever all the weight systems for the algebras from this list vanish on an
element of Λ, this element cannot be detected by any (super) Lie algebra
weight system. This list includes a certain super Lie algebra D(2, 1, α); this
algebra detects an element of Λ which all other algebras from the list do
not detect. Making this element act by the vertex action on the “Mercedes-
Benz” closed diagram t1 he obtains a closed diagram which is non-zero
because of Lemma 7.4.4 but which cannot be detected by any super Lie
algebra weight system. We refer to [Vo1] and [Lieb] for the details.

Exercises

(1) Find an explicit chain of IHX and AS relations that proves the following
equality in the algebra Γ of 3-graphs:

=

(2) Let τ2 : X 2 → X 2 be the transposition of legs in a fixed diagram. Prove
that τ2 is the identity. Hint: (1) prove that a “hole” can be dragged
through a trivalent vertex (2) to change the numbering of the two legs,
use manoeuvres like in Lemma 7.2.3 with G2 = ∅).

(3) ∗ Let Γ be the algebra of 3-graphs.
• Is it true that Γ is generated by plane graphs?
• Find generators and relations of the algebra Γ.
• Suppose that a graph G ∈ Γ consists of two parts G1 and G2

connected by three edges. Is the following equality:

G1 G2 = G1 G2
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true?

(4) ∗ Is it true that the algebra of primitive elements P has no divisors of
zero with respect to the product ∗?

(5) Let X k be the space of 1- and 3-valent graphs with k numbered legs.
Consider the transposition of two legs of an element of X k.
• Give a example of a non-zero element of X k with even k which is

changed under such a transposition.
• ∗ Is it true that any such transposition changes the sign of the

element if k is odd? (The first nontrivial case is when k = 3 — this
is Conjecture 7.6.3.)

(6) ∗ Let Λ be Vogel’s algebra, that is, the subspace of X 3 consisting of all
antisymmetric elements.
• Is it true that Λ = X 3 (this is again Conjecture 7.6.3)?
• Is it true that Λ is generated by the elements t and xk (this is the

Conjecture 7.6.4; see also Exercises 7 and 8)?

(7) Let t, x3, x4, x5, ... be the elements of the space X 3 defined above.
• Prove that xi’s belong to Vogel’s algebra Λ, that is, that they are

antisymmetric with respect to permutations of legs.
• Prove the relation x4 = −4

3 t ∨ x3 − 1
3 t
∨4.

• Prove that xk with an arbitrary even k can be expressed through
t, x3, x5, ...

(8) Prove that the dodecahedron
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3

belongs to Λ, and express it as a vertex polynomial in t, x3, x5, x7, x9.

(9) ∗ The group S3 acts in the space of fixed diagrams with 3 legs X 3,
splitting it into 3 subspaces:
• symmetric, which is isomorphic to B3 (open diagrams with 3 legs),
• totally antisymmetric, which is Vogel’s Λ by definition, and
• some subspace Q, corresponding to a 2-dimensional irreducible re-

presentation of S3.
Is it true that Q = 0?

(10) Show that N = 0, N = −1, and N = 1 are roots of the polynomial
ϕglN (G) for any 3-graph G ∈ Γn (n > 1).

(11) Show that N = 0, N = 1 and N = 2 are roots of polynomial ϕsoN (G)
for any 3-graph G ∈ Γn (n > 0).



Chapter 8

The Kontsevich
integral

The Kontsevich integral appeared in the paper [Kon1] by M. Kontsevich as
a tool to prove the Fundamental Theorem of the theory of Vassiliev invari-
ants (that is, Theorem 4.2.1). Any Vassiliev knot invariant with coefficients
in a field of characteristic 0 can be factored through the universal invariant
defined by the Kontsevich integral.

Detailed (and different) expositions of the construction and properties of
the Kontsevich integral can be found in [BN1, CD3, Les]. Other important
references are [Car1], [LM1], [LM2].

About the notation: in this chapter we shall think of R3 as the product
of a (horizontal) complex plane C with the complex coordinate z and a
(vertical) real line R with the coordinate t. All Vassiliev invariants are
always thought of having values in the complex numbers.

8.1. First examples

We start with two examples where the Kontsevich
integral appears in a simplified form and with a clear
geometric meaning.

8.1.1. The braiding number of a 2-braid.
A braid on two strands has a complete invari-

ant: the number of full twists that one strand makes
around the other.

Let us consider the horizontal coordinates of

z(t)

w(t) C

t

points on the strands, z(t) and w(t), as functions of the vertical coordinate

227
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t, 0 6 t 6 1, then the number of full twists can be computed by the integral
formula

1

2πi

∫ 1

0

dz − dw
z − w

.

Note that the number of full twists is not necessarily an integer; however,
the number of half-twists always is.

8.1.2. Kontsevich type formula for the linking number. The Gauss
integral formula for the linking number of two spatial curves lk(K,L) (dis-
cussed in Section 2.2.2) involves integration over a torus (namely, the prod-
uct of the two curves). Here we shall give a different integral formula for the
same invariant, with the integration over an interval, rather than a torus.
This formula generalizes the expression for the braiding number of a braid on
two strands and, as we shall later see, gives the first term of the Kontsevich
integral of a two-component link.

Definition. A link in R3 is a Morse link if the function t (the vertical
coordinate) on it has only non-degenerate critical points. A Morse link is
a strict Morse link if the critical values of the vertical coordinate are all
distinct. Similarly one speaks of Morse tangles and strict Morse tangles.

Theorem. Suppose that two disjoint connected curves K, L are embedded
into R3 as a strict Morse link.

zj(t) wj(t)

Then

lk(K,L) =
1

2πi

∫ ∑
j

(−1)↓j
d(zj(t)− wj(t))
zj(t)− wj(t)

,

where the index j enumerates all possible choices of a pair of strands on
the link as functions zj(t), wj(t) corresponding to K and L, respectively,
and the integer ↓j is the number of strands in the pair which are oriented
downwards.

Remark. In fact, the condition that the link in question is a strict Morse
link can be relaxed. One may consider piecewise linear links with no hori-
zontal segments, or smooth links whose vertical coordinate function has no
flattening points (those where all the derivatives vanish).
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Proof. The proof consists of three steps which — in a more elaborate setting
— will also appear in the full construction of the Kontsevich integral.

Step 1. The value of the sum in the right hand side is an integer. Note
that for a strict Morse link with two components K and L, the configuration
space of all horizontal chords joining K and L is a closed one-dimensional
manifold, that is, a disjoint union of several circles.

For example, assume that two adjacent critical values m and M (with
m < M) of the vertical coordinate correspond to a minimum on the com-
ponent K and a maximum on the component L respectively:

z (t)z (t) w (t) w (t)
1 12 2

m A

M A

A

B B

B

0

01

1

2

2

t

The space of all horizontal chords that join the shown parts of K and L
consists of four intervals which join together to form a circle. The motion
along this circle starts, say, at a chord A1B0 and proceeds as

A1B0 → A0B1 → A2B0 → A0B2 → A1B0.

Note that when the moving chord passes a critical level (either m or M),
the direction of its motion changes, and so does the sign (−1)↓j . (Exercise
(1) on page 255 deals with a more complicated example of the configuration
space of horizontal chords.)

It is now clear that our integral formula counts the number of complete
turns made by the horizontal chord while running through the whole con-
figuration space of chords with one end (zj(t), t) on K and the other end
(wj(t), t) on L. This is, clearly, an integer.

Step 2. The value of the right hand side remains unchanged under a
continuous horizontal deformation of the link. (By a horizontal deformation
we mean a deformation of a link which moves every point in a horizontal
plane t = const.) The assertion is evident, since the integral changes con-
tinuously while always remaining an integer. Note that this is true even
if we allow self-intersections within each of the components; this does not
influence the integral because zj(t) and wj(t) lie on the different components.

Step 3. Reduction to the combinatorial formula for the linking number
(Section 2.2). Choose a vertical plane in R3 and represent the link by
a generic projection to that plane. By a horizontal deformation, we can
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flatten the link so that it lies in the plane completely, save for the small
fragments around the diagram crossings between K and L (as we noted
above, self-intersections of each component are allowed). Now, the rotation
of the horizontal chord for each crossing is by ±π, and the signs are in
agreement with the number of strands oriented downwards. The reader is
invited to draw the two different possible crossings, then, for each picture,
consider the four possibilities for the orientations of the strands and make
sure that the sign of the half-turn of the moving horizontal chord always
agrees with the factor (−1)↓j . (Note that the integral in the theorem is
computed over t, so that each specific term computes the angle of rotation
of the chord as it moves from bottom to top.) �

The Kontsevich integral can be regarded as a generalization of this for-
mula. Here we kept track of one horizontal chord moving along the two
curves. The full Kontsevich integral keeps track of how finite sets of hor-
izontal chords on the knot (or a tangle) rotate when moved in the ver-
tical direction. This is the somewhat näıve approach that we use in the
next section. Later, in Section 10.1, we shall adopt a more sophisticated
point of view, interpreting the Kontsevich integral as the monodromy of
the Knizhnik–Zamolodchikov connection in the complement of the union of
diagonals in Cn.

8.2. The construction

Let us recall some notation and terminology of the preceding section. For
points of R3 we use coordinates (z, t) with z complex and t real; the planes
t = const are thought of being horizontal. Having chosen the coordinates,
we can speak of strict Morse knots, namely, knots with the property that the
coordinate t restricted to the knot has only non-degenerate critical points
with distinct critical values.

We define the Kontsevich integral for strict Morse knots. Its values

belong to the graded completion Â of the algebra of chord diagrams with
1-term relations A = Afr/(Θ). (By definition, the elements of a graded
algebra are finite linear combinations of homogeneous elements. The graded
completion consists of all infinite combinations of such elements.)

8.2.1. Definition. The Kontsevich integral Z(K) of a strict Morse knot K
is given by the following formula:

Z(K) =
∞∑
m=0

1

(2πi)m

∫
tmin<tm<···<t1<tmax

tj are noncritical

∑
P={(zj ,z′j)}

(−1)↓PDP

m∧
j=1

dzj − dz′j
zj − z′j

.

The ingredients of this formula have the following meaning.
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The real numbers tmin and tmax are the minimum and the maximum of
the function t on K.

The integration domain is the set of all points of the m-dimensional
simplex tmin < tm < · · · < t1 < tmax none of whose coordinates ti is a
critical value of t. The m-simplex is divided by the critical values into
several connected components. For example, for the following embedding
of the unknot and m = 2 the corresponding integration domain has six
connected components and looks like

t

tmax

tc1
tc2

tmin

z

t2

tmax

tc1

tc2

tmin

t1tmaxtc1tc2tmin

The number of summands in the integrand is constant in each connected
component of the integration domain, but can be different for different com-
ponents. In each plane {t = tj} ⊂ R3 choose an unordered pair of distinct
points (zj , tj) and (z′j , tj) on K, so that zj(tj) and z′j(tj) are continuous func-

tions. We denote by P = {(zj , z′j)} the set of such pairs for j = 1, . . . ,m
and call it a pairing.

1

6 summands

(−1)

1 summand

2
(−1)

2

2

21

36 summands

(−1)

1 summand

(−1)

6 summands

(−1)

1 summand

(−1)

The integrand is the sum over all choices of the pairing P . In the example
above for the component {tc1 < t1 < tmax, tmin < t2 < tc2}, in the bottom
right corner, we have only one possible pair of points on the levels {t = t1}
and {t = t2}. Therefore, the sum over P for this component consists of only
one summand. In contrast, in the component next to it, {tc2 < t1 < tc1 ,
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tmin < t2 < tc2}, we still have only one possibility for the chord (z2, z
′
2) on

the level {t = t2}, but the plane {t = t1} intersects our knot K in four

points. So we have
(

4
2

)
= 6 possible pairs (z1, z

′
1) and the total number of

summands here is six (see the picture above).

For a pairing P the symbol ‘↓P ’ denotes the number of points (zj , tj) or
(z′j , tj) in P where the coordinate t decreases as one goes along K.

Fix a pairing P . Consider the knot K as an oriented circle and connect
the points (zj , tj) and (z′j , tj) by a chord. We obtain a chord diagram with m

chords. (Thus, intuitively, one can think of a pairing as a way of inscribing
a chord diagram into a knot in such a way that all chords are horizontal and
are placed on different levels.) The corresponding element of the algebra A
is denoted by DP . In the picture below, for each connected component in
our example, we show one of the possible pairings, the corresponding chord
diagram with the sign (−1)↓P and the number of summands of the integrand
(some of which are equal to zero in A due to the one-term relation).

Over each connected component, zj and z′j are smooth functions in tj .
By

m∧
j=1

dzj − dz′j
zj − z′j

we mean the pullback of this form to the integration domain of the variables
t1, . . . , tm. The integration domain is considered with the orientation of the
space Rm defined by the natural order of the coordinates t1, . . . , tm.

By convention, the term in the Kontsevich integral corresponding to
m = 0 is the (only) chord diagram of order 0 taken with coefficient one. It

is the unit of the algebra Â.

8.2.2. Basic properties. We shall see later in this chapter that the Kont-
sevich integral has the following basic properties:

• Z(K) converges for any strict Morse knot K.

• It is invariant under the deformations of the knot in the class of
(not necessarily strict) Morse knots.

• It behaves in a predictable way under the deformations that add a
pair of new critical points to a Morse knot.

Let us explain the last item in more detail. While the Kontsevich integral
is indeed an invariant of Morse knots, it is not preserved by deformations that
change the number of critical points of t. However, the following formula
shows how the integral changes when a new pair of critical points is added
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to the knot:

(8.2.1) Z

( )
= Z(H) · Z

( )
.

Here the first and the third items represent two embeddings of an arbitrary
knot that coincide outside the shown fragment,

H :=

is the hump (an unknot with two maxima), and the product is the product

in the completed algebra Â of chord diagrams. The equality (8.2.1) allows
to define a genuine knot invariant by the formula

I(K) =
Z(K)

Z(H)c/2
,

where c denotes the number of critical points of K and the ratio means the

division in the algebra Â according to the rule (1+a)−1 = 1−a+a2−a3+. . .
The knot invariant I(K) is sometimes referred to as the final Kontsevich
integral as opposed to the preliminary Kontsevich integral Z(K).

The central importance of the final Kontsevich integral in the theory
of finite type invariants is that it is a universal Vassiliev invariant in the
following sense.

Consider an unframed weight system w of degree n (that is, a function
on the set of chord diagrams with m chords satisfying one- and four-term
relations). Applying w to the m-homogeneous part of the series I(K), we get
a numerical knot invariant w(I(K)). This invariant is a Vassiliev invariant
of order m and such invariants span the space of all finite type invariants.
This argument will be used to prove the Fundamental Theorem on Vassiliev
Invariants, see Section 8.8.1.

The Kontsevich integral has many interesting properties that we shall
describe in this and in the subsequent chapters. Among these are its be-
haviour with respect to the connected sum of knots (Section 8.4 and 8.7.1)
to the coproduct in the Hopf algebra of chord diagrams (Section 8.9.2), ca-
blings (Chapter 9), mutation (Section 11.1.3). We shall see that it can be
computed combinatorially (Section 10.3) and has rational coefficients (Sec-
tion 10.4.5).

8.3. Example of calculation

Here we shall calculate the coefficient of the chord diagram in Z(H),
where H is the hump (plane curve with 4 critical points, as in the previous
section) directly from the definition of the Kontsevich integral. The following
computation is valid for an arbitrary shape of the curve, provided that the
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length of the segments a1a2 and a3a4 (see picture below) decreases with t1,
while that of the segment a2a3 increases.

First of all, note that out of the total number of 51 pairings shown in the
picture on page 231, the following 16 contribute to the coefficient of :

We are, therefore, interested only in the band between the critical values
c1 and c2. Denote by a1, a2, a3, a4 (resp. b1, b2, b3, b4) the four points of
intersection of the knot with the level {t = t1} (respectively, {t = t2}):

a4
a3a2a1

b2b1 b3 b4

c

1

t

c

2

t

z

t

1

2

The sixteen pairings shown in the picture above correspond to the differential
forms

(−1)j+k+l+md ln ajk ∧ d ln blm,

where ajk = ak − aj , blm = bm − bl, and the pairs (jk) and (lm) can
take 4 different values each: (jk) ∈ {(13), (23), (14), (24)} =: A, (lm) ∈
{(12), (13), (24), (34)} =: B. The sign (−1)j+k+l+m is equal to (−1)↓P ,
because in our case the upward oriented strings have even numbers, while
the downward oriented strings have odd numbers.

The coefficient of is, therefore, equal to

1

(2πi)2

∫
∆

∑
(jk)∈A

∑
(lm)∈B

(−1)j+k+l+md ln ajk ∧ d ln blm

=− 1

4π2

∫
∆

∑
(jk)∈A

(−1)j+k+1d ln ajk ∧
∑

(lm)∈B

(−1)l+m−1d ln blm

=− 1

4π2

∫
∆

d ln
a14a23

a13a24
∧ d ln

b12b34

b13b24
,
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where the integration domain ∆ is the triangle described by the inequalities
c2 < t1 < c1, c2 < t2 < t1. Assume the following notation:

u =
a14a23

a13a24
, v =

b12b34

b13b24
.

It is easy to see that u is an increasing function of t1 ranging from 0 to 1,
while v is an decreasing function of t2 ranging from 1 to 0. Therefore, the
mapping (t1, t2) 7→ (u, v) is a diffeomorphism with a negative Jacobian, and
after the change of variables the integral we are computing becomes

1

4π2

∫
∆′

d lnu ∧ d ln v

where ∆′ is the image of ∆. It is obvious that the boundary of ∆′ contains
the segments u = 1, 0 6 v 6 1 and v = 1, 0 6 u 6 1 that correspond to
t1 = c1 and t2 = c2. What is not immediately evident is that the third side
of the triangle ∆ also goes into a straight line, namely, u+ v = 1. Indeed, if
t1 = t2, then all b’s are equal to the corresponding a’s and the required fact
follows from the identity a12a34 + a14a23 = a13a24.

1

2

c1

c2 c1

t

t2

1

1

v

u

0

c

Therefore,

1

4π2

∫
∆′

d lnu ∧ d ln v =
1

4π2

1∫
0

 1∫
1−u

d ln v

 du

u

= − 1

4π2

1∫
0

ln(1− u)
du

u
.

Taking the Taylor expansion of the logarithm we get

1

4π2

∞∑
k=1

1∫
0

uk

k

du

u
=

1

4π2

∞∑
k=1

1

k2
=

1

4π2
ζ(2) =

1

24
.

Two things are quite remarkable in this answer: (1) that it is expressed
via a value of the zeta function, and (2) that the answer is rational. In fact,
for any knot K the coefficient of any chord diagram in Z(K) is rational and
can be computed through the values of multivariate ζ-functions:

ζ(a1, . . . , an) =
∑

0<k1<k2<···<kn

k−a11 . . . k−ann .
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We shall speak about that in more detail in Section 10.2.

For a complete formula for Z(H) see Section 11.4.

8.4. The Kontsevich integral for tangles

The definition of the preliminary Kontsevich integral for knots (see Sec-
tion 8.2) makes sense for an arbitrary strict Morse tangle T . One only needs

to replace the completed algebra Â of chord diagrams by the graded com-
pletion of the vector space of tangle chord diagrams on the skeleton of T ,
and take tmin and tmax to correspond to the bottom and the top of T , re-
spectively. In the section 8.5 we shall show that the coefficients of the chord
diagrams in the Kontsevich integral of any (strict Morse) tangle actually
converge.

In particular, one can speak of the Kontsevich integral of links or braids.

8.4.1. Exercise. For a two-component link, what is the coefficient in the
Kontsevich integral of the chord diagram of degree 1 whose chord has ends
on both components?

Hint: see Section 8.1.2.

8.4.2. Exercise. Compute the integrals

Z

( )
and Z

( )
.

Answer:

· exp
(

2

)
and · exp

(
−

2

)
, respectively,

where exp a is the series 1 + a+ a2

2! + a3

3! + . . ..

Strictly speaking, before describing the properties of the Kontsevich in-
tegral we need to show that it is always well-defined. This will be done in
the following section. Meanwhile, we shall assume that this is indeed the
case for all the tangles in question.

8.4.3. Proposition. The Kontsevich integral for tangles is multiplicative:

Z(T1 · T2) = Z(T1) · Z(T2)

whenever the product T1 · T2 is defined.

Proof. Let tmin and tmax correspond to the bottom and the top of T1 · T2,
respectively, and let tmid be the level of the top of T2 (or the bottom of
T1, which is the same). In the expression for the Kontsevich integral of the
tangle T1 · T2 let us remove from the domain of integration all points with
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at least one coordinate t equal to tmid. This set is of codimension one, so
the value of integral remains unchanged. On the other hand, the connected
components of the new domain of integration are precisely all products of
the connected components for T1 and T2, and the integrand for T1 ·T2 is the
exterior product of the integrands for T1 and T2. The Fubini theorem on
multiple integrals implies that Z(T1 · T2) = Z(T1) · Z(T2). �

The behaviour of the Kontsevich integral under the tensor product of
tangles is more complicated. In the expression for Z(T1 ⊗ T2) indeed there
are terms that add up to the tensor product Z(T1) ⊗ Z(T2): they involve
pairings without chords that connect T1 with T2. However, the terms with
pairings that do have such chords are not necessarily zero and we have no
effective way of describing them. Still, there is something we can say but
we need a new definition for this.

8.4.4. Parametrized tensor products. By a (horizontal) ε-rescaling of
R3 we mean the map sending (z, t) to (εz, t). For ε > 0 it induces an
operation on tangles; we denote by εT the result of an ε-rescaling applied to
T . Note that ε-rescaling of a tangle does not change its Kontsevich integral.

Let T1 and T2 be two tangles such that T1⊗T2 is defined. For 0 < ε 6 1
we define the ε-parametrized tensor product T1⊗ε T2 as the result of placing
εT1 next to εT2 on the left, with the distance of 1 − ε between the two
tangles:

T1 =
1

; T2 =
1

; T1 ⊗ε T2 =
εεε 1−

.

More precisely, let 01−ε be the empty tangle of width 1−ε and the same
height and depth as εT1 and εT2. Then

T1 ⊗ε T2 = εT1 ⊗ 01−ε ⊗ εT2.

When ε = 1 we get the usual tensor product. Note that when ε < 1, the
parametrized tensor product is, in general, not associative.

8.4.5. Proposition. The Kontsevich integral for tangles is asymptotically
multiplicative with respect to the parametrized tensor product:

lim
ε→0

Z(T1 ⊗ε T2) = Z(T1)⊗ Z(T2)

whenever the product T1 ⊗ T2 is defined. Moreover, the difference

Z(T1 ⊗ε T2)− Z(T1)⊗ Z(T2)

as ε tends to 0 is of the same or smaller order of magnitude as ε.
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Proof. As we have already noted before, Z(T1⊗ε T2) consists of two parts:
the terms that do not involve chords that connect εT1 with εT2, and the
terms that do. The first part does not depend on ε and is equal to Z(T1)⊗
Z(T2), and the second part tends to 0 as ε→ 0.

Indeed, each pairing P = {(zj , z′j)} for T1 ⊗ T2 give rise to a continuous

family of pairings Pε = {(zj(ε), z′j(ε))} for T1 ⊗ε T2. Consider one such
family Pε. For all k

dzk(ε)− dz′k(ε) = ε(dzk − dz′k).
If the kth chord has has both ends on εT1 or on εT2, we have

zk(ε)− z′k(ε) = ε(zk − z′k)
for all ε. Therefore the limit of the first part is equal to Z(T1)⊗ Z(T2).

On the other hand, if Pε has at least one chord connecting the two fac-
tors, we have |zk(ε)− z′k(ε)| → 1 as ε→ 0. Thus the integral corresponding
to the pairing Pε tends to zero as ε gets smaller, and we see that the whole
second part of the Kontsevich integral of T1 ⊗ε T2 vanishes in the limit at
least as fast as ε:

Z(T1 ⊗ε T2) = Z(T1)⊗ Z(T2) +O(ε) .

�

8.5. Convergence of the integral

8.5.1. Proposition. For any strict Morse tangle T , the Kontsevich integral
Z(T ) converges.

Proof. The integrand of the Kontsevich integral may have singularities near
the boundaries of the connected components. This happens near a critical
point of a tangle when the pairing includes a “short” chord whose ends are
on the branches of the tangle that come together at a critical point.

Let us assume that the tangle T has exactly one critical point. This is
sufficient since any strict Morse tangle can be decomposed as a product of
such tangles (and the case when there are no critical points at all, is trivial).
The argument in the proof of Proposition 8.4.3 shows that the Kontsevich
integral of a product converges whenever the integral of the factors does.

Suppose, without loss of generality, that T has a critical point which is
a maximum with the value tc. Then we only need to consider pairings with
no chords above tc. Indeed, for any pairing its coefficient in the Kontsevich
integral of T is a product of two integrals: one corresponding to the chords
above tc, and the other - to the chords below tc. The first integral obvi-
ously converges since the integrand has no singularities, so it is sufficient to
consider the factor with chords below tc.
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Essentially, there are two cases.

1) An isolated chord (z1, z
′
1) tends to zero:

z1 z′1

In this case the corresponding chord diagram DP is equal to zero in A by
the one-term relation.

2) A chord (zj , z
′
j) tends to zero near a critical point but is separated

from that point by one or more other chords:

tc

t2 z2 z′2

z1

zc z′c
z′1

z′′2

Consider, for example, the case shown on the figure, where the “short”
chord (z2, z

′
2) is separated from the critical point by another, “long” chord

(z1, z
′
1). We have:∣∣∣∣∣∣

tc∫
t2

dz1 − dz′1
z1 − z′1

∣∣∣∣∣∣ 6 C

∣∣∣∣∣∣
tc∫
t2

d(z1 − z′1)

∣∣∣∣∣∣
= C

∣∣(zc − z2)− (z′c − z′′2 )
∣∣ 6 C ′|z2 − z′2|

for some positive constants C and C ′. This integral is of the same order as
z2 − z′2 and this compensates the denominator corresponding to the second
chord.

More generally, one shows by induction that if a “short” chord (zj , z
′
j)

is separated from the maximum by j − 1 chords, the first of which (that is,
the nearest to the maximum) is “long”, the integral∫

tj<tj−1<···<t1<tc

j−1∧
i=1

dzi − dz′i
zi − z′i

is of the same order as zj−z′j . This implies the convergence of the Kontsevich
integral. �

8.6. Invariance of the integral

8.6.1. Theorem. The Kontsevich integral is invariant under the deforma-
tions in the class of (not necessarily strict) Morse knots.

The proof of this theorem spans the whole of this section.
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Any deformation of a knot within the class of Morse knots can be
approximated by a sequence of deformations of three types: orientation-
preserving reparametrizations, horizontal deformations and movements of
critical points.

The invariance of the Kontsevich integral under orientation-preserving
reparametrizations is immediate since the parameter plays no role in the
definition of the integral apart from determining the orientation of the knot.

A horizontal deformation is an isotopy of a knot in R3 which preserves
all horizontal planes {t = const} and leaves all the critical points (together
with some small neighbourhoods) fixed. The invariance under horizontal
deformations is the most essential point of the theory. We prove it in the
next subsection.

A movement of a critical point C is an isotopy which is identical ev-
erywhere outside a small neighbourhood of C and does not introduce new
critical points on the knot. The invariance of the Kontsevich integral under
the movements of critical points will be considered in 8.6.3.

As we mentioned before, the Kontsevich integral is not invariant under
isotopies that change the number of critical points. Its behaviour under such
deformations will be discussed in Section 8.7.

8.6.2. Invariance under horizontal deformations. Let us decompose
the given knot into a product of tangles without critical points of the func-
tion t and very thin tangles containing the critical levels. A horizontal
deformation keeps fixed the neighbourhoods of the critical points, so, due
to multiplicativity, it is enough to prove that the Kontsevich integral for
a tangle without critical points is invariant under horizontal deformations
that preserve the boundary pointwise.

Proposition. Let T0 be a tangle without critical points and Tλ, a horizontal
deformation of T0 to T1 (preserving the top and the bottom of the tangle).
Then Z(T0) = Z(T1).

Proof. Denote by ω the integrand form in the mth term of the Kontsevich
integral:

ω =
∑

P={(zj ,z′j)}

(−1)↓DP

m∧
j=1

dzj − dz′j
zj − z′j

.

Here the functions zj , z
′
j depend not only on t1, ..., tm, but also on λ, and

all differentials are understood as complete differentials with respect to all
these variables. This means that the form ω is not exactly the form which
appears in the Kontsevich’s integral (it has some additional dλ’s), but this
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does not change the integrals over the simplices

∆λ = {tmin < tm < · · · < t1 < tmax} × {λ},

because the value of λ on such a simplex is fixed.

We must prove that the integral of ω over ∆0 is equal to its integral over
∆1.

Consider the product polytope

∆ = ∆0 × [0, 1] =

∆0 ∆1

.

By Stokes’ theorem, we have

∫
∂∆

ω =

∫
∆

dω .

The form ω is closed: dω = 0. The boundary of the integration domain
is ∂∆ = ∆0 −∆1 +

∑
{faces}. The theorem will follow from the fact that

ω|{face} = 0. To show this, consider two types of faces.

The first type corresponds to tm = tmin or t1 = tmax . In this situation,
dzj = dz′j = 0 for j = 1 or m, since zj and z′j do not depend on λ.

The faces of the second type are those where we have tk = tk+1 for some
k. In this case we have to choose the kth and (k + 1)st chords on the same
level {t = tk}. In general, the endpoints of these chords may coincide and
we do not get a chord diagram at all. Strictly speaking, ω and DP do not
extend to such a face so we have to be careful. Extend DP to this face in the
following manner: if some endpoints of kth and (k+1)st chords belong to the
same string (and therefore coincide) we place kth chord a little higher than
(k + 1)st chord, so that its endpoint differs from the endpoint of (k + 1)st
chord. This trick yields a well-defined prolongation of DP and ω to the face,
and we use it here.

All summands of ω are divided into three parts:

(1) kth and (k + 1)st chords connect the same two strings;

(2) kth and (k+1)st chords are chosen in such a way that their endpoints
belong to four different strings;

(3) kth and (k + 1)st chords are chosen in such a way that there exist
exactly three different strings containing their endpoints.

Consider all these cases one by one.

1) We have zk = zk+1 and z′k = z′k+1 or vice versa. So

d(zk − z′k) ∧ d(zk+1 − z′k+1) = 0

and, therefore, the restriction of ω to the face is zero.
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2) All choices of chords in this part of ω appear in mutually canceling
pairs. Fix four strings and number them by 1, 2, 3, 4. Suppose that for
a certain choice of the pairing, the kth chord connects the first two strings
and (k+ 1)st chord connects the last two strings. Then there exists another
choice for which, on the contrary, the kth chord connects the last two strings
and (k + 1)st chord connects the first two strings. These two choices give
two summands of ω differing by a sign:

· · · d(zk − z′k) ∧ d(zk+1 − z′k+1) · · ·+ · · · d(zk+1 − z′k+1) ∧ d(zk − z′k) · · · = 0.

3) This is the most difficult case. The endpoints of kth and (k + 1)st
chords have exactly one string in common. Call the three relevant strings

1, 2, 3 and denote by ωij the 1-form
dzi − dzj
zi − zj

. Then ω is the product of a

certain (m− 2)-form and the sum of the following six 2-forms:

(−1)↓ ω12 ∧ ω23 + (−1)↓ ω12 ∧ ω13

+(−1)↓ ω13 ∧ ω12 + (−1)↓ ω13 ∧ ω23

+(−1)↓ ω23 ∧ ω12 + (−1)↓ ω23 ∧ ω13 .

Using the fact that ωij = ωji, we can rewrite this as follows:(
(−1)↓ − (−1)↓

)
ω12 ∧ ω23

+

(
(−1)↓ − (−1)↓

)
ω23 ∧ ω31

+

(
(−1)↓ − (−1)↓

)
ω31 ∧ ω12 .

The four-term relations in horizontal form (page 99) say that the expressions
in parentheses are one and the same element of A, hence, the whole sum is
equal to(

(−1)↓ − (−1)↓
)

(ω12 ∧ ω23 + ω23 ∧ ω31 + ω31 ∧ ω12).

The 2-form that appears here is actually zero! This simple, but remarkable
fact, known as Arnold’s identity (see [Ar1]) can be put into the following
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form:

f + g + h = 0 =⇒ df

f
∧ dg
g

+
dg

g
∧ dh
h

+
dh

h
∧ df
f

= 0

(in our case f = z1 − z2, g = z2 − z3, h = z3 − z1) and verified by a direct
computation.

This finishes the proof. �

Remark. The Kontsevich integral of a tangle may change, if the boundary
points are moved. Examples may be found below in Exercises 8—11.

8.6.3. Moving the critical points. Let T0 and T1 be two tangles which
are identical except a sharp “tail” of width ε, which may be twisted:

T1T0

D
D

t

ε

More exactly, we assume that (1) T1 is different from T0 only inside a region
D which is the union of disks Dt of diameter ε lying in horizontal planes
with fixed t ∈ [t1, t2], (2) each tangle T0 and T1 has exactly one critical point
in D, and (3) each tangle T0 and T1 intersects every disk Dt at most in two
points. We call the passage from T0 to T1 a special movement of the critical
point. To prove Theorem 8.6.1 it is sufficient to show the invariance of the
Kontsevich integral under such movements. Note that special movements of
critical points may take a Morse knot out of the class of strict Morse knots.

Proposition. The Kontsevich integral remains unchanged under a special
movement of the critical point: Z(T0) = Z(T1).

Proof. The difference between Z(T0) and Z(T1) can come only from the
terms with a chord ending on the tail.

Consider the tangle T1 (T0 is considered similarly.) If the highest of
such chords connects the two sides of the tail, then the corresponding tangle
chord diagram is zero by a one-term relation.

So we can assume that the highest, say, the kth, chord is a “long” chord,
which means that it connects the tail with another part of T1. Suppose the
endpoint of the chord belonging to the tail is (z′k, tk). Then there exists
another choice for kth chord which is almost the same but ends at another



244 8. The Kontsevich integral

point of the tail (z′′k , tk) on the same horizontal level:

zk zkzk zk

The corresponding two terms appear in Z(T1) with the opposite signs due
to the sign (−1)↓.

Let us estimate the difference of the integrals corresponding to such kth
chords:∣∣∣∣∣∣∣

tc∫
tk+1

d(ln(z′k − zk)) −
tc∫

tk+1

d(ln(z′′k − zk))

∣∣∣∣∣∣∣ =

∣∣∣∣∣ ln

(
z′′k+1 − zk+1

z′k+1 − zk+1

)∣∣∣∣∣
=

∣∣∣∣∣ ln

(
1 +

z′′k+1 − z′k+1

z′k+1 − zk+1

)∣∣∣∣∣ ∼ ∣∣z′′k+1 − z′k+1

∣∣ 6 ε
(here tc is the value of t at the uppermost point of the tail).

Now, if the next (k + 1)st chord is also long, then, similarly, it can
be paired with another long chord so that they give a contribution to the
integral proportional to

∣∣z′′k+2 − z′k+2

∣∣ 6 ε.
In the case the (k + 1)st chord is short (that is, it connects two points

z′′k+1, z′k+1 of the tail) we have the following estimate for the double integral
corresponding to kth and (k + 1)st chords:∣∣∣∣∣∣∣

tc∫
tk+2

( tc∫
tk+1

d(ln(z′k − zk)) −
tc∫

tk+1

d(ln(z′′k − zk))

)
dz′′k+1 − dz′k+1

z′′k+1 − z′k+1

∣∣∣∣∣∣∣
6 const ·

∣∣∣∣∣∣∣
tc∫

tk+2

∣∣z′′k+1 − z′k+1

∣∣ dz′′k+1 − dz′k+1∣∣z′′k+1 − z′k+1

∣∣
∣∣∣∣∣∣∣

= const ·

∣∣∣∣∣∣∣
tc∫

tk+2

d(z′′k+1 − z′k+1)

∣∣∣∣∣∣∣ ∼
∣∣z′′k+2 − z′k+2

∣∣ 6 ε .
Continuing this argument, we see that the difference between Z(T0) and

Z(T1) is O(ε). Now, by horizontal deformations we can make ε tend to zero.
This proves the theorem and completes the proof of the Kontsevich integral’s
invariance in the class of knots with nondegenerate critical points. �
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8.7. Changing the number of critical points

The multiplicativity of the Kontsevich integral for tangles (Propositions 8.4.3
and 8.4.5) have several immediate consequences for knots.

8.7.1. From long knots to usual knots. A long (Morse) knot can be
closed up so as to produce a usual (Morse) knot:

Recall that the algebras of chord diagrams for long knots and for usual
knots are essentially the same; the isomorphism is given by closing up a
linear chord diagram.

Proposition. The Kontsevich integral of a long knot T coincides with that
of its closure KT .

Proof. Denote by id the tangle consisting of one vertical strand. Then KT

can be written as Tmax ·(T⊗ε id) ·Tmin where Tmax and Tmin are a maximum
and a minimum respectively, and 0 < ε 6 1.

Since the Kontsevich integral of KT does not depend on ε, we can take
ε→ 0. Therefore,

Z(KT ) = Z(Tmax) · (Z(T )⊗ Z(id)) · Z(Tmin).

However, the Kontsevich integrals of Tmax, Tmin and id consist of one dia-
gram with no chords, and the Proposition follows. �

A corollary of this is the formula (8.2.1) (page 233) which describes the
behaviour of the Kontsevich integral under the addition of a pair of critical
points. Indeed, adding a pair of critical points to a long knot T is the same
as multiplying it by

,

and (8.2.1) then follows from the multiplicativity of the Kontsevich integral
for tangles.
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8.7.2. The universal Vassiliev invariant. The formula (8.2.1) allows
one to define the universal Vassiliev invariant by either

I(K) =
Z(K)

Z(H)c/2

or

I ′(K) =
Z(K)

Z(H)c/2−1
,

where c denotes the number of critical points of K in an arbitrary Morse

representation, and the quotient means division in the algebra Â: (1+a)−1 =
1− a+ a2 − a3 + . . . .

Any isotopy of a knot in R3 can be approximated by a sequence con-
sisting of isotopies within the class of (not necessarily strict) Morse knots
and insertions/deletions of “humps”, that is, pairs of adjacent maxima and
minima. Hence, the invariance of Z(K) in the class of Morse knots and
the formula (8.2.1) imply that both I(K) and I ′(K) are invariant under
an arbitrary deformation of K. (The meaning of the “universality” will be
explained in Section 8.8.3.)

The version I ′(K) has the advantage of being multiplicative with respect
to the connected sum of knots; in particular, it vanishes (more precisely,
takes the value 1) on the unknot. However, the version I(K) is also used
as it has a direct relationship with the quantum invariants (see [Oht1]). In
particular, we shall use the term “Kontsevich integral of the unknot”; this,
of course, refers to I, and not I ′.

8.8. The universal Vassiliev invariant

8.8.1. Proof of the Kontsevich theorem. First of all we reformulate the
Kontsevich theorem (or, more exactly, Kontsevich’s part of the Vassiliev–
Kontsevich theorem 4.2.1) as follows.

8.8.2. Theorem. Let w be an unframed weight system of order n. Then
there exists a Vassiliev invariant of order n whose symbol is w.

Proof. The desired knot invariant is given by the formula

K 7−→ w(I(K)).

Let D be a chord diagram of order n and let KD be a singular knot with
chord diagram D. The theorem follows from the fact that I(KD) = D +
(terms of order > n). Since the denominator of I(K) starts with the unit of
the algebra A, it is sufficient to prove that

(8.8.1) Z(KD) = D + (terms of order > n).
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In fact, we shall establish (8.8.1) for D an arbitrary tangle chord diagram
and KD = TD a singular tangle with the diagram D.

If n = 0, the diagram D has no chords and TD is non-singular. For
a non-singular tangle the Kontsevich integral starts with a tangle chord
diagram with no chords, and (8.8.1) clearly holds. Note that the Kontsevich
integral of any singular tangle (with at least one double point) necessarily
starts with terms of degree at least 1.

Consider now the case n = 1. If TD is a singular 2-braid, there is only
one possible term of degree 1, namely the chord diagram with the chord
connecting the two strands. The coefficients of this diagram in Z(T+) and
Z(T−), where T+ − T− is a resolution of the double point of TD, simply
measure the number of full twists in T+ and T− respectively. The difference
of these numbers is 1, so in this case (8.8.1) is also true.

Now, let TD be an arbitrary singular tangle with exactly one double
point, and Vε be the ε-neighbourhood of the singularity. We can assume
that the intersection of TD with Vε is a singular 2-braid, and that the double
point of TD is resolved as TD = T ε+ − T ε− where T ε+ and T ε− coincide with T
outside Vε.

Let us write the degree 1 part of Z(T ε±) as a sum Z ′± + Z ′′± where Z ′± is
the integral over all chords whose both ends are contained in Vε and Z ′′± is
the rest, that is, the integral over the chords with at least one end outside
Vε. As ε tends to 0, Z ′′+−Z ′′− vanishes. On the other hand, for all ε we have
that Z ′′+ − Z ′′− is equal to the diagram D with the coefficient 1. This settles
the case n = 1.

Finally, if n > 1, using a suitable deformation, if necessary, we can
always achieve that TD is a product of n singular tangles with one double
point each. Now (8.8.1) follows from the multiplicativity of the Kontsevich
integral for tangles. �

8.8.3. Universality of I(K). In the proof of the Kontsevich Theorem we
have seen that for a singular knot K with n double points, I(K) starts
with terms of degree n. This means that if In(K) denotes the nth graded
component of the series I(K), then the function K 7→ In(K) is a Vassiliev
invariant of order n.

In some sense, all Vassiliev invariants are of this type:

8.8.4. Proposition. Any Vassiliev invariant can be factored through I: for

any v ∈ V there exists a linear function f on Â such that v = f ◦ I.

Proof. Let v ∈ Vn. By the Kontsevich theorem we know that there is
a function f0 such that v and f0 ◦ In have the same symbol. Therefore,
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the highest part of the difference v − f0 ◦ In belongs to Vn−1 and is thus
representable as f1 ◦ In−1. Proceeding in this way, we shall finally obtain:

v =

n∑
i=0

fi ◦ In−i =

(
n∑
i=0

fi

)
◦ I.

�

Remark. The construction of the foregoing proof shows that the universal
Vassiliev invariant induces a splitting of the filtered space V into a direct
sum

∞⊕
n=0

{f ◦ In | f linear}

with summands isomorphic to the factors Vn/Vn−1. Elements of these sub-
spaces are referred to as canonical Vassiliev invariants. We shall speak about
them in more detail later in Section 11.2.

As a corollary, we get the following statement:

8.8.5. Theorem. The universal Vassiliev invariant I is exactly as strong
as the set of all Vassiliev invariants: for any two knots K1 and K2 we have

I(K1) = I(K2) ⇐⇒ ∀v ∈ V v(K1) = v(K2).

8.9. Symmetries and the group-like property of Z(K)

8.9.1. Reality. Choose a basis in the vector space A consisting of chord
diagrams. A priori, the coefficients of the Kontsevich integral of a knot K
with respect to this basis are complex numbers.

Theorem. All coefficients of the Kontsevich integral with respect to a basis
of chord diagrams are real.

Remark. Of course, this fact is a consequence of the Le–Murakami The-
orem stating that these coefficients are rational (Section 10.4.5). However,
the rationality of the Kontsevich integral is a highly non-trivial fact, while
the proof that its coefficients are real is quite simple.

Proof. Rotate the coordinate frame in R3 around the real axis x by 180◦;
denote the new coordinates by t? = −t, z? = z. If K is a Morse knot, it will
still be a Morse knot, with the same number of maxima, with respect to the
new coordinates, and its Kontsevich integral, both preliminary and final,
will be the same in both coordinate systems. Let us denote the preliminary
Kontsevich integral with respect to the starred coordinates by Z?(K).

For each pairing P = {(zj , z′j)} with m chords that appears in the for-

mula for Z(K), there is a pairing P ? = {(z?j , z?j
′)} that appears in the
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formula for Z?(K). It consists of the very same chords as P but taken
in the starred coordinate system: z?j = zm−j+1 and z?j

′ = z′m−j+1. The
corresponding chord diagrams are, obviously, equal: DP = DP ? . More-
over, ↓?= 2m−↓ and, hence, (−1)↓

?
= (−1)↓. The simplex ∆ = tmin <

t1 < · · · < tm < tmax for the variables ti corresponds to the simplex
∆? = −tmax < t?m < · · · < t?1 < −tmin for the variables t?i . The coeffi-
cient of DP ? in Z?(K) is

c(DP ?) =
(−1)↓

(2πi)m

∫ m∧
j=1

d ln(z?j − z?j
′) ,

where z?j and z?j
′ are understood as functions in t?1, . . . , t?m and the integral

is taken over a connected component in the simplex ∆?. In the last integral
we make the change of variables according to the formula t?j = −tm−j+1.

The Jacobian of this transformation is equal to (−1)m(m+1)/2. Therefore,

c(DP ?) =
(−1)↓

(2πi)m

∫
(−1)m(m+1)/2

m∧
j=1

d ln(zm−j+1 − z′m−j+1)

(integral over the corresponding connected component in the simplex ∆).
Now permute the differentials to arrange the subscripts in the increasing or-
der. The sign of this permutation is (−1)m(m−1)/2. Note that (−1)m(m+1)/2 ·
(−1)m(m−1)/2 = (−1)m. Hence,

c(DP ?) =
(−1)↓

(2πi)m
(−1)m

∫ m∧
j=1

d ln(zj − z′j)

=
(−1)↓

(2πi)m

∫ m∧
j=1

d ln(zj − z′j) = c(DP ).

Since any chord diagram DP can be expressed as a combination of the basis
diagrams with real coefficients, this proves the theorem. �

8.9.2. The group-like property.

Theorem. For any Morse tangle T with skeleton X the Kontsevich integral
Z(T ) is a group-like element in the graded completion of the coalgebra A(X):

(8.9.1) δ(Z(T )) = Z(T )⊗ Z(T ) .

In particular, if K is a knot, Z(K) is a group-like element in Â.

Proof. In right-hand side of (8.9.1), consider the coefficient of the tensor
product of two (tangle) chord diagrams D1 ⊗ D2 with m and n chords
respectively. It comes from a particular choice of the pairing P1 for m
chords of D1 on the levels t1, . . . tm, and a pairing P2 for n chords of D2 on
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the levels tm+1, . . . , tm+n.1 Denote by ∆1 the simplex a < tm < · · · < t1 < b,
and by ∆2 the simplex a < tm+n < · · · < tm+1 < b. Then the coefficient at
D1 ⊗D2 in the right-hand side of (8.9.1) is the product of two integrals

(−1)↓1+↓2

(2πi)m+n

 ∫
∆1

m∧
j=1

dzj − dz′j
zj − z′j

 ·
 ∫

∆2

m+n∧
j=m+1

dzj − dz′j
zj − z′j

 ,

which can be written as a single integral over the product of simplices:

(−1)↓1+↓2

(2πi)m+n

∫
∆1×∆2

m+n∧
j=1

dzj − dz′j
zj − z′j

.

Now we split the product ∆1 ×∆2 into the union of mutually disjoint sim-
plices corresponding to all possible shuffles of two linearly ordered words
tm < · · · < t1 and tm+n < · · · < tm+1. A shuffle of two words tm . . . t1 and
tm+n . . . tm+1 is a word consisting of the letters tm+n, . . . , t1 and such that
its subwords consisting of letters tm . . . t1 and tm+n . . . tm+1 respect their
linear orders. Here is an example (m = 2, n = 1) of such splitting:

∆1

-∆2

∆1 ×∆2

6

t3

-
t1

�
��
t2

=

t3 < t2 < t1

⋃
t2 < t3 < t1

⋃
t2 < t1 < t3

The integral over the product of simplices is equal to the sum of integrals
corresponding to all possible shuffles. But the integral over one particular
simplex is precisely the coefficient in Z(K) of the chord diagram obtained
by merging the chord diagrams D1 and D2 according to the shuffle. This is
equal to one term of the coefficient of D1⊗D2 in the left-hand side of (8.9.1).
It is easy to see that the terms in the coefficient of D1 ⊗D2 in δ(Z(K)) are
in one to one correspondence with all ways to merge D1 and D2, or in other
words, with all possible shuffles of the words tm . . . t1 and tm+n . . . tm+1. �

Group-like elements in a bialgebra form a group and this implies that
the final Kontsevich integral is also group-like.

1In fact, a given chord diagram may be represented by different pairings; we apply our
argument to each such choice and then sum up the results.
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8.9.3. Change of orientation.

Theorem. The Kontsevich integral commutes with the operation τ of ori-
entation reversal:

Z(τ(K)) = τ(Z(K)).

Proof. Changing the orientation ofK has the following effect on the formula
for the Kontsevich integral on page 230: each diagram D is replaced by τ(D)
and the factor (−1)↓ is replaced by (−1)↑, where by ↑ we mean, of course,
the number of points (zj , tj) or (z′j , tj) in a pairing P where the coordinate
t grows along the parameter of K. Since the number of points in a pairing
is always even, (−1)↓ = (−1)↑, so that τ(D) appears in Z(τ(K)) with the
same coefficient as D in Z(K). The theorem is proved. �

Corollary. The following two assertions are equivalent:

• Vassiliev invariants do not distinguish the orientation of knots,

• all chord diagrams are symmetric: D = τ(D) modulo one- and
four-term relations.

The calculations of [Kn0] show that up to order 12 all chord diagrams
are symmetric. For bigger orders the problem is still open.

8.9.4. Mirror images. Recall that σ is the operation sending a knot to
its mirror image (see 1.4). Define the corresponding operation σ : A → A
by sending a chord diagram D to (−1)degDD. It extends to a map Â → Â
which we also denote by σ.

Theorem. The Kontsevich integral commutes with σ:

Z(σ(K)) = σ(Z(K)) .

Proof. Let us realize the operation σ on knots by the reflection of R3 coming
from the complex conjugation in C: (z, t) 7→ (z̄, t). Then the Kontsevich
integral for σ(K) can be written as

Z(σ(K)) =

∞∑
m=0

1

(2πi)m

∫ ∑
P

(−1)↓DP

m∧
j=1

d ln(zj − z′j)

=
∞∑
m=0

(−1)m
1

(2πi)m

∫ ∑
P

(−1)↓DP

m∧
j=1

d ln(zj − z′j) .

Comparing this with the formula for Z(K) we see that the terms of Z(σ(K))

with an even number of chords coincide with those of Z(K) and terms of
Z(σ(K)) with an odd number of chords differ from the corresponding terms

of Z(K) by a sign. �
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Since the Kontsevich integral is equivalent to the totality of all finite
type invariants, Theorem 8.9.4 implies that if v is a Vassiliev invariant of
degree n, K is a singular knot with n double points and K = σ(K) its mirror
image, then v(K) = v(K) for even n and v(K) = −v(K) for odd n.

Exercise. Prove this statement without using the Kontsevich integral.

Recall (page 23) that a knot K is called plus-amphicheiral, if it is equiv-
alent to its mirror image as an oriented knot: K = σ(K), and minus-
amphicheiral if it is equivalent to the inverse of the mirror image: K = τσK.
Write τ for the mirror reflection on chord diagrams (see 5.5.3), and recall
that an element of A is called symmetric, (antisymmetric), if τ acts on it as
identity, (as multiplication by −1, respectively).

Corollary. The Kontsevich integral Z(K) of a plus-amphicheiral knot K
consist only of even order terms. For a minus-amphicheiral knot K the
Kontsevich integral Z(K) has the following property: its even-degree part
consists only of symmetric chord diagrams, while the odd-degree part con-
sists only of anti-symmetric diagrams. The same is true for the universal
Vassiliev invariant I(K).

Proof. For a plus-amphicheiral knot, the theorem implies that Z(K) =
σ(Z(K)), hence all the odd order terms in the series Z(K) vanish. The

quotient of two even series in the graded completion Â is obviously even,
therefore the same property holds for I(K) = Z(K)/Z(H)c/2.

For a minus-amphicheiral knot K, we have Z(K) = τ(σ(Z(K))), which
implies the second assertion. �

Note that it is an open question whether non-symmetric chord diagrams
exist. If they do not, then, of course, both assertions of the theorem, for
plus- and minus-amphicheiral knots, coincide.

8.10. Towards the combinatorial Kontsevich integral

Since the Kontsevich integral comprises all Vassiliev invariants, calculating
it explicitly is a very important problem. Knots are, essentially, combina-
torial objects so it is not surprising that the Kontsevich integral, which we
have defined analytically, can be calculated combinatorially from the knot
diagram. Different versions of such combinatorial definition were proposed
in several papers ([BN2, Car1, LM1, LM2, Piu]) and treated in several
books ([Kas, Oht1]). Such a definition will be given in Chapter 10; here
we shall explain the idea behind it.

The multiplicativity of the Kontsevich integral hints at the following
method of computing it: present a knot as a product of several standard
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tangles whose Kontsevich integral is known and then multiply the corre-
sponding values of the integral. This method works well for the quantum
invariants, see Sections 2.6.5 and 2.6.6; however, for the Kontsevich integral
it turns out to be too näıve to be of direct use.

Indeed, in the case of quantum invariants we decompose the knot into
elementary tangles, that is, crossings, max/min events and pieces of vertical
strands using both the usual product and the tensor product of tangles.
While the Kontsevich integral behaves well with respect to the usual product
of tangles, there is no simple expression for the integral of the tensor product
of two tangles, even if one of the factors is a trivial tangle. As a consequence,
the Kontsevich integral is hard to calculate even for the generators of the
braid group, not to mention other possible candidates for “standard” tangles.

Still, we know that the Kontsevich integral is asymptotically multiplica-
tive with respect to the parametrized tensor product. This suggests the
following procedure.

Write a knot K as a product of tangles K = T1 · . . . ·Tn where each Ti is
simple, that is, a tensor product of several elementary tangles. Let us think
of each Ti as of an ε-parametrized tensor product of elementary tangles with
ε = 1. We want to vary this ε to make it very small. There are two issues
here that should be taken care of.

Firstly, the ε-parametrized tensor product is not associative for ε 6= 1, so
we need a parenthesizing on the factors in Ti. We choose the parenthesizing
arbitrarily on each Ti and denote by T εi the tangle obtained from Ti by
replacing ε = 1 by an arbitrary positive ε 6 1.

Secondly, even though the tangles Ti and Ti+1 are composable, the tan-
gles T εi and T εi+1 may fail to be composable for ε < 1. Therefore, for each i
we have to choose a family of associating tangles without crossings Qεi which
connect the bottom endpoints of T εi with the corresponding top endpoints
of T εi+1.

Now we can define a family of knots Kε as

Kε = T ε1 ·Qε1 · T ε2 · . . . ·Qεn−1 · T εn.

Figure 8.10.1 illustrates this construction on the example of a trefoil knot.

Since for each ε the knot Kε is isotopic to K it is tempting to take
ε → 0, calculate the limits of the Kontsevich integrals of the factors and
then take their product. The Kontsevich integral of any elementary tangle,
and, hence, of the limit

lim
ε→0

Z(T εi )

is easily evaluated, so it only remains to calculate the limit of Z(Qεi ) as ε
tends to zero.
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min←−

(id⊗ε min←−)⊗ε id∗

(X− ⊗ε id∗)⊗ε id∗

(X− ⊗ε id∗)⊗ε id∗

(X− ⊗ε id∗)⊗ε id∗

(id⊗ε
−→
max )⊗ε id∗

−→
max

T ε7

Qε6

T ε6

Qε5

T ε5

T ε4

T ε3

Qε2

T ε2

Qε1

T ε1

∼ε2

∼ε

∼ε2
∼1

Figure 8.10.1. A decomposition of the trefoil into associating tangles
and ε-parametrized tensor products of elementary tangles, with the no-
tations from Section 1.7.7. The associating tangles between T ε3 , T ε4 and
T ε5 are omitted since these tangles are composable for all ε.

Calculating this last limit is not a straightforward task, to say the least.
In particular, if Qε is the simplest associating tangle

0

ε

ε 1−ε 1

1−ε

1

t

z

we shall see in Chapter 10 that asymptotically, as ε→ 0 we have

Z
( )

' ε
1

2πi · ΦKZ · ε−
1

2πi ,

where εx is defined as the formal power series exp(x log ε) and ΦKZ is the
power series known as the Knizhnik-Zamolodchikov associator. Similar for-
mulae can be written for other associating tangles.

There are two difficulties here. One is that the integral Z(Qε) does not
converge as ε tends to 0. However, all the divergence is hidden in the terms

ε
1

2πi and ε−
1

2πi and careful analysis shows that all such terms from all
associating tangles cancel each other out in the limit, and can be omitted.
The second problem is to calculate the associator. This a highly non-trivial
task, and is the main subject of Chapter 10.
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Exercises

(1) For the link with two components K and L
shown on the right draw the configuration
space of horizontal chords joining K and L
as in the proof of the linking number theo-
rem from Section 8.1.2 (see page 228). Com-
pute the linking number of K and L using
this theorem.

K

L

(2) Is it true that Z(H) = Z(H), where H is the hump as shown in page
233 and H is the same hump reflected in a horizontal line?

(3) M. Kontsevich in his pioneering paper [Kon1] and some of his followers
(for example, [BN1, CD3]) defined the Kontsevich integral slightly
differently, numbering the chords upwards. Namely, ZKont(K) =

=
∞∑
m=0

1

(2πi)m

∫
tmin<t1<···<tm<tmax

tj are noncritical

∑
P={(zj ,z′j)}

(−1)↓PDP

m∧
j=1

dzj − dz′j
zj − z′j

.

Prove that for any tangle T , ZKont(T ) = Z(T ), as series of tangle chord
diagrams.

Hint. Change of variables in multiple integrals.

(4) Express the integral over the cube

Z�(K) :=
∞∑
m=0

1

(2πi)m

∫
tmin<t1,...,tm<tmax
tj are noncritical

∑
P={(zj ,z′j)}

(−1)↓PDP

m∧
j=1

dzj − dz′j
zj − z′j

in terms of Z(K).

(5) Compute the Kontsevich integral of the tangles and .

(6) Prove that for the tangle shown on

the right Z( ) = exp
(

2πi · ln ε
)
.

0 ε 1 z

1−ε
t

t=1−z

(7) The Euler dilogarithm is defined by the power series

Li2(z) =

∞∑
k=1

zk

k2
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for |z| 6 1. Prove the following identities

Li2(0) = 0; Li2(1) = π2

6 ; Li′2(z) = − ln(1−z)
z ;

d
dz

(
Li2(1− z) + Li2(z) + ln z ln(1− z)

)
= 0 ;

Li2(1− z) + Li2(z) + ln z ln(1− z) = π2

6 .

About these and other remarkable properties of Li2(z) see [Lew, Kir,
Zag2].

(8) Consider the associating tangle shown

on the right. Compute Z
( )

up to the
second order.
Answer. − 1

2πi ln
(

1−ε
ε

) (
−

)
− 1

8π2 ln2
(

1−ε
ε

) (
+

)
0 ε 1−ε 1 z

ε

1−ε

t
z=t

+ 1
4π2

(
ln(1− ε) ln

(
1−ε
ε

)
+ Li2(1− ε)− Li2(ε)

)
− 1

4π2

(
ln(ε) ln

(
1−ε
ε

)
+ Li2(1− ε)− Li2(ε)

)
The calculation here uses the dilogarithm function defined in prob-

lem (7). Note that the Kontsevich integral diverges as ε→ 0.

(9) Make the similar computation Z
( )

for the reflected tangle. Describe
the difference with the answer to the previous problem.

(10) Compute the Kontsevich integral Z
( )

of the
maximum tangle shown on the right.
Answer. + 1

2πi ln(1− ε)
+ 1

4π2

(
Li2
(

ε
2−ε
)
− Li2

( −ε
2−ε
))

0 1−ε 1 z

1−ε

1

t t=−z2+(2−ε)z

+ 1
8π2

(
ln2 2− ln2

(
1−ε
2−ε

)
+ 2Li2

(
1
2

)
− 2Li2

(
1−ε
2−ε
))

+ 1
8π2

(
ln2 2− ln2(2− ε) + 2Li2

(
1
2

)
− 2Li2

(
1

2−ε
))

(11) Compute the Kontsevich integral Z
( )

of the
minimum tangle shown on the right.
Answer. − 1

2πi ln(1− ε)
+ 1

4π2

(
Li2
(

ε
2−ε
)
− Li2

( −ε
2−ε
))

0 ε 1 z

ε

t t=z2−εz+ε

+ 1
8π2

(
ln2 2− ln2

(
1−ε
2−ε

)
+ 2Li2

(
1
2

)
− 2Li2

(
1−ε
2−ε
))

+ 1
8π2

(
ln2 2− ln2(2− ε) + 2Li2

(
1
2

)
− 2Li2

(
1

2−ε
))

Note that all nontrivial terms in the last two problems tend to zero
as ε→ 0.
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(12) Express the Kontsevich integral of the hump as the product of tangle
chord diagrams from problems 8, 10, 11:

Z
( )

= Z
( )

· Z
( )

· Z
( )

.

To do this introduce shorthand notation for the coefficients:
Z
( )

= + A + B + C + D

Z
( )

= + E
(

−
)

+ F
(

+
)

+ G + H

Z
( )

= + I + J + K + L .
Show that the order 1 terms of the product vanish.
The only nonzero chord diagram of order 2 on the hump is the cross

(diagram without isolated chords). The coefficient of this diagram is
B +D +G+ J + L−AE +AI + EI. Show that it is equal to

Li2
(

ε
2−ε

)
−Li2

(
−ε
2−ε

)
+Li2

(
1
2

)
−Li2

(
1

2−ε

)
−Li2(ε)

2π2 + ln2 2−ln2(2−ε)
4π2 + 1

24 .

Using the properties of the dilogarithm mentioned in problem 7 prove
that the last expression equals 1

24 . This is also a consequence of the
remarkable Rogers five-term relation (see, for example, [Kir])

Li2x+ Li2y − Li2xy = Li2
x(1−y)
1−xy + Li2

y(1−x)
1−xy + ln (1−x)

1−xy ln (1−y)
1−xy

and the Landen connection formula (see, for example, [Roos])

Li2z + Li2
−z
1−z = −1

2 ln2(1− z) .

(13) Let Si be the operation of reversing the orientation of the ith component
of a tangle T . Denote by the same symbol Si the operation on tangle
chord diagrams which (a) reverses the ith component of the skeleton of
a diagram; (b) multiplies the diagram by −1 raised to the power equal
to the number of chord endpoints lying on the ith component. Prove
that

Z(Si(T )) = Si(Z(T ))

We shall use this operation in Chapter 10.

(14) Compute the Kontsevich integral
Z(AT tb,w) up to the order 2. Here
ε is a small parameter, and w, t,
b are natural numbers subject to
inequalities w < b and w < t.
Answer. Z(AT tb,w) = +

AT tb,w =

εb
εw

εt

+ 1
2πi ln

(
εw−εt
εb

)
− 1

2πi ln
(
εw−εb
εt

)
− 1

8π2 ln2
(
εw−εt
εb

)
− 1

8π2 ln2
(
εw−εb
εt

)



258 8. The Kontsevich integral

− 1
4π2

(
ln(εb−w) ln

(
εw−εb
εt

)
+ Li2(1− εb−w)− Li2(εt−w)

)
+ 1

4π2

(
ln(1− εt−w) ln

(
εw−εb
εt

)
+ Li2(1− εb−w)− Li2(εt−w)

)
.

(15) The set of elementary tangles can be expanded by adding crossings with
arbitrary orientations of strands. Express the figure eight knot 41 in
terms of associating tangles and ε-parametrized tensor products of ele-
mentary (in this wider sense) tangles in the same manner as the trefoil
31 is described in Figure 8.10.1.
Answer: A possible answer is shown in Figure 8.10.2.

∼1

∼ε

∼ε

∼ε2

Figure 8.10.2. The figure eight knot in terms of elementary tangles
and associating tangles.



Chapter 9

Framed knots and
cabling operations

In this chapter we show how to associate to a framed knot K an infinite
set of framed knots and links, called the (p, q)-cables of K. The operations
of taking the (p, q)-cable respect the Vassiliev filtration, and give rise to
operations on Vassiliev invariants and on chord diagrams. We shall give
explicit formulae that describe how the Kontsevich integral of a framed
knot changes under the cabling operations. As a corollary, this will give an
expression for the Kontsevich integral of all torus knots.

9.1. Framed version of the Kontsevich integral

In order to describe a framed knot one only needs to specify the correspond-
ing unframed knot and the self-linking number. This suggests that there
should be a simple formula to define the universal Vassiliev invariant for
a framed knot via the Kontsevich integral of the corresponding unframed
knot. This is, indeed, the case, as we shall see in Section 9.1.2. However,
for our purposes it will be more convenient to use a definition of the framed
Kontsevich integral given by V. Goryunov in [Gor1], which is in the spirit
of the original formula of Kontsevich described in Section 8.2.

Remark. For framed knots and links, the universal Vassiliev invariant was
first defined by Le and Murakami [LM2] who gave a combinatorial construc-
tion of it using the Drinfeld associator (see Chapter 10). Goryunov used his
framed Kontsevich integral in [Gor2] to study Arnold’s J+-theory of plane
curves (or, equivalently, Legendrian knots in a solid torus).

259
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9.1.1. Definition of the framed Kontsevich integral. Let Kε be a
framing curve of K, that is, a copy of K shifted by a small distance ε in
the direction of the framing. We assume that both K and Kε are in general
position with respect to the height function t as in Section 8.2. Then we
construct the (preliminary) integral Z(K,Kε) defined by the formula

Z(K,Kε) =
∞∑
m=0

1

(4πi)m

∫
tmin<tm<···<t1<tmax

tj are noncritical

∑
P={(zj ,z′j)}

(−1)↓DP

m∧
j=1

dzj − dz′j
zj − z′j

,

whose only difference with the formula for the unframed Kontsevich integral
is the numerical factor in front of the integral. However, the notation here
has a different meaning. The class of the diagram DP is taken in Afr rather
than in A. We consider only those pairings P = {(zj , z′j)} where zj lies

on K while z′j lies on Kε. In order to obtain the chord diagram DP we
project the chord endpoints that lie on Kε back onto K along the framing.
If an endpoint z′j projects exactly to the point zj on K, we place a “small”
isolated chord in a neighbourhood of zj . The following picture illustrates
this definition:

t

K

Kε

t3
z3

z′3

t2
z′2 z2

t1 z′1
z1

DP

z′3
z3

z′2

z2

z′1

z1

Now the framed Kontsevich integral can be defined as

Zfr(K) = lim
ε→0

Z(K,Kε) .

In [Gor1] V. Goryunov proved that the limit does exist and is invariant
under the deformations of the framed knot K in the class of framed Morse
knots. We refer the reader to Goryunov’s paper for details.



9.1. Framed version of the Kontsevich integral 261

Example. Let O+m be the m-framed unknot:

Then

Zfr(O+m) = exp
mΘ

2
.

Example. The integral formula for the linking number in 8.1.2 shows that
the coefficient of the diagram Θ in Zfr(K) is equal to w(K)/2 where w(K)
is the self-linking number of K.

Define the final framed Kontsevich integral as

Ifr(K) =
Zfr(K)

Zfr(H)c/2
,

where H is the zero-framed hump unknot (see page 233). With its help one
proves the framed version of Theorem 8.8.2:

Theorem. Let w be a framed C-valued weight system of order n. Then
there exists a framed Vassiliev invariant of order 6 n whose symbol is w.

9.1.2. The relation with the unframed integral.

Proposition. The image of the framed Kontsevich integral Zfr(K) under

the quotient map Âfr → Â is the unframed Kontsevich integral Z(K).

Proof. Each horizontal chord with endpoints on K can be lifted to a chord
with one end on K and the other on Kε in two possible ways. Therefore,
each pairing P with m chords for the unframed Kontsevich integral comes
from 2m different pairings for the framed integral. As ε tends to zero, each
of these pairings gives the same contribution to the integral as P and its
coefficient is precisely (2πi)−m/2m = (4πi)−m. �

In fact, we can prove a much more precise statement. As we have seen in
Section 4.4.5, the algebra of chord diagrams A can be considered as a direct
summand of Afr. This allows us to compare the framed and the unframed
Kontsevich integrals directly.
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Theorem. Let K be a framed knot with self-linking number w(K). Then

Zfr(K) = Z(K) · exp
w(K)Θ

2

where Z(K) is considered as an element of Âfr.

This statement can be taken as a definition of the framed Kontsevich
integral.

Proof. Recall that A is identified with a direct summand of Afr by means
of the algebra homomorphism p : Afr → Afr whose kernel is the ideal
generated by the diagram Θ, and which is defined on a diagram D as

p(D) =
∑
J⊆[D]

(−Θ)degD−|J | ·DJ ,

see Section 4.4.5. We shall prove that

(9.1.1) p(Zfr(K)) = Zfr(K) · exp(−w(K)Θ

2
),

which will imply the statement of the theorem.

Write p(D) as a sum
∑

k(−1)kΘk · p(k)(D) where the action of p(k) con-
sists in omitting k chords from a diagram in all possible ways:

p(k)(D) =
∑

J⊆[D], degD−|J |=k

DJ .

We have p(k)(Z
fr(K)) =

∑
cPDP where the sum is taken over all possible

pairings P . The coefficient cP is equal to the sum of all the coefficients in
Zfr(K) that correspond to pairings P ′ obtained from P by adding k chords.
These chords can be taken arbitrarily, so, writing m for the degree of P we
have

cP =
1

(4πi)m+k

∫
tmin<tm<···<t1<tmax
tmin<τk<···<τ1<tmax

∑
P={(zj ,z′j)}

(−1)↓
m∧
j=1

d ln (zj − z′j) ∧
k∧
i=1

d ln (ζi − ζ ′i) ,

where all tj and τi are non-critical and distinct, zj and z′j depend on tj and

ζi and ζ ′i — on τi. This expression is readily seen to be a product of two
factors: the coefficient at DP in Zfr(K) and

1

(4πi)k

∫
tmin<τk<···<τ1<tmax

∑
P ′={(ζi,ζ′i)}

(−1)↓
k∧
i=1

d ln (ζi − ζ ′i) .
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The latter expression is equal to

1

k! · (4πi)k

∫
tmin<τ1,...,τk<tmax

∑
P ′={(ζi,ζ′i)}

(−1)↓
k∧
i=1

d ln (ζi − ζ ′i) =
1

k!

(w(K)

2

)k
,

so that

p(k)(Z
fr(K)) =

1

k!

(w(K)

2

)k
· Zfr(K),

and (9.1.1) follows. �

9.1.3. The case of framed tangles. The above methods produce the
Kontsevich integral not just for framed knots, but, more generally, for
framed tangles. Let T be a framed tangle each of whose components has
the same number of maxima and minima. In other words, the boundary
of each component of T is either empty or has points both on the top and
on the bottom of T . The preliminary integral Zfr(T ) of a tangle T can
be constructed just as in the case of knots, and the final integral Ifr(T ) is
defined as

Ifr(T ) = Zfr(H)−m1# . . .#Zfr(H)−mk#Zfr(T ),

wheremi is the number of maxima on the ith component of T and Zfr(H)−mi

acts on the ith component of Zfr(T ) as defined in 5.10.4. Here k is the num-
ber of components of T .

Note that the final integral Ifr(T ) is multiplicative with respect to the
tangle product, but not the connected sum of knots.

Exercise. Show that the Kontsevich integral of a single maximum, with an
arbitrary framing, cannot be defined as above.

9.2. Cabling operations

9.2.1. Cabling operations on framed knots. Let p, q be two coprime
integers with p 6= 0, and K be a framed knot given by an embedding f :
S1 → R3 with the framing vector v(θ) for θ ∈ S1. Denote by rαv(θ) the
rotation of the vector v(θ) by the angle α in the plane orthogonal to the
knot. Then, for all sufficiently small values of ε, the map

θ → f(pθ) + ε · rqθv(pθ)

is actually a knot. This knot is called the (p, q)-cable of K; we denote it by

K(p,q). Note that q is allowed to be zero: K(1,0) is K itself, and K(−1,0) is
the inverse K∗.
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Example. Here is the left trefoil with the blackboard framing and its (3, 1)-
cable:

The (p, q)-cables can, in fact, be defined for arbitrary integers p, q with
p 6= 0, as follows. Take a small tubular neighbourhood N of K. On its
boundary there are two distinguished simple closed oriented curves: the
meridian, which bounds a small disk perpendicular to the knot1 and is ori-
ented so as to have linking number one with K, and the longitude, which is
obtained by shifting K to ∂N along the framing. The choice of a meridian
and a longitude identifies ∂N with a torus {(a, b)}where a and b are real
numbers mod 1 and the curves a = 0 and b = 0 define the meridian and the
longitude respectively. The (p, q)-cable of K is the curve on ∂N given by
the equation qa = pb that represents p times the class of the longitude plus
q times the class of the meridian in H1∂N . The cable K(p,q) is a knot if and
only if p and q are relatively prime; otherwise, it is a link with more than
one component. The number of components of the resulting links is pre-
cisely the greatest common divisor of p and q. Sometimes, the (k, 0)-cable
of K is called the kth disconnected cabling of K and the (k, 1)-cable the kth

connected cabling of K. We shall consider K(p,q) as a framed link with the
framing normal to ∂N and pointing outwards:

Example. The (p, q)-torus knot (link) can be defined as the (p, q)-cable of
the zero-framed unknot.

9.2.2. Cables and Vassiliev invariants. Composing a link invariant with
a cabling operation on knots we obtain a new invariant of (framed) knots.

Proposition. Let p, q be a pair of integers and r be their greatest common
divisor. If v is a Vassiliev invariant of framed r-component links whose
degree is at most n, the function v(p,q) sending a framed knot K to v(K(p,q))
is an invariant of degree 6 n.

1This defines the meridian up to isotopy.
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Proof. Indeed, the operation of taking the (p, q)-cable sends the singular
knot filtration on ZKfr, where Kfr is the set of the equivalence classes of
framed knots, into the filtration by singular links on the free abelian group
generated by the r-component framed links, since the difference

−

can be written as a sum of several links with one double point each. For
instance,

− = + + + .

�

It is clear from the above argument what effect the cabling operation
has on chord diagrams. Consider first the case of p and q coprime, when the
(p, q)-cabling gives an operation on knot invariants. For a chord diagram D
define ψp(D) to be the sum of chord diagrams obtained by all possible ways
of lifting the ends of the chords to the p-sheeted connected covering of the
Wilson loop of D.

Example.

ψ2( ) = + + + + +

+ + + + + +

+ + + +

= 12 + 4 .

ψ2( ) = 8 + 8 .

It is a simple exercise to see that ψp respects the 4T relations; hence, it
gives a linear map ψp : Afr → Afr. We have the following

Proposition. symb(vp,q) = symb(v) ◦ ψp.
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Note that the symbol of v(p,q) does not depend on q.

The case when p and q are not coprime and the (p, q)-cable is a link
with at least two components, is very similar. We shall treat this case in a
slightly more general setting in Section 9.2.3.

9.2.3. Cabling operations in C and B. The map ψp is defined on general
closed diagrams in the very same way as on chord diagrams: it is the sum of
all possible liftings of the legs of a diagram to the p-fold connected cover of
its Wilson loop. It is not hard to see that ψp defined in this manner respects
the STU relation. For instance,

ψ2
( )

= ψ2
( )

− ψ2
( )

= + + +

− − − −

= − + −

= + .

Therefore, ψp is a well-defined map of C to itself. Note that ψp is a coalgebra
map; however, it does not respect the product in C. This is hardly surprising
since the cabling maps in general do not respect the connected sum of knots.

The algebra B is better suited for working with the cabling operations
than C: the map ψp applied to an open diagram with k legs simply multiplies
this diagram by pk. Indeed, the isomorphism χ : B ∼= C takes an open
diagram B with k legs into the average of the k! closed diagrams obtained
by all possible ways of attaching the legs of B to a Wilson loop. Lifting this
average to the p-fold covering of the Wilson loop we get the same thing as
pkχ(B). We arrive to the following

Proposition. The operation ψp : B → B is an Hopf algebra map. In par-
ticular, the subspace Bk of diagrams with k legs is the eigenspace for ψp with
eigenvalue pk.

The fact that ψp respects the product on B follows from the second part
of the Proposition.
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9.2.4. Cablings on tangle diagrams. So far we have only considered the
effect of the (p, q)-cables on chord diagrams for coprime p and q. However,
there is no difficulty in extending our results to the case of arbitrary p and
q.

Given a framed tangle T with a closed component y, we can define its

(p, q)-cable along y, denoted by T
(p,q)
y in the same manner as for knots. If

p, q are coprime the result will have the same skeleton as the original tangle,
otherwise the component y will be replaced by several components whose
number is the greatest common divisor of p and q.

If p′ = rp and q′ = rq with p and q coprime, the map ψr·py corresponding
to the (p′, q′)-cable on the space of closed Jacobi diagrams with the skeleton
X ∪ y can be described as follows. Consider the map

X ∪ y1 ∪ . . . ∪ yr →X ∪ y

where yi are circles, which sends X to X by the identity map and maps
each yi to y as a p-fold covering. Then ψr·py of a closed diagram D is the
sum of all the different ways of lifting the legs of D to X∪iyi. For example,

ψ2·1
( )

= + + + + +

+ + + + + +

+ + + +

= 2 + 8 + 2 + 4 .

and

ψ2·1
( )

= 2 + 8

+ 2 + 4 .

Here we have omitted the subscript indicating the component y, since the
original diagram had only one component. In what follows, we shall write
ψpy instead of ψ1·p

y .

As in Section 9.2.2, the (p, q)-cable along y composed with a Vassiliev
invariant v of degree n is again a Vasiliev invariant of the same degree, whose
symbol is obtained by composing ψr·py with the symbol of v. The map ψr·py
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satisfies the 4T relations and gives rise to a coalgebra map on the spaces of
closed diagrams.

9.2.5. Disconnected cabling in B. Just as with connected cabling, dis-
connected cabling looks very simple in the algebra B. Composing ψr·1y with
χ we immediately get the following

Proposition. The disconnected cabling operation ψr·1y sends an open dia-

gram in B(y) with k legs to the sum of all rk ways of replacing one label y
by r labels y1, . . . ,yr.

A similar statement holds, of course, for diagrams with more than one
skeleton component.

9.3. The Kontsevich integral of a (p, q)-cable

The Kontsevich integral is well-behaved with respect to taking (p, q)-cables
for all values of p and q.

Theorem ([LM5, BLT]). Let T be a framed tangle each of whose com-
ponents is either closed or has boundary points both on the top and on the
bottom of T , and let y be a closed component of T . If p, q, r are integers
such that r is the greatest common divisor of p and q, we have

Ifr(T
(p,q)
y ) = ψ

r·p/r
y

(
Ifr(T )#y exp(

q

2p
Θ)
)
,

where #y denotes the action of C on the tangle chord diagrams by taking
the connected sum along the component y.

Remark. At the first sight the formula of [BLT] for the Kontsevich integral
of a (p, 1)-cable may seem to disagree with the above theorem. This is due
to a different choice of framing on the (p, 1)-cable of a knot in [BLT].

Proof. For simplicity, we shall prove the theorem only for knots; the case
of a general tangle is very similar. In the course of this proof it will be
convenient to use the notion of the parallel of a tangle; this is an alternative
way to define the cabling operations.

Let T be a tangle with the property that shifting T along the vector
(t, 0, 0) we obtain disjoint tangles for all sufficiently small non-negative t.
Take δ > 0 and define the pth parallel of T by taking T together with p− 1
copies of it shifted along the x-axis: the first copy shifted by δ, the second
by 2δ and so on. We denote this tangle by T (p). If δ is sufficiently small, the
pth parallel of T is well-defined up to isotopy. The tangle T and its parallels
can be framed by taking the framing curve to be a small shift of T by some
ε > 0 along the x-axis. Any framed knot can be embedded in R3 so that its
(p, 0)-cable is the same thing as its pth parallel.
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If T is a braid, we have

lim
δ→0

Z(T (p)) = ∆(p)(Z(T )),

where ∆(p) is the composition of the operations ∆
(p)
x (see Section 5.10.5) for

all the strands x of T . This can be seen by comparing the coefficients for
each diagram on both sides as δ tends to zero. For a diagram of degree d its
coefficient on the left-hand side differs from the corresponding coefficient on
the right-hand side by O(δd).

The next logical step is now to consider the parallels of the maximum
and the minimum tangles as shown in the figure for p = 3:

min
(3)

max
(3)

There is a difficulty here: the Kontsevich integrals of these expressions di-
verge as δ tends to zero. However, these divergencies can be made to cancel
each other out, in the following sense.

The skeleta of min(p) and max(p) consist of interval components only and
these intervals are naturally ordered. As a consequence, we can consider the
expressions Z(min(p)) and Z(max(p)) as elements in the completion of the
algebra A′(p), which is the quotient of A(p) by the diagrams with isolated

chords; let νδ be their product in Â′(p), in this order. Then limδ→0 νδ = ν
exists and can be calculated as follows.

Consider the hump unknot H and its kth parallel as in the figure:

T
3

T
1

(p)

T

T
2

RR

T
2

T
3

(p)

(p)

1

The unframed Kontsevich integral Z(H) can be written as Z0 + Z1 where
Z1 is obtained from the pairings with at least one chord of length > R in the
shaded parts T1 and T3, and Z0 comes from pairings no such chords. The
series Z0 can be obtained from Z(T2) by simply joining the upper ends of the
first and the second strands and the lower ends of the second and the third
strands in the skeleton of each chord diagram, since Z(max) = Z(min) = 1.
On the other hand, keeping δ constant and increasing R we can make any
coefficient in Z1 arbitrarily small, since the chords of length > R contribute
terms of order 1/R and the terms of degree d in Z(T2) grow at most as
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lndR. Hence, if R → ∞ the Kontsevich integral Z(H) of the zero-framed
hump unknot can be obtained from Z(T2) by glueing the components of the
skeleton of each participating diagram into one Wilson loop.

A similar thing holds for the Kontsevich integral of the pth parallel of
the hump. Write it as Z0 +Z1 where Z1 contains pairings with at least one

chord of length > R in T
(p)
1 or T

(p)
3 . We have that as δ tends to zero for the

terms of degree d

Z(T2
(p))−∆(p)(Z(T2)) ∼ δd.

It is also not hard to see that the terms of degree d in Z(max(p)) and

Z(min(p)) grow at most as lnd δ as δ → 0. This implies that

Z0 ∼ Z(max(p)) ·∆(p)(Z(T2)) · Z(min(p))

as δ → 0. By 5.10.4 ∆(p)(Z(T2)) commutes with any chord diagram that
has its ends on the parallels of one given string. In particular, it means
that Z(min(p)) and Z(max(p)) can be passed through all the strings of

∆(p)(Z(T2)). By joining the appropriate endpoints of the skeleta of the dia-

grams in ∆(p)(Z(T2)) we get the image of ∆(p)(Zfr(H)) in the completion of

A′(p); hence, Z0 tends to ν · π∆(p)(Zfr(H)), where π is the projection from
the completion of A(p) to that of A′(p). As before, Z1 can be disregraded
and we get that

lim
δ→0

Z(H(p)) = ν · π∆(p)(Zfr(H)).

On the other hand, Z(H(p)) is easily seen to be equal to Z(H)⊗p. As a
result,

ν = Z(H)⊗p ·∆(p)(Zfr(H))−1 = Z(H)⊗p · π∆(k)(Zfr(H)−1).

Now we have the ingredients for calculating the pth parallel of an arbi-
trary knot K with m maxima. Represent K as tangle product of its maxima,
a braid and the minima as follows:

T
3

T
1

(p)

T

T
2

RR

T
2

T
3

(p)

(p)

1

Reasoning as before, we see that the Kontsevich integral of its pth parallel as
δ tends to zero is approximated by a product of three series: Z(max(p))⊗m,

∆(p)(Z(T2)) and Z(min(p))⊗m. Each of the copy of Z(max(p)) or Z(min(p))

can be passed through any of the strings of ∆(p)(Z(T2)) and we see that

Z(K(p)) can be obtained from ∆(p)(Z(T2)) by inserting a copy of νm into
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one p-tuple of strings and then glueing the components of the skeleton of
each of the participating diagrams into p circles. In other words, we get that

Z(K(p)) = Z(H)m# . . .#Z(H)m#π∆(p)(Zfr(K)#Zfr(H)−m),

where the ith copy of Z(H)m acts on the ith component of the skeleton.

This gives an expression for the unframed integral I(K(p,0)). The framed

integral can possibly differ from ∆(p)(Ifr(K)) only by the framings on each
component. However, erasing all the components apart from one we get the
same results both for Ifr(K(p,0)) and for ∆(p)(Ifr(K)) so that no additional
correction of framing is necessary.

In the case q 6= 0 the link K(p,q) differs from K(p,0) by an insertion of a
twisting:

The effect of the insertion of the twisting is that the Kontsevich integral
of the twisting braid should be inserted into one of the p-tuple of strings
of ∆(p)(Z(T2)) alongside νm. Now, the Kontsevich integral of the twisting
braid is equal to

c ·∆(p)(exp(q/2p ·Θ)) · τ · c−1

for some c ∈ Â(p); here τ is the braid chord diagram with no chords whose
role is to reconnect the strands. Here c and c−1 are the Kontsevich inte-
grals for the upper and lower segments of the twisting braid, the fact that
the central segment gives ∆(p)(exp(q/2pΘ)) is a straightforward calculation.

Finally, c can be run around K(p,q) so as to cancel with c−1 and we get the
theorem for arbitrary p, q.

�

9.3.1. Torus knots. The (p, q)-torus knot is the (p, q)-cable of the unknot,
and, therefore, the formula for the cables of the Kontsevich integral as a
particular case gives an expression for the Kontsevich integral of torus knots.
An essential ingredient of this expression is the Kontsevich integral Ifr of
the unknot, which will be treated later in Chapter 11.

To be precise, Theorem 9.3 gives the following expression for the Kont-
sevich integral of the (p, q)-torus knot:

Ifr(O(p,q)) = ψp
(
Ifr(O)# exp

(
q

2p
Θ

))
,
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where O is the zero-framed unknot. J.Marché (2004) gives a different for-
mula for the Kontsevich integral of torus knots.

9.3.2. Example. By definition, Ifr(O) is the inverse of the hump unknot,
carried to A from A′ by deframing. It follows from Example on page 265
and Section 8.3 that

Ifr(O) = 1 +
1

24
− 1

24
+ . . .

and, therefore,

Ifr(O(2,3)) = 1 + 3 +
85

24
+

23

24
+ . . . .

Compare this with the formula on page 303.

Exercise. Calculate Ifr(O(3,2)) up to degree 2 using the formula of this

section and compare it to Ifr(O(2,3)).

9.4. Cablings of the Lie algebra weight systems

In Chapter 6.1 we have seen how a semi-simple Lie algebra g gives rise
to the universal Lie algebra weight system ϕg : Afr → U(g), and how a
representation V of g determines a numeric weight system ϕVg : Afr → C.
The interaction of ϕg with the operation ψp is rather straightforward.

Define µp : U(g)⊗p → U(g) and δp : U(g)→ U(g)⊗p by

µp(x1 ⊗ x2 ⊗ . . .⊗ xp) = x1x2 . . . xp

for xi ∈ U(g) and

δp(g) = g ⊗ 1⊗ . . .⊗ 1 + 1⊗ g ⊗ . . .⊗ 1 + · · ·+ 1⊗ 1⊗ . . .⊗ g ,
where g ∈ g.

9.4.1. Proposition. For D ∈ Afr we have

(ϕg ◦ ψp)(D) = (µp ◦ δp)(ϕg(D)) .

Proof. The construction of the universal Lie algebra weight system (Sec-
tion 6.1.1) consists in assigning the basis vectors eia ∈ g to the endpoints of
each chord a, then taking their product along the Wilson loop and summing
up over each index ia. For the weight system ϕg ◦ ψp, to each endpoint of a
chord we assign not only a basis vector, but also the sheet of the covering to
which that particular point is lifted. (Since the construction of Lie algebra
weight systems uses based diagrams, the sheets of the covering can actually
be enumerated.) To form an element of the universal enveloping algebra
we must read the letters eia along the circle n times. On the first pass we
read only those letters which are related to the first sheet of the covering,
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omitting all the others. Then read the circle for the second time and now
collect only the letters from the second sheet, etc. up to the pth reading.
The products of eia ’s thus formed are summed up over all the ia and over
all the ways of lifting the endpoints to the covering.

On the other hand, the operation µp◦δp : U(g)→ U(g) can be described
as follows. If A is an ordered set of elements of g, let us write

∏
A ∈ U(g)

for the product of all the elements of A, according to the order on A. Let
x =

∏
A for some A. To obtain µp◦δp(x) we take all possible decompositions

of A into an ordered set of n disjoint subsets Ai, with 1 6 i 6 n, and take
the sum of

∏
A1

∏
A2
. . .
∏
Ap

over all these decompositions.

When applied to ϕg, the sets Ak are the sets of eia corresponding to
the endpoints that are lifted to the kth sheet of the p-fold covering. This
establishes a bijection between the summands on the two sides of the for-
mula. �

Exercises

(1) Define the connected sum of two framed knots as their usual connected
sum with the framing whose self-linking number is the sum of the self-
linking numbers of the summands. Show that the framed Kontsevich
integral is multiplicative with respect to the connected sum.

(2) Prove that the framed Kontsevich integral Zfr(K) is a group-like ele-

ment of the Hopf algebra Âfr.

(3) Let K be a framed knot. Consider the Kontsevich integral Ifr(K) as an

element of B̂, and show that if at least one of the diagrams participating
in it contains a strut (an interval component) then K has non-zero
framing.

Hint. Use the group-like property of Zfr.

(4) Check that the maps ψp, and, more generally, ψr·py are compatible with
the four-term relations.

(5) Compute ψ3( ) and ψ3( ).

(6) Compute the eigenvalues and eigenvectors of ψ3|
Afr2

.

(7) Compute ψ22( ), ψ2( ), ψ2( ), ψ2( ), and ψ2( ).

(8) Compute the eigenvalues and eigenvectors of ψ2|A3
.
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Figure 9.4.1. The effect of ∆2,3
ε

(9) Compute ψ2(Θm), where Θm is a chord dia-
gram with m isolated chords, such as the one
shown on the right.

Θm =

m chords

(10) Prove that ψp commutes with the comultiplication of chord diagrams.
In other words, show that in the notation of Section 4.4.4, page 108, the
identity

δ(ψp(D)) =
∑
J⊆[D]

ψp(DJ)⊗ ψp(DJ)

holds for any chord diagram D.

(11) (D. Bar-Natan [BN1]). Prove that ψp ◦ ψq = ψpq.

(12) Prove the Proposition from Section 9.2.2:

symb((v)(p,q))(D) = symb(v)(ψp(D)) .

(13) Let T be a tangle with k numbered components, all of them intervals
without critical points of the height function, and assume that the ith
component connects the ith point on the upper boundary with the ith
point on the lower boundary. (Pure braids are examples of such tangles.)
Let ∆n1,...,nk

ε be the operation of replacing, for each i, the ith component
of T by ni parallel copies of itself with the distance ε between each
copy, as on Figure 9.4.1. Denote by ∆n1,...,nk the following operation on
the corresponding tangle chord diagrams: for each i the ith strand is
replaced by ni copies of itself and a chord diagram is sent to the sum of
all of its liftings to the resulting skeleton. Prove that

lim
ε→0

Z(∆n1,...,nk
ε (T )) = ∆n1,...,nkZ(T ).

(14) Let Tε be the following family of tangles depending on a parameter ε:

Tε =

1

ε

Show that

lim
ε→0

Z(Tε) = ·∆1,2 exp
(

2

)
.



Chapter 10

The Drinfeld associator

In this chapter we give the details of the combinatorial construction for the
Kontsevich integral. The main ingredient of this construction is the power
series known as the Drinfeld associator ΦKZ. Here the subscript “KZ”
indicates that the associator comes from the solutions to the Knizhnik-
Zamolodchikov equation. The Drinfeld associator enters the theory as a
(normalized) Kontsevich integral for a special tangle without crossings, which
is the simplest associating tangle.

The associator ΦKZ is an infinite series in two non-commuting variables
whose coefficients are combinations of multiple zeta values. In the con-
struction of the Kontsevich integral only some properties of ΦKZ are used;
adopting them as axioms, we arrive at the general notion of an associator
that appeared in Drinfeld’s papers [Dr1, Dr2] in his study of quasi-Hopf
algebras. These axioms actually describe a large collection of associators be-
longing to the completed algebra of chord diagrams on three strands. Some
of these associators have rational coefficients, and this implies the rationality
of the Kontsevich integral.

10.1. The KZ equation and iterated integrals

In this section, we give the original Drinfeld’s definition of the associator in
terms of the solutions of the simplest Knizhnik–Zamolodchikov equation.

The Knizhnik–Zamolodchikov (KZ) equation appears in the Wess–Zumino–
Witten model of conformal field theory [KnZa]. The theory of KZ type
equations has been developed in the contexts of mathematical physics, re-
presentation theory and topology [EFK, Var, Kas, Koh4, Oht1]. Our

275
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exposition follows the topological approach and is close to that of the last
three books.

10.1.1. General theory. Let X be a smooth manifold and Â a completed
graded algebra over the complex numbers. Choose a set ω1, . . . , ωp of C-
valued closed differential 1-forms on X and a set c1, . . . , cp of homogeneous

elements of Â of degree 1. Consider the closed 1-form

ω =

p∑
j=1

ωjcj

with values in Â. The Knizhnik-Zamolodchikov equation is a particular case
of the following very general equation:

(10.1.1) dI = ω · I,
where I : X → A is the unknown function.

Exercise. One may be tempted to solve the above equation as follows:
d log(I) = ω, therefore I = exp

∫
ω. Explain why this is wrong.

The form ω must satisfy certain conditions so that Equation 10.1.1 may
have non-zero solutions. Indeed, taking the differential of both sides of
(10.1.1), we get that 0 = d(ωI). Applying the Leibniz rule, using the fact
that dω = 0 and substituting dI = ωI, we see that a necessary condition for
integrability can be written as

(10.1.2) ω ∧ ω = 0

It turns out that this condition is not only necessary, but also sufficient
for local integrability: if it holds near a point x0 ∈ X, then (10.1.1) has
the unique solution I0 in a small neighbourhood of x0, satisfying the initial

condition I0(x0) = a0 for any a0 ∈ Â. This fact is standard in differen-
tial geometry where it is called the integrability of flat connections (see, for
instance, [KN]). A direct ad hoc proof can be found in [Oht1], Proposi-
tion 5.2.

10.1.2. Monodromy. Assume that the integrability condition 10.1.2 is
satisfied for all points of X. Given a (local) solution I of Equation 10.1.1

and a ∈ Â, the product Ia is also a (local) solution. Therefore, germs of

local solutions at a point x0 form an Â-module. This module is free of rank

one; it is generated by the germ of a local solution taking value 1 ∈ Â at x0.

The reason to consider germs rather that global solutions is that the
global solutions of (10.1.1) are generally multivalued, unless X is simply-
connected. Indeed, one can extend a local solution at x0 along any given
path which starts at x0 by patching together local solutions at the points
on the path. (One can think of this extension as something like an analytic
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continuation of a holomorphic function.) Extending in this way a local
solution I0 at the point x0 along a closed loop γ : [0, 1] → X we arrive to
another local solution I1, also defined in a neighbourhood of x0.

Let I1(x0) = aγ . Suppose that a0 = I0(x0) is an invertible element of

Â. The fact that the local solutions form a free one-dimensional Â-module
implies that the two solutions I0 and I1 are proportional to each other:
I1 = I0a

−1
0 aγ . The coefficient a−1

0 aγ does not depend on a particular choice

of the invertible element a0 ∈ Â and the loop γ within a fixed homotopy

class. Therefore, we get a homomorphism π1(X)→ Â∗ from the fundamen-

tal group of X into the multiplicative group of the units of Â, called the
monodromy representation.

10.1.3. Iterated integrals. Both the continuation of the solutions and
the monodromy representation can be expressed in terms of the 1-form ω.
Choose a path γ : [0, 1] → X, not necessarily closed, and consider the

composition I ◦ γ. This is a function [0, 1] → Â which we denote by the
same letter I; it satisfies the ordinary differential equation

(10.1.3)
d

dt
I(t) = ω(γ̇(t)) · I(t), I(0) = 1 .

The function I takes values in the completed graded algebra Â, and it can
be expanded in an infinite series according to the grading:

I(t) = I0(t) + I1(t) + I2(t) + . . . ,

where each term Im(t) is the homogeneous degree m part of I(t).

The form ω is homogeneous of degree 1 (recall that ω =
∑
cjωj , where ωj

are C-valued 1-forms and cj ’s are elements ofA1). Therefore Equation 10.1.3
is equivalent to an infinite system of ordinary differential equations

I ′0(t) = 0, I0(0) = 1,
I ′1(t) = ω(t)I0(t), I1(0) = 0,
I ′2(t) = ω(t)I1(t), I2(0) = 0,
. . . . . . . . . . . .

where ω(t) = γ∗ω is the pull-back of the 1-form to the interval [0, 1].

These equations can be solved iteratively, one by one. The first one gives
I0 = const, and the initial condition implies I0(t) = 1. Then,

I1(t) =

∫ t

0
ω(t1). Here t1 is an auxiliary variable that ranges from 0 to t.

Coming to the next equation, we now get:

I2(t) =

∫ t

0
ω(t2) · I1(t2) =

∫ t

0
ω(t2)

(∫ t2

0
ω(t1)

)
=

∫
0<t1<t2<t

ω(t2) ∧ ω(t1),
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Proceeding in the same way, for an arbitrary m we obtain

Im(t) =

∫
0<t1<t2<···<tm<t

ω(tm) ∧ ω(tm−1) ∧ · · · ∧ ω(t1)

In what follows, it will be more convenient to use this formula with variables
renumbered:

(10.1.4) I(t) = 1 +

∞∑
m=1

∫
0<tm<tm−1<···<t1<t

ω(t1) ∧ ω(t2) ∧ · · · ∧ ω(tm)

The value I(1) represents the monodromy of the solution over the loop γ.
Each iterated integral Im(1) is a homotopy invariant (of “order m”) of γ.
Note the resemblance of these expressions to the Kontsevich integral; we
shall come back to that again later.

Remark. One may think of the closed 1-form ω as of an Â-valued connec-
tion on X. Then the condition ω ∧ ω = 0 means that this connection is
flat. The monodromy I(t) represents the parallel transport. In this setting
the presentation of the parallel transport as a series of iterated integrals was
described by K.-T. Chen [Chen2].

10.1.4. The Knizhnik-Zamolodchikov equation. Let H =
⋃p
j=1Hj

be a collection of affine hyperplanes in Cn. Each hyperplane Hj is defined
by a (not necessarily homogeneous) linear equation Lj = 0. A Knizhnik–
Zamolodchikov, or simply KZ, equation is an equation of the form (10.1.1)
with

X = Cn −H

and

ωj = d logLj

for all j.

Many of the KZ equations are related to Lie algebras and their rep-
resentations. This class of equations has attracted the most attention in
the literature; see, for example, [KnZa, Oht1, Koh4]. We are specifically
interested in the following situation.

Suppose that X = Cn \ H where H is the union of the diagonal hy-

perplanes {zj = zk}, 1 6 j < k 6 n, and the algebra Â = Âh(n) is the
completed algebra of horizontal chord diagrams, see page 161. Recall that

Âh(n) is spanned by the diagrams on n vertical strands (which we assume
to be oriented upwards) all of whose chords are horizontal. Multiplicatively,

Âh(n) is generated by the degree-one elements ujk for all 1 6 j < k 6 n,
(which are simply the horizontal chords joining the jth and the kth strands)
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subject to the infinitesimal pure braid relations

[ujk, ujl + ukl] = 0, if j, k, l are different,

[ujk, ulm] = 0, if j, k, l,m are different,

where, by definition, ujk = ukj .

Consider the Ah(n)-valued 1-form ω =
1

2πi

∑
16j<k6n

ujk
dzj − dzk
zj − zk

and

the corresponding KZ equation

(10.1.5) dI =
1

2πi

( ∑
16j<k6n

ujk
dzj − dzk
zj − zk

)
· I .

This case of the Knizhnik-Zamolodchikov equation is referred to as the for-
mal KZ equation.

The integrability condition 10.1.2 for the formal KZ equation is the
following identity on the 1-form ω on X with values in the algebra Ah(n):

ω ∧ ω =
∑

16j<k6n
16l<m6n

ujkulm
dzj − dzk
zj − zk

∧ dzl − dzm
zl − zm

= 0 .

This identity, in a slightly different notation, was actually proved in Sec-
tion 8.6.2 when we checked the horizontal invariance of the Kontsevich in-
tegral.

The space X = Cn \ H is the configuration space of n distinct (and
distinguishable) points in C. A loop γ in this space may be identified with
a pure braid (that is, a braid that does not permute the endpoints of the
strands), and the iterated integral formula 10.1.4 gives

I(1) =

∞∑
m=0

1

(2πi)m

∫
0<tm<···<t1<1

∑
P={(zj ,z′j)}

DP

m∧
j=1

dzj − dz′j
zj − z′j

,

where P (a pairing) is a choice of m pairs of points on the braid, with jth pair
lying on the level t = tj , and DP is the product of m T -chord diagrams of
type ujj′ corresponding to the pairing P . We can see that the monodromy
of the KZ equation over γ coincides with the Kontsevich integral of the
corresponding braid (see Section 8.4).

10.1.5. The case n = 2. For small values of n Equation 10.1.5 is easier

to handle. In the case n = 2 the algebra Âh(2) is free commutative on one
generator and everything is very simple, as the following exercise shows.

Exercise. Solve explicitly Equation 10.1.5 and find the monodromy repre-
sentation in the case n = 2.



280 10. The Drinfeld associator

10.1.6. The case n = 3. The formal KZ equation for n = 3 has the form

dI =
1

2πi

(
u12d log(z2 − z1) + u13d log(z3 − z1) + u23d log(z3 − z2)

)
· I ,

which is a partial differential equation in 3 variables. It turns out that it
can be reduced to an ordinary differential equation.

Indeed, make the substitution

I = (z3 − z1)
u

2πi ·G ,

where u := u12 + u13 + u23 and we understand the factor in front of G as a
(multivalued) holomorphic function from C to the algebra Âh(3):

(z3 − z1)
u

2πi = exp

(
log(z3 − z1)

2πi
u

)
= 1 +

log(z3 − z1)

2πi
u+

1

2!

log2(z3 − z1)

(2πi)2
u2 +

1

3!

log3(z3 − z1)

(2πi)3
u3 + . . .

By Proposition 5.11.1 on page 162, the algebra Âh(3) is a direct product
of the free algebra on u12 and u23, and the free commutative algebra gener-

ated by u. In particular, u commutes with all elements of Âh(3). Taking this
into the account we see that the differential equation for G can be simplified
so as to become

dG =
1

2πi

(
u12d log

(z2 − z1

z3 − z1

)
+ u23d log

(
1− z2 − z1

z3 − z1

))
G .

Denoting z2−z1
z3−z1 simply by z, we see that the function G depends only on

z and satisfies the following ordinary differential equation (the reduced KZ
equation)

(10.1.6)
dG

dz
=

(
A

z
+

B

z − 1

)
G

where A := u12
2πi , B := u23

2πi . As defined, G takes values in the algebra Âh(3)
with three generators A, B, u. However, the space of local solutions of this

equation is a free module over Âh(3) of rank 1, so the knowledge of just one
solution is enough. Since the coefficients of Equation 10.1.6 do not involve
u, the equation does have a solution with values in the ring of formal power
series C〈〈A,B〉〉 in two non-commuting variables A and B.

10.1.7. The reduced KZ equation. The reduced KZ equation 10.1.6 is
a particular case of the general KZ equation defined by the data n = 1,
X = C \ {0, 1}, L1 = z, L2 = z − 1, A = C〈〈A,B〉〉, c1 = A, c2 = B.
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Although (10.1.6) is a first order ordinary differential equation, it is
hardly easier to solve than the general KZ equation. In the following exer-
cises we invite the reader to try out two natural approaches to the reduced
KZ equation.

Exercise. Try to find the general solution of Equation 10.1.6 by represent-
ing it as a series

G = G0 +G1A+G2B +G11A
2 +G12AB +G21BA+ . . . ,

where the G’s with subscripts are complex-valued functions of z.

Exercise. Try to find the general solution of Equation 10.1.6 in the form
of a Taylor series G =

∑
kGk(z −

1
2)k, where the Gk’s are elements of the

algebra C〈〈A,B〉〉. (Note that it is not possible to expand the solutions at
z = 0 or z = 1, because they have essential singularities at these points.)

These exercises show that direct approaches do not give much insight
into the nature of the solutions of (10.1.6). Luckily, we know that at least one
solution exists (see Section 10.1.1) and that any solution can be obtained
from one basic solution via multiplication by an element of the algebra
C〈〈A,B〉〉. The Drinfeld associator appears as a coefficient between two
remarkable solutions.

Definition. The (Knizhnik-Zamolodchikov) Drinfeld associator ΦKZ is the
ratio ΦKZ = G−1

1 (z) ·G0(z) of two special solutions G0(z) and G1(z) of this
equation described in the following Lemma.

10.1.8. Lemma ([Dr1, Dr2]). There exist unique solutions G0(z) and
G1(z) of Equation 10.1.6, analytic in the domain {z ∈ C | |z| < 1, |z−1| < 1}
and with the following asymptotic behaviour:

G0(z) ∼ zA as z → 0 and G1(z) ∼ (1− z)B as z → 1 ,

which means that

G0(z) = f(z) · zA and G1(z) = g(1− z) · (1− z)B ,

where f(z) and g(z) are analytic functions in a neighbourhood of 0 ∈ C
with values in C〈〈A,B〉〉 such that f(0) = g(0) = 1, and the (multivalued)
exponential functions are understood as formal power series, that is, zA =
exp(A log z) =

∑
k>0(A log z)k/k!

Remark. It is sometimes said that the element ΦKZ represents the mon-
odromy of the KZ equation over the horizontal interval from 0 to 1. This
phrase has the following meaning. In general, the monodromy along a path
γ connecting two points p and q, is the value at q of the solution, analytical
over γ and taking value 1 at p. If fp and fq are two solutions analytical over
γ with initial values fp(p) = fq(q) = 1, then the monodromy is the element
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f−1
q fp. The reduced KZ equation has no analytic solutions at the points
p = 0 and q = 1, and the usual definition of the monodromy cannot be ap-
plied directly in this case. What we do is we choose some natural solutions
with reasonable asymptotics at these points and define the monodromy as
their ratio in the appropriate order.

Proof. Plugging the expression G0(z) = f(z) · zA into Equation 10.1.6 we
get

f ′(z) · zA + f · A
z
· zA =

(
A

z
+

B

z − 1

)
· f · zA ,

hence f(z) satisfies the differential equation

f ′ − 1

z
[A, f ] =

−B
1− z

· f .

Let us look for a formal power series solution f = 1 +
∑∞

k=1 fkz
k with

coefficients fk ∈ C〈〈A,B〉〉. We have the following recurrence equation for
the coefficient of zk−1:

kfk − [A, fk] = (k − adA)(fk) = −B(1 + f1 + f2 + · · ·+ fk−1) ,

where adA denotes the operator x 7→ [A, x]. The operator k− adA is invert-
ible:

(k − adA)−1 =

∞∑
s=0

adsA
ks+1

(the sum is well-defined because the operator adA increases the grading), so
the recurrence can be solved:

fk =
∞∑
s=0

adsA
ks+1

(
−B(1 + f1 + f2 + · · ·+ fk−1)

)
.

Therefore the desired solution does exist among formal power series. Since
the point 0 is a regular singular point of Equation 10.1.6, it follows from the
general theory (see [Wal]) that this power series converges for |z| < 1. We
thus get an analytic solution f(z).

To prove the existence of the second solution, G1(z), it is best to make
the change of undependent variable z 7→ 1 − z which transforms Equa-
tion 10.1.6 into a similar equation with A and B swapped. �

Remark. If the variables A and B were commutative, then the function
explicitly given as the product zA(1− z)B would be a solution of Equation
10.1.6 satisfying both asymptotic conditions of Lemma 10.1.8 at once, so
that the analogs of G0 and G1 would coincide. Therefore, the image of ΦKZ

under the abelianization map C〈〈A,B〉〉 → C[[A,B]] is equal to 1.

The next lemma gives another expression for the associator in terms of
the solutions of Equation 10.1.6.
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10.1.9. Lemma ([LM2]). Suppose that ε ∈ R, 0 < ε < 1. Let Gε(z) be the
unique solution of Equation 10.1.6 satisfying the initial condition Gε(ε) = 1.
Then

ΦKZ = lim
ε→0

ε−B ·Gε(1− ε) · εA .

Proof. We rely on, and use the notation of, Lemma 10.1.8. The solution
Gε is proportional to the distinguished solution G0:

Gε(z) = G0(z)G0(ε)−1 = G0(z) · ε−Af(ε)−1 = G1(z) · ΦKZ · ε−Af(ε)−1

(the function f , as well as g mentioned below, was defined in Lemma 10.1.8).
In particular,

Gε(1− ε) = G1(1− ε) · ΦKZ · ε−Af(ε)−1 = g(ε)εB · ΦKZ · ε−Af(ε)−1 .

We must compute the limit

lim
ε→0

ε−Bg(ε)εB · ΦKZ · ε−Af(ε)−1εA ,

which obviously equals ΦKZ because f(0) = g(0) = 1 and f(z) and g(z) are
analytic functions in a neighbourhood of zero. The lemma is proved. �

10.1.10. The Drinfeld associator and the Kontsevich integral. Con-
sider the reduced KZ equation 10.1.6 on the real interval [0, 1] and apply
the techniques of iterated integrals from Section 10.1.3. Let the path γ be
the identity inclusion [ε, 1]→ C. Then the solution Gε can be written as

Gε(t) = 1 +

∞∑
m=1

∫
ε<tm<···<t2<t1<t

ω(t1) ∧ ω(t2) ∧ · · · ∧ ω(tm) .

The lower limit in the integrals is ε because the parameter on the path γ
starts from this value.

We are interested in the value of this solution at t = 1− ε:

Gε(1− ε) = 1 +
∞∑
m=1

∫
ε<tm<···<t2<t1<1−ε

ω(t1) ∧ ω(t2) ∧ . . . ω(tm) .

We claim that this series literally coincides with the Kontsevich integral of
the following tangle

ATε =

0

ε

ε 1−ε 1

1−ε

1

t

z
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under the identification A = 1
2πi , B = 1

2πi . Indeed, on every level tj
the differential form ω(tj) consists of two summands. The first summand

A
dtj
tj

corresponds to the choice of a pair P = (0, tj) on the first and the

second strings and is related to the chord diagram A = . The second

summand B
d(1−tj)

1−tj corresponds to the choice of a pair P = (tj , 1) on the

second and third strings and is related to the chord diagram B = . The
pairing of the first and the third strings does not contribute to the Kontsevich
integral, because these strings are parallel and the correspoding differential
vanishes. We have thus proved the following proposition.

Proposition. The value of the solution Gε at 1−ε is equal to the Kontsevich
integral Gε(1 − ε) = Z(ATε). Consequently, by Lemma 10.1.9, the KZ
associator coincides with the regularization of the Kontsevich integral of the
tangle ATε:

ΦKZ = lim
ε→0

ε−B · Z(ATε) · εA,

where A = 1
2πi and B = 1

2πi .

10.2. Calculation of the KZ Drinfeld associator

In this section, following [LM4], we deduce an explicit formula for the Drin-
feld associator Φ = ΦKZ. It turns out that all the coefficients in the expan-
sion of ΦKZ as a power series in A and B are values of multiple zeta functions
(see Section 10.2.11) divided by powers of 2πi.

10.2.1. Put ω0(z) = dz
z and ω1(z) = d(1−z)

1−z . Then the 1-form ω studied in

10.1.10 is the linear combination ω(z) = Aω0(z) + Bω1(z), where A = 2πi

and B = 2πi . By definition the terms of the Kontsevich integral Z(ATε)
represent the monomials corresponding to all choices of one of the two sum-
mands of ω(tj) for every level tj . The coefficients of these monomials are
integrals over the simplex ε < tm < · · · < t2 < t1 < 1 − ε of all pos-
sible products of the forms ω0 and ω1. The coefficient of the monomial
Bi1Aj1 . . . BilAjl (i1 > 0, j1 > 0, . . . , il > 0, jl > 0) is∫
ε<tm<···<t2<t1<1−ε

ω1(t1) ∧ · · · ∧ ω1(ti1)︸ ︷︷ ︸
i1

∧ω0(ti1+1) ∧ · · · ∧ ω0(ti1+j1)︸ ︷︷ ︸
j1

∧ . . .

∧ω0(ti1+···+il+1) ∧ · · · ∧ ω0(ti1+···+jl)︸ ︷︷ ︸
jl

,
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where m = i1 +j1 + · · ·+ il+jl. For example, the coefficient of AB2A equals∫
ε<t4<t3<t2<t1<1−ε

ω0(t1) ∧ ω1(t2) ∧ ω1(t3) ∧ ω0(t4) .

We are going to divide the sum of all monomials into two parts, “con-
vergent” Zconv and “divergent” Zdiv, depending on the behaviour of the
coefficients as ε→ 0. We shall have Z(ATε) = Zconv + Zdiv and

(10.2.1) Φ = lim
ε→0

ε−B · Zconv · ε−A + lim
ε→0

ε−B · Zdiv · ε−A .

Then we shall prove that the second limit equals zero and find an explicit
expression for the first one in terms of multiple zeta values. We shall see
that although the sum Zconv does not contain any divergent monomials, the
first limit in (10.2.1) does.

We pass to exact definitions.

10.2.2. Definition. A non-unit monomial in letters A and B with posi-
tive powers is said to be convergent if it starts with an A and ends with a
B. Otherwise the monomial is said to be divergent . We regard the unit
monomial 1 as convergent.

10.2.3. Example. The integral∫
a<tp<···<t2<t1<b

ω1(t1) ∧ · · · ∧ ω1(tp) =
1

p!
logp

( 1− b
1− a

)
diverges as b→ 1. It is the coefficient of the monomial Bp in Gε(1−ε) when
a = ε, b = 1− ε, and this is the reason to call monomials that start with a
B divergent.

Similarly, the integral∫
a<tq<···<t2<t1<b

ω0(t1) ∧ · · · ∧ ω0(tq) =
1

q!
logq

( b
a

)
diverges as a→ 0. It is the coefficient of the monomial Aq in Gε(1−ε) when
a = ε, b = 1− ε, and this is the reason to call monomials that end with an
A divergent.

Now consider the general case: integral of a product that contains both
ω0 and ω1. For δj = 0 or 1 and 0 < a < b < 1, introduce the notation

Ia,bδ1...δm =

∫
a<tm<···<t2<t1<b

ωδ1(t1) ∧ · · · ∧ ωδm(tm) .
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10.2.4. Lemma. (i) If δ1 = 0, then the integral Ia,bδ1...δm converges to

a non-zero constant as b→ 1, and it grows as a power of log(1− b)
if δ1 = 1.

(ii) If δm = 1, then the integral Ia,bδ1...δm converges to a non-zero constant
as a→ 0, and it grows as a power of log a if δm = 0.

Proof. Induction on the number of chords m. If m = 1 then the integral
can be calculated explicitly like in the previous example, and the lemma
follows from the result. Now suppose that the lemma is proved for m − 1
chords. By the Fubini theorem the integral can be represented as

Ia,b1δ2...δm
=

∫
a<t<b

Ia,tδ2...δm ·
dt

t− 1
, Ia,b0δ2...δm

=

∫
a<t<b

Ia,tδ2...δm ·
dt

t
,

for the cases δ1 = 1 and δ1 = 0 respectively. By the induction assumption

0 < c <
∣∣∣Ia,tδ2...δm∣∣∣ < ∣∣logk(1− t)

∣∣ for some constants c and k. The comparison

test implies that the integral Ia,b0δ2...δm
converges as b → 1 because Ia,tδ2...δm

grows slower than any power of (1 − t). Moreover,
∣∣∣Ia,b0δ2...δm

∣∣∣ > c
∫ 1
a
dt
t =

−c log(a) > 0 because 0 < a < b < 1.

In the case δ1 = 1 we have

c log(1−b) = c

∫ b

0

dt

t− 1
<
∣∣∣Ia,b1δ2...δm

∣∣∣ < ∣∣∣∣∫ b

0
logk(1− t)d(log(1− t))

∣∣∣∣ =
∣∣∣ logk+1(1−b)

k+1

∣∣∣ ,
which proves assertion (i). The proof of assertion (ii) is similar. �

10.2.5. Here is the plan of our subsequent actions.

Let Âconv (Âdiv) be the subspace of Â = C〈〈A,B〉〉 spanned by all conver-
gent (respectively, divergent) monomials. We are going to define a certain

linear map f : Â → Â which kills divergent monomials and preserves the
associator Φ. Applying f to both parts of Equation 10.2.1 we shall have

(10.2.2) Φ = f(Φ) = f
(

lim
ε→0

ε−B · Zconv · εA
)

= f
(

lim
ε→0

Zconv
)
.

The last equality here follows from the fact that only the unit terms of ε−B

and εA are convergent and therefore survive under the action of f .

The convergent improper integral

(10.2.3) lim
ε→0

Zconv = 1 +

∞∑
m=2

∑
δ2,...,δm−1=0,1

I0,1
0δ2...δm−11 ·ACδ2 . . . Cδm−1B
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can be computed explicitly (here Cj = A if δj = 0 and Cj = B if δj = 1).
Combining Equations 10.2.2 and 10.2.3 we get

(10.2.4) Φ = 1 +
∞∑
m=2

∑
δ2,...,δm−1=0,1

I0,1
1δ2...δm−10 · f(ACδ2 . . . Cδm−1B)

The knowledge of how f acts on the monomials from Â leads to the desired
formula for the associator.

10.2.6. Definition of the linear map f : Â → Â. Consider the algebra

Â[α, β] of polynomials in two commuting variables α and β with coeffi-

cients in Â. Every monomial in Â[α, β] can be written uniquely as βpMαq,

where M is a monomial in Â. Define a C-linear map j : Â[α, β] → Â by

j(βpMαq) = BpMAq. Now for any element Γ(A,B) ∈ Â let

f(Γ(A,B)) = j(Γ(A− α,B − β)) .

10.2.7. Lemma. If M is a divergent monomial in Â, then f(M) = 0.

Proof. Consider the case where M starts with B, say M = BC2 . . . Cm,
where each Cj is either A or B. Then

f(M) = j((B − β)M2) = j(BM2)− j(βM2) ,

where M2 = (C2−γ2) . . . (Cm−γm) with γj = α or γj = β depending on Cj .
But j(BM2) equals j(βM2) by the definition of j above. The case where M
ends with an A can be done similarly. �

10.2.8. One may notice that for any monomial M ∈ Â we have f(M) =
M + (sum of divergent monomials). Therefore, by the lemma, f is an idem-

potent map, f2 = f , that is, f is a projection along Âdiv (but not onto

Âconv).

10.2.9. Proposition. f(Φ) = Φ.

Proof. We use the definition of the associator Φ as the KZ Drinfeld associ-
ator from Section 10.1.7, taking into account Proposition 10.1.10.

It is the ratio Φ(A,B) = G−1
1 · G0 of two solutions of the differential

equation (10.1.6) from Section 10.1.7

G′ =

(
A

z
+

B

z − 1

)
·G

with the asymptotics

G0(z) ∼ zA as z → 0 and G1(z) ∼ (1− z)B as z → 1 .
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Consider the differential equation

H ′ =

(
A− α
z

+
B − β
z − 1

)
·H .

A direct substitution shows that the functions

H0(z) = z−α(1− z)−β ·G0(z) and H1(z) = z−α(1− z)−β ·G1(z)

are its solutions with the asymptotics

H0(z) ∼ zA−α as z → 0 and H1(z) ∼ (1− z)B−β as z → 1 .

Hence we have

Φ(A− α,B − β) = H−1
1 ·H0 = G−1

1 ·G0 = Φ(A,B) .

Therefore,

f(Φ(A,B)) = j(Φ(A− α,B − β)) = j(Φ(A,B)) = Φ(A,B)

because j acts as the identity map on the subspace Â ⊂ Â[α, β]. The
proposition is proved. �

10.2.10. In order to compute Φ according to (10.2.4) we must find the

integrals I0,1
0δ2...δm−11 and the action of f on the monomials. Let us compute

f(ACδ2 . . . Cδm−1B) first.

Represent the monomial M = ACδ2 . . . Cδm−1B in the form

M = Ap1Bq1 . . . AplBql

for some positive integers p1, q1, . . . , pl, ql. Then

f(M) = j((A− α)p1(B − β)q1 . . . (A− α)pl(B − β)ql) .

We are going to expand the product, collect all β’s on the left and all α’s on
the right, and then replace β by B and α by A. To this end let us introduce
the following multi-index notations:

r = (r1, . . . , rl); i = (i1, . . . , il); s = (s1, . . . , sl); j = (j1, . . . , jl);

p = r + i = (r1 + i1, . . . , rl + il); q = s + j = (s1 + j1, . . . , sl + jl);

|r| = r1 + · · ·+ rl; |s| = s1 + · · ·+ sl;(
p

r

)
=

(
p1

r1

)(
p2

r2

)
. . .

(
pl
rl

)
;

(
q

s

)
=

(
q1

s1

)(
q2

s2

)
. . .

(
ql
sl

)
;

(A,B)(i,j) = Ai1 ·Bj1 · · · · ·Ail ·Bjl
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We have

(A− α)p1(B − β)q1 . . . (A− α)pl(B − β)ql =∑
06r6p
06s6q

(−1)|r|+|s|
(

p

r

)(
q

s

)
· β|s|(A,B)(i,j)α|r| ,

where the inequalities 0 6 r 6 p and 0 6 s 6 q mean 0 6 r1 6 p1, . . . ,
0 6 rl 6 pl, and 0 6 s1 6 q1,. . . , 0 6 sl 6 ql. Therefore

(10.2.5) f(M) =
∑

06r6p
06s6q

(−1)|r|+|s|
(

p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r| .

10.2.11. To complete the formula for the associator we need to compute
the coefficient I0,1

1δ2...δm−10 of f(M). It turns out that, up to a sign, they are

equal to some values of the multivariate ζ-function

ζ(a1, . . . , an) =
∑

0<k1<k2<···<kn

k−a11 . . . k−ann

where a1, ..., an are positive integers (see [LM1]). Namely, the coefficients
in question are equal, up to a sign, to the values of ζ at integer points
(a1, . . . , an) ∈ Zn, which are called (multiple zeta values, or MZV for short).
Multiple zeta values for n = 2 were first studied by L. Euler in 1775. His
paper [Eu] contains several dozen interesting relations between MZVs and
values of the univariate (later called Riemann’s) zeta function. Later, this
subject was almost forgotten for more than 200 years until M. Hoffman and
D. Zagier revived a general interest to MZVs by their papers [Hoff], [Zag2].

Exercise. The sum in the definition of the multivariate ζ-function converges
if and only if an > 2.

10.2.12. Remark. Two different conventions about the order of arguments
in ζ are in use: we follow that of D. Zagier [Zag2], also used by P. Deligne,
A. Goncharov and Le–Murakami [LM1, LM2, LM3, LM4]. The opposite
school that goes back to L. Euler [Eu] and includes J. Borwein, M. Hoffman,
M. Petitot, writes ζ(2, 1) for what we would write as ζ(1, 2). (They use k1 >
k2 > ... > kn > 0 as the set of summation in the formula for ζ(a1, ..., ak).)

10.2.13. Proposition. For p > 0 and q > 0 let

(10.2.6) η(p,q) := ζ(1, . . . , 1︸ ︷︷ ︸
ql−1

, pl+1, 1, . . . , 1︸ ︷︷ ︸
ql−1−1

, pl−1+1, . . . 1, . . . , 1︸ ︷︷ ︸
q1−1

, p1+1) .

Then

(10.2.7) I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

= (−1)|q|η(p,q) .
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The calculations needed to prove the proposition, are best organised in
terms of the (univariate) polylogarithm1 function defined by the series

(10.2.8) Lia1,...,an(z) =
∑

0<k1<k2<···<kn

zkn

ka11 . . . kann
,

which obviously converges for |z| < 1.

10.2.14. Lemma. For |z| < 1

Lia1,...,an(z) =


∫ z

0
Lia1,...,an−1(t)

dt

t
, if an > 1

−
∫ z

0
Lia1,...,an−1(t)

d(1− t)
1− t

, if an = 1 .

Proof. The lemma follows from the identities below, whose proofs we leave
to the reader as an exercise.

d
dzLia1,...,an(z) =

{ 1
z · Lia1,...,an−1(z) , if an > 1

1
1−z · Lia1,...,an−1(z) , if an = 1 ;

d
dzLi1(z) = 1

1−z .

�

10.2.15. Proof of Proposition 10.2.13. From the previous lemma we
have

Li1,1,...,1︸ ︷︷ ︸
ql−1

, pl+1, 1,1,...,1︸ ︷︷ ︸
ql−1−1

, pl−1+1, ..., 1,1,...,1︸ ︷︷ ︸
q1−1

, p1+1(z) =

= (−1)q1+···+ql
∫

0<tm<···<t2<t1<z

ω0(t1) ∧ · · · ∧ ω0(tp1)︸ ︷︷ ︸
p1

∧

∧ω1(tp1+1) ∧ · · · ∧ ω1(tp1+q1)︸ ︷︷ ︸
q1

∧ · · · ∧ ω1(tp1+···+pl+1) ∧ · · · ∧ ω1(tp1+···+ql)︸ ︷︷ ︸
ql

=

= (−1)|q|I0,z
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

.

1It is a generalization of Euler’s dilogarithm Li2(z) we used on page 255, and a specialization
of the multivariate polylogarithm

Lia1,...,an (z1, . . . , zn) =
∑

0<k1<k2<···<kn

zk11 . . . zknn

ka11 . . . kann

introduced by A. Goncharov in [Gon1].
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Note that the multiple polylogarithm series (10.2.8) converges for z = 1 in
the case an > 1. This implies that if p1 > 1 (which holds for a convergent
monomial), then we have

η(p,q) = ζ(1, . . . , 1︸ ︷︷ ︸
ql−1

, pl + 1, 1, . . . , 1︸ ︷︷ ︸
ql−1−1

, pl−1 + 1, . . . 1, . . . , 1︸ ︷︷ ︸
q1−1

, p1 + 1)

= Li1,1,...,1︸ ︷︷ ︸
ql−1

, pl+1, 1,1,...,1︸ ︷︷ ︸
ql−1−1

, pl−1+1, ..., 1,1,...,1︸ ︷︷ ︸
q1−1

, p1+1(1)

= (−1)|q|I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

.

The Proposition is proved.

10.2.16. Explicit formula for the associator. Combining equations
(10.2.4), (10.2.5), and (10.2.7) we get the following formula for the asso-
ciator:

ΦKZ = 1+

∞∑
m=2

∑
0<p,0<q
|p|+|q|=m

η(p,q) ·
∑

06r6p
06s6q

(−1)|r|+|j|
(

p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r|

where i and j are multi-indices of the same length, p = r + i, q = s + j, and
η(p,q) is the multiple zeta value given by (10.2.6).

This formula was obtained by Le and Murakami in [LM4].

10.2.17. Example. Degree 2 terms of the associator. There is only
one possibility to represent m = 2 as the sum of two positive integers:
2 = 1 + 1. So we have only one possibility for p and q: p = (1), q = (1).
In this case η(p,q) = ζ(2) = π2/6 according to (10.2.6). The multi-indices
r and s have length 1 and thus consist of a single number r = (r1) and
s = (s1). There are two possibilities for each of them: r1 = 0 or r1 = 1, and

s1 = 0 or s1 = 1. In all these cases the binomial coefficients

(
p

r

)
and

(
q

s

)
are equal to 1. We arrange all the possibilities in the following table.

r1 s1 i1 j1 (−1)|r|+|j| ·B|s|(A,B)(i,j)A|r|

0 0 1 1 −AB
0 1 1 0 BA

1 0 0 1 BA

1 1 0 0 −BA



292 10. The Drinfeld associator

Hence, for the degree 2 terms of the associator we get the formula:

−ζ(2)[A,B] = − ζ(2)

(2πi)2
[a, b] =

1

24
[a, b] ,

where a = (2πi)A = , and b = (2πi)B = .

10.2.18. Example. Degree 3 terms of the associator. There are two
ways to represent m = 3 as the sum of two positive integers: 3 = 2 + 1 and
3 = 1 + 2. In each case either p = (1) or q = (1). Hence l = 1 and both
multi-indices consist of just one number p = (p1), q = (q1). Therefore all
other multi-indices r, s, i, j also consist of one number.

Here is the corresponding table.

p1 q1 η(p,q) r1 s1 i1 j1 (−1)|r|+|j|
(

p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r|

0 0 2 1 −AAB
0 1 2 0 BAA

1 0 1 1 2ABA
2 1 ζ(3)

1 1 1 0 −2BAA

2 0 0 1 −BAA
2 1 0 0 BAA

0 0 1 2 ABB

1 0 0 2 −BBA
0 1 1 1 −2BAB

1 2 ζ(1, 2)
1 1 0 1 2BBA

0 2 1 0 BBA

1 2 0 0 −BBA

Using the Euler identity ζ(1, 2) = ζ(3) (see section 10.2.20) we can sum up
the degree 3 part of Φ into the formula

ζ(3)
(
−AAB + 2ABA−BAA+ABB − 2BAB +BBA

)
= ζ(3)

(
−
[
A,
[
A,B

]]
−
[
B,
[
A,B

]])
= − ζ(3)

(2πi)3

[
a+ b, [a, b]

]
.

10.2.19. Example. Degree 4 terms of the associator. There are three
ways to represent m = 4 as the sum of two positive integers: 4 = 3 + 1,
4 = 1 + 3, and 4 = 2 + 2. So we have the following four possibilities for p
and q:

p (1) (3) (2) (1, 1)

q (3) (1) (2) (1, 1)
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The table for the multi-indices r, s, p, q and the corresponding term

T = (−1)|r|+|j|
(

p

r

)(
q

s

)
·B|s|(A,B)(i,j)A|r|

is shown on page 294.

Combining the terms into the commutators we get the degree 4 part of
the associator Φ:

ζ(1, 1, 2)
[
B,
[
B,
[
B,A

]]]
+ ζ(4)

[
A,
[
A,
[
B,A

]]]
+ζ(1, 3)

[
B,
[
A,
[
B,A

]]]
+ (2ζ(1, 3) + ζ(2, 2))

[
B,A

]2
Recalling that A = 1

2πia and B = 1
2πib, where a and b are the basic chord

diagrams with one chord, and using the identities from Section 10.2.20:

ζ(1, 1, 2) = ζ(4) = π4/90, ζ(1, 3) = π4/360, ζ(2, 2) = π4/120 ,

we can write out the associator Φ up to degree 4:

ΦKZ = 1 +
1

24
[a, b] − ζ(3)

(2πi)3

[
a+ b, [a, b]

]
− 1

1440

[
a,
[
a, [a, b]

]]
− 1

5760

[
a,
[
b, [a, b]

]]
− 1

1440

[
b,
[
b, [a, b]

]]
+

1

1152
[a, b]2

+ (terms of order > 4) .

10.2.20. Multiple zeta values. There are many relations among MZV’s

and powers of π. Some of them, like ζ(2) = π2

6 or ζ(1, 2) = ζ(3), were
already known to Euler. The last one can be obtained in the following way.
According to (10.2.6) and (10.2.7) we have

ζ(1, 2) = η((1), (2)) = I0,1
011 =

∫
0<t3<t2<t1<1

ω0(t1) ∧ ω1(t2) ∧ ω1(t3)

=

∫
0<t3<t2<t1<1

dt1
t1
∧ d(1− t2)

1− t2
∧ d(1− t3)

1− t3
.

The change of variables (t1, t2, t3) 7→ (1 − t3, 1 − t2, 1 − t1) transforms the
last integral to∫
0<t3<t2<t1<1

d(1− t3)

1− t3
∧ dt2
t2
∧ dt1
t1

= −
∫

0<t3<t2<t1<1

ω0(t1) ∧ ω0(t2) ∧ ω1(t3) = −I0,1
001 = η((2), (1)) = ζ(3) .
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p q η(p,q) r s i j T

(0) (0) (1) (3) −ABBB
(0) (1) (1) (2) +3BABB
(0) (2) (1) (1) −3BBAB
(0) (3) (1) (0) +BBBA

(1) (3) ζ(1, 1, 2)
(1) (0) (0) (3) +BBBA
(1) (1) (0) (2) −3BBBA
(1) (2) (0) (1) +3BBBA
(1) (3) (0) (0) −BBBA
(0) (0) (3) (1) −AAAB
(0) (1) (3) (0) +BAAA
(1) (0) (2) (1) +3AABA
(1) (1) (2) (0) −3BAAA

(3) (1) ζ(4)
(2) (0) (1) (1) −3ABAA
(2) (1) (1) (0) +3BAAA
(3) (0) (0) (1) +BAAA
(3) (1) (0) (0) −BAAA
(0) (0) (2) (2) +AABB
(0) (1) (2) (1) −2BAAB
(0) (2) (2) (0) +BBAA
(1) (0) (1) (2) −2ABBA

(2) (2) ζ(1, 3)
(1) (1) (1) (1) +4BABA
(1) (2) (1) (0) −2BBAA
(2) (0) (0) (2) +BBAA
(2) (1) (0) (1) −2BBAA
(2) (2) (0) (0) +BBAA

(0, 0) (0, 0) (1, 1) (1, 1) +ABAB
(0, 0) (0, 1) (1, 1) (1, 0) −BABA
(0, 0) (1, 0) (1, 1) (0, 1) −BAAB
(0, 0) (1, 1) (1, 1) (0, 0) +BBAA
(0, 1) (0, 0) (1, 0) (1, 1) −ABBA
(0, 1) (0, 1) (1, 0) (1, 0) +BABA
(0, 1) (1, 0) (1, 0) (0, 1) +BABA
(0, 1) (1, 1) (1, 0) (0, 0) −BBAA

(1,1) (1,1) ζ(2, 2)
(1, 0) (0, 0) (0, 1) (1, 1) −BABA
(1, 0) (0, 1) (0, 1) (1, 0) +BBAA
(1, 0) (1, 0) (0, 1) (0, 1) +BABA
(1, 0) (1, 1) (0, 1) (0, 0) −BBAA
(1, 1) (0, 0) (0, 0) (1, 1) +BBAA
(1, 1) (0, 1) (0, 0) (1, 0) −BBAA
(1, 1) (1, 0) (0, 0) (0, 1) −BBAA
(1, 1) (1, 1) (0, 0) (0, 0) +BBAA

Figure 10.2.1. Degree 4 terms of the associator
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In the general case a similar change of variables

(t1, t2, . . . , tm) 7→ (1− tm, . . . , 1− t2, 1− t1)

gives the identity

I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

= (−1)mI0,1
0...0︸︷︷︸
ql

1...1︸︷︷︸
pl

...... 0...0︸︷︷︸
ql

1...1︸︷︷︸
pl

.

By (10.2.7), we have

I0,1
0...0︸︷︷︸
p1

1...1︸︷︷︸
q1

...... 0...0︸︷︷︸
pl

1...1︸︷︷︸
ql

= (−1)|q|η(p,q),

I0,1
0...0︸︷︷︸
ql

1...1︸︷︷︸
pl

...... 0...0︸︷︷︸
ql

1...1︸︷︷︸
pl

= (−1)|p|η(q,p),

where the bar denotes the inversion of a sequence: p = (pl, pl−1, . . . , p1),
q = (ql, ql−1, . . . , q1).

Since |p|+ |q| = m, we deduce that

η(p,q) = η(q,p),

This relation is called the duality relation between MZV’s. After the conver-
sion from η to ζ according to Equation 10.2.6, the duality relations become
picturesque and unexpected.

Exercise. Relate the duality to the rotation of a chord diagram by 180◦ as
in Figure 10.2.2.

BA
2

A
2
BAB

Figure 10.2.2

As an example, we give a table of all nontrivial duality relations of weight
m 6 5:
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p q q̄ p̄ relation

(1) (2) (2) (1) ζ(1, 2) = ζ(3)

(1) (3) (3) (1) ζ(1, 1, 2) = ζ(4)

(1) (4) (4) (1) ζ(1, 1, 1, 2) = ζ(5)

(2) (3) (3) (2) ζ(1, 1, 3) = ζ(1, 4)

(1, 1) (1, 2) (2, 1) (1, 1) ζ(1, 2, 2) = ζ(2, 3)

(1, 1) (2, 1) (1, 2) (1, 1) ζ(2, 1, 2) = ζ(3, 2)

The reader may want to check this table by way of exercise.

There are other relations between the multiple zeta values that do not
follow from the duality law. Let us quote just a few.

1. Euler’s relations:

ζ(1, n− 1) + ζ(2, n− 2) + · · ·+ ζ(n− 2, 2) = ζ(n),(10.2.9)

ζ(m) · ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m+ n) .(10.2.10)

2. Relations obtained by Le and Murakami [LM1] computing the Kont-
sevich integral of the unknot by the combinatorial procedure explained below
in Section 10.3 (the first one was earlier proved by M. Hoffman [Hoff]):

ζ(2, 2, . . . , 2︸ ︷︷ ︸
m

) =
π2m

(2m+ 1)!
(10.2.11)

( 1

22n−2
− 1
)
ζ(2n)− ζ(1, 2n− 1) + ζ(1, 1, 2n− 1)− . . .(10.2.12)

+ζ(1, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2) = 0 .

These relations are sufficient to express all multiple zeta values with the
sum of arguments equal to 4 via powers of π. Indeed, we have:

ζ(1, 3) + ζ(2, 2) = ζ(4),

ζ(2)2 = 2ζ(2, 2) + ζ(4),

ζ(2, 2) =
π4

120
,

−3

4
ζ(4)− ζ(1, 3) + ζ(1, 1, 2) = 0.

Solving these equations one by one and using the identity ζ(2) = π2/6, we
find the values of all MZVs of weight 4: ζ(2, 2) = π4/120, ζ(1, 3) = π4/360,
ζ(1, 1, 2) = ζ(4) = π4/90.
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There exists an extensive literature about the relations between MZV’s,
for instance [BBBL, Car2, Hoff, HoOh, OU], and the interested reader
is invited to consult it.

An attempt to overview the whole variety of relations between MZV’s
was undertaken by D. Zagier [Zag2]. Call the weight of a multiple zeta value
ζ(n1, . . . , nk) the sum of all its arguments w = n1 + · · ·+nk. Let Zw be the
vector subspace of the reals R over the rationals Q spanned by all MZV’s
of a fixed weight w. For completeness we put Z0 = Q and Z1 = 0. No
inhomogeneous relations between the MZV’s of different weight are known,
so that conjecturally the sum of all Zi’s is direct. In any case, we can
consider the formal direct sum of all Zw

Z• :=
⊕
w>0

Zw.

Proposition. The vector space Z• forms a graded algebra over Q, i.e. Zu ·
Zv ⊆ Zu+v.

Euler’s product formula (10.2.10) illustrates this statement. A proof can
be found in [Gon1]. D. Zagier made a conjecture about the Poincaré series
of this algebra.

Conjecture ([Zag2]).

∞∑
w=0

dimQ(Zw) · tw =
1

1− t2 − t3
,

which is equivalent to say that dimZ0 = dimZ2 = 1, dimZ1 = 0 and
dimZw = dimZw−2 + dimZw−3 for all w > 3.

This conjecture turns out to be related to the dimensions of various
subspaces in the primitive space of the chord diagram algebra A (see [Br,
Kre]) and also to the Drinfeld’s conjecture about the structure of the Lie
algebra of the Grothendieck–Teichmüller group ([ES]).

It is known ([Gon2, Ter]) that Zagier’s sequence gives an upper bound
on the dimension of Zw; in fact, up to weight 12 any zeta-number can be
written as a rational polynomial in

ζ(2), ζ(3), ζ(5), ζ(7), ζ(2, 6), ζ(9), ζ(2, 8), ζ(11), ζ(1, 2, 8), ζ(2, 10), ζ(1, 1, 2, 8).

More information about the generators of the algebra Z is available on the
web pages of M. Petitot [Pet] and J. Vermaseren [Ver].2

2It has been recently proved by F. Brown [FB] that the values ζ(a1, ..., ak) with ai ∈ {2, 3}
form a system of linear generators of the algebra Z; moreover, they are independent in the motivic

sense.
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10.2.21. Logarithm of the KZ associator. The associator ΦKZ is group-
like (see Exercise 3 at the end of the chapter). Therefore its logarithm can
be expressed as a Lie series in variables A and B. Let L be the completion
of a free Lie algebra generated by A and B.

An explicit expression for log ΦKZ up to degree 6 was first written out in
[MPH], and up to degree 12, in [Du3]. The last formula truncated to degree
7 in the variables A and B is shown on page 299. We use the shorthand
notations

ζn = ζ(n) , Ckl = adk−1
B adl−1

A [A,B].

Remark. We have expanded the associator with respect to the Lyndon
basis of the free Lie algebra (see [Reu]). There is a remarkable one-to-one
correspondence between the Lyndon words and the irreducible polynomials
over the field of two elements F2, so that the associator may be thought of as
a mapping from the set of irreducible polynomials over F2 into the algebra
of multiple zeta values.

Now let L′′ := [[L,L], [L,L]] be the second commutant of the algebra L.
We can consider L as a subspace of C〈〈A,B〉〉. V. Drinfeld [Dr2] proved the
following formula

log ΦKZ =
∑
k,l>1

cklCkl (mod L′′) ,

where the coefficients ckl are defined by the generating function

1 +
∑
k,l>1

cklu
kvl = exp

( ∞∑
n=2

ζ(n)

n

(
un + vn − (u+ v)n

))
expressed in terms of the univariate zeta function ζ(n) :=

∑∞
k=1 k

−n. In
particular, ckl = clk and ck1 = c1k = −ζ(k + 1).

10.3. Combinatorial construction of the Kontsevich integral

In this section we fulfil the promise of Section 8.10 and describe in detail
a combinatorial construction for the Kontsevich integral of knots and links.
The associator ΦKZ is an essential part of this construction. In Section 10.2
we gave formulae for ΦKZ; using these expressions one can perform explicit
calculations, at least in low degrees.

10.3.1. Non-associative monomials. A non-associative monomial in one
variable is simply a choice of an order (that is, a choice of parentheses) of
multiplying n factors; the number n is referred to as the degree of a non-
associative monomial. The only such monomial in x of degree 1 is x itself.
In degree 2 there is also only one monomial, namely xx, in degree 3 there are
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log(ΦKZ) = −ζ2C11 − ζ3 (C12 + C21)

− 2

5
ζ2

2 (C13 + C31)− 1

10
ζ2

2 C22

− ζ5 (C14 + C41) + (ζ2ζ3 − 2ζ5) (C23 + C32)

+
ζ2ζ3 − ζ5

2
[C11, C12] +

ζ2ζ3 − 3ζ5

2
[C11, C21]

− 8

35
ζ3

2 (C15 + C51) +

(
1

2
ζ2

3 −
6

35
ζ3

2

)
(C24 + C42) +

(
ζ2

3 −
23

70
ζ3

2

)
C33

+

(
− 19

105
ζ3

2 + ζ2
3

)
[C11, C13] +

(
− 69

140
ζ3

2 +
3

2
ζ2

3

)
[C11, C22]

+

(
− 17

105
ζ3

2

)
[C11, C31] +

(
2

105
ζ3

2 −
1

2
ζ2

3

)
[C12, C21]

− ζ7 (C16 + C61) +

(
2

5
ζ3ζ

2
2 + ζ2ζ5 − 3ζ7

)
(C25 + C52)

+

(
1

2
ζ3ζ

2
2 + 2ζ2ζ5 − 5ζ7

)
(C34 + C43)

+

(
6

5
ζ3ζ

2
2 +

1

2
ζ2ζ5 − 4ζ7

)
[C11, C14]

+

(
11

5
ζ3ζ

2
2 +

7

2
ζ2ζ5 − 13ζ7

)
[C11, C23]

+

(
3

10
ζ3ζ

2
2 +

13

2
ζ2ζ5 − 12ζ7

)
[C11, C32] +

(
5

2
ζ2ζ5 − 5ζ7

)
[C11, C41]

+
(
ζ3ζ

2
2 − 3ζ7

)
[C12, C13] +

(
23

20
ζ3ζ

2
2 −

61

16
ζ7

)
[C12, C22]

+

(
− 3

10
ζ3ζ

2
2 −

1

2
ζ2ζ5 +

19

16
ζ7

)
[C12, C31]

+

(
4

5
ζ3ζ

2
2 +

5

2
ζ2ζ5 −

99

16
ζ7

)
[C21, C13]

+

(
7

20
ζ3ζ

2
2 + 6ζ2ζ5 −

179

16
ζ7

)
[C21, C22]

+

(
−1

5
ζ3ζ

2
2 + 2ζ2ζ5 − 3ζ7

)
[C21, C31]

+

(
67

60
ζ3ζ

2
2 +

1

4
ζ2ζ5 −

65

16
ζ7

)
[C11, [C11, C12]]

+

(
− 1

12
ζ3ζ

2
2 +

3

4
ζ2ζ5 −

17

16
ζ7

)
[C11, [C11, C21]] + . . .

Figure 10.2.3. Logarithm of the Drinfeld associator up to degree 7
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two monomials (xx)x and x(xx), in degree 4 we have ((xx)x)x, (x(xx))x,
(xx)(xx), x((xx)x) and x(x(xx)), et cetera. Define the product u · v of two
non-associative monomials u and v as their concatenation with each factor
of length more than one surrounded by an extra pair of parentheses, for
instance x · x = xx, xx · xx = (xx)(xx).

For each pair u, v of non-associative monomials of the same degree n

one can define the element Φ(u, v) ∈ Âh(n) as follows. If n < 3 we set

Φ(u, v) = 1n, the unit in Âh(n). Assume n > 3. Then Φ(u, v) is determined
by the following properties:

(1) If u = w1 · (w2 · w3) and v = (w1 · w2) · w3 where w1, w2, w3 are
monomials of degrees n1, n2 and n3 respectively, then

Φ(u, v) = ∆n1,n2,n3ΦKZ,

where ∆n1,n2,n3 is the cabling-type operation defined in Exercise 13
to Chapter 9.

(2) If w is a monomial of degree m,

Φ(w · u,w · v) = 1m ⊗ Φ(u, v)

and

Φ(u · w, v · w) = Φ(u, v)⊗ 1m;

(3) If u, v, w are monomials of the same degree, then

Φ(u, v) = Φ(u,w)Φ(w, v).

These properties are sufficient to determine Φ(u, v) since each non-associative
monomial in one variable can be obtained from any other such monomial
of the same degree by moving the parentheses in triple products. It is not
immediate that Φ(u, v) is well-defined, however. Indeed, according to (3),
we can define Φ(u, v) by choosing a sequence of moves that shift one pair of
parentheses at a time, and have the effect of changing u into v. A potential
problem is that there may be more than one such sequence; however, let us
postpone this matter for the moment and work under the assumption that
Φ(u, v) may be multivalued (which it is not, see page 307).

Recall from Section 1.7 the notion of an elementary tangle: basically,
these are maxima, minima, crossings and vertical segments.

Take a tensor product of several elementary tangles and choose the
brackets in it, enclosing each elementary tangle other than a vertical seg-
ment in its own pair of parentheses. This choice of parentheses is encoded by
a non-associative monomial w, where each vertical segment is represented
by an x and each crossing or a critical point — by the product xx. Further,
we have two more non-associative monomials, w and w: w is formed by
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the top boundary points of the tangle, and w is formed by the bottom end-
points. For example, consider the following tensor product, parenthesized
as indicated, of three elementary tangles:

The parentheses in the product are coded by w = x((xx)(xx)). The top part
of the boundary gives w = w, and the bottom part produces w = x(xx).

Note that here it is important that the factors in the product are not
arbitrary, but elementary tangles, since each elementary tangle has at most
two upper and at most two lower boundary points.

10.3.2. The construction. First, recall that in Exercise 13 on page 257
we defined the operations Sk which describe how the Kontsevich integral
changes when one of the components of a tangle is reversed. Assume that
the components of the diagram skeleton are numbered. Then Sk changes
the direction of the kth component and multiplies the diagram by −1 if the
number of chord endpoints lying on the kth component is odd.

Represent a given knot K as a product of tangles

K = T1T2 . . . Tn

so that each Ti is a tensor product of elementary tangles:

Ti = Ti,1 ⊗ · · · ⊗ Ti,ki .

Write Zi for the tensor product of the Kontsevich integrals of the elementary
tangles Ti,j :

Zi = Z(Ti,1)⊗ · · · ⊗ Z(Ti,ki).

Note that the only elementary tangles for which the Kontsevich integral is
non-trivial are the crossings X− and X+, and for them

Z (X+) = · exp
(

2

)
, Z (X−) = · exp

(
−

2

)
.

For all other elementary tangles the Kontsevich integral consists of a diagram
with no chords:

Z(
−→

max ) = , Z(id) = ,

and so on. We remind that Zi in general does not coincide with Z(Ti).

For each simple tangle Ti choose the parentheses in the tensor prod-
uct, and represent this choice by a non-associative monomial wi. Then the
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combinatorial Kontsevich integral Zcomb(K) is defined as

Zcomb(K) = Z1 · Φ(w1, w2)↓1 · Z2 · . . . · Zn−1 · Φ(wn−1, wn)↓n−1 · Zn,

where Φ(wi, wi+1)↓i is the result of applying to Φ(wi, wi+1) all the operations
Sk such that at the kth point on the bottom of Ti (or on the top of Ti+1)
the corresponding strand is oriented downwards.

The combinatorial Kontsevich integral at the first glance may seem to be
a complicated expression. However, it is built of only two types of elements:
the exponential of /2 and the Drinfeld associator ΦKZ which produces all
the Φ(wi, wi+1).

Remark. The definition of an elementary tangle in Section 1.7 is somewhat
restrictive. In particular, of all types of crossings only X+ and X− are
considered to be elementary tangles. Note that rotating X+ and X− by
±π/2 and by π we get tangles whose Kontsevich integral is an exponential of
the same kind as for X+ and X−. It will be clear from our argument that we
can count these tangles as elementary for the definition of the combinatorial
Kontsevich integral.

10.3.3. Example of computation. Let us see how the combinatorial
Kontsevich integral can be computed, up to order 2, on the example of
the left trefoil 31. Explicit formulae for the associator were proven in Sec-
tion 10.2. In particular, we shall see that

ΦKZ = 1 +
1

24

(
−

)
+ . . . .

Decompose the left trefoil into elementary tangles as shown below and choose
the parentheses in the tensor product as shown in the second column:

−→
max

(id⊗ −→
max )⊗ id∗

(X− ⊗ id∗)⊗ id∗

(X− ⊗ id∗)⊗ id∗

(X− ⊗ id∗)⊗ id∗

(id⊗min←−)⊗ id∗

min←−

The combinatorial Kontsevich integral may then be represented as
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Zcomb(31) =

S

2exp(−    )

S
3
(Φ)

3
(Φ−1)

2exp(−    )

2exp(−    )

where S3( ) = and S3( ) = − . The crossings in the above
picture are, of course, irrelevant since it shows chord diagrams and not
knot diagrams.

We have that

S3(Φ±1
KZ) = 1± 1

24

(
−

)
+ . . .

and

exp
(
±

2

)
= 1±

2
+

2

8
+ . . .

Plugging these expressions into the diagram above we see that, up to degree
2, the combinatorial Kontsevich integral of the left trefoil is

Zcomb(31) = 1 +
25

24
+ . . .

Representing the hump H as
−→

max

id⊗ (id∗⊗ −→
max )

id⊗ (min−→ ⊗ id∗)

min←−
we have

Zcomb(H) = 1 +
1

24
+ . . .

and we can find the final combinatorial Kontsevich integral of the trefoil (for
instance, in the multiplicative normalization as on page 246):

I ′comb(31) = Zcomb(31)/Zcomb(H)

=
(

1 +
25

24
+ . . .

)(
1 +

1

24
+ . . .

)−1
= 1 + + . . .
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10.3.4. Equivalence of the combinatorial and analytic definitions.
The main result about the combinatorial Kontsevich integral is the following
theorem:

Theorem ([LM3]). The combinatorial Kontsevich integral of a knot or a
link is equal to the usual Kontsevich integral:

Zcomb(K) = Z(K) .

The idea of the proof was sketched the idea in Section 8.10. The most
important part of the argument consists in expressing the Kontsevich inte-
gral of an associating tangle via ΦKZ. As often happens in our setting, this
argument will give results about objects more general than links, and we
shall prove it in this greater generality.

10.3.5. The combinatorial integral for parenthesized tangles. The
combinatorial construction for the Kontsevich integral on page 301 can also
be performed for arbitrary oriented tangles, in the very same manner as for
knots or links. However, the result of this construction can be manifestly
non-invariant.

Example. Take the trivial tangle id⊗3 on 3 strands and write it as id⊗3 =
T1T2 where T1 = id⊗(id⊗ id) and T2 = (id⊗ id)⊗ id. With this choice of the
parentheses, the combinatorial Kontsevich integral of id⊗3 is equal to the
Drinfeld associator ΦKZ. On the other hand, the calculation for id⊗3 = T1

simply gives 13.

It turns out that the combinatorial Kontsevich integral is an invariant of
parenthesized tangles. A parenthesized tangle (T, u, v) is an oriented tangle
T together with two non-associative monomials u and v in one variable, such
that the degrees of u and v are equal to the number of points in the upper,
and, respectively, lower, parts of the boundary of T . One can think of these
monomials as sets of parentheses on the boundary of T .

The combinatorial Kontsevich integral Zcomb of a parenthesized tangle
(T, u, v) is defined in the same way as the Kontsevich integral of knots
or links, by decomposing T into a product of simple tangles T1 . . . Tn and
choosing parentheses on the Ti. The only difference is that now we require
that the bracketing chosen on T1 give rise to the monomial u on the top
part of T1 and that the parentheses of Tn produce v on the bottom of Tn.
As usual (for instance, in Section 9.1.3), we can define

Icomb(T ) = Z(H)−m1# . . .#Z(H)−mk#Zcomb(T ),

where mi is the number of maxima on the ith component of T .

It turns out that the combinatorial Kontsevich integral Icomb(T, u, v)
depends only on the isotopy class of T and on the monomials u, v. This can
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be proved by relating Zcomb(T, u, v) to the Kontsevich integral of a certain
family of tangles. In order to write down the exact formula expressing this
relation, we need to define its ingredients first.

Remarks. For tangles whose upper and lower boundary consist of at most
two points there is only one way to choose the parentheses on the top and
on the bottom, and therefore, in this case Icomb is an invariant of usual (not
parenthesized) tangles.

Note also that Icomb of parenthesized tangles is preserved by all isotopies,
while the analytic Kontsevich integral is only constant under fixed-end iso-
topies.

10.3.6. Deformations associated with monomials and regularizing
factors. Let t be set of n distinct points in an interval [a, b]. To each non-
associative monomial w of degree n we can associate a deformation twε , with
0 < ε 6 1, as follows.

If t1 and t2 are two configurations of distinct points, in the intervals
[a1, b1] and [a2, b2] respectively, we can speak of their ε-parametrized tensor
product: it is obtained by rescaling both t1 and t2 by ε and placing the
resulting intervals at the distance 1− ε from each other:

⊗ε
=

This is completely analogous to the ε-parametrized tensor product of tangles
on page 237. Just as for tangles, the ε-parametrized tensor product of
configurations of distinct points is not associative, and defined only up to a
translation.

Now let us consider our configuration of points t. Divide the interval
[a, b] into n smaller intervals so that there is exactly one point of t in each of
them, and take their ε-parametrized tensor product in the order prescribed
by the monomial w. Call the result twε .

Exercise. Show that twε only depends on t, w and ε. In particular, it does
not depend on the choice of the decomposition of t into n intervals.

Now, let (T, u, v) be a parenthesized tangle. Denote by s and t the sets
of top and bottom boundary points, respectively. A continuous deforma-
tion of the boundary of a tangle can always be extended to an horizontal
deformation of the whole tangle. We shall denote by Tε,u,v the family of
(non-parenthesized) tangles obtained by deforming s by means of suε and, at
the same time, deforming t by means of tvε .

The second ingredient we shall need is a certain function from non-

associative monomials of degree n in one variable to Âh(n).
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First, we define for each integer i > 0 and each non-associative monomial

w in x the element ci(w) ∈ Âh(n), where n is the degree of w, by setting

• ci(x) = 0 for all i;

• c0(w1w2) = ∆n1,n2
(

2πi

)
if w1, w2 6= 1, where n1 and n2 are the

degrees of w1 and w2 respectively;

• ci(w1w2) = ci−1(w1) ⊗ 1n2 + 1n1 ⊗ ci−1(w2) if w1, w2 6= 1 with
degw1 = n1, degw2 = n2 and i > 0.

It is easy to see that for each w all the ci(w) commute with each other (this
follows directly from Lemma 5.11.2) and that only a finite number of the ci
is non-zero. Now, we set

ρε(w) =

∞∏
k=1

εkck(w).

This product is, of course, finite since almost all terms in it are equal to the

unit in Âh(n). The element ρε(w) is called the regularizing factor of w.

10.3.7. Theorem. For a parenthesized tangle (T, u, v)

lim
ε→0

ρε(u)−1
↓t · Z(Tε,u,v) · ρε(v)↓b = Zcomb(T, u, v),

where ρε(u)↓t is the result of applying to ρε(u) all the operations Sk such
that at the kth point on the top of T the corresponding strand is oriented
downwards, and ↓b denotes the same operation at the bottom of the tangle
T .

In particular, it follows that for a knot or a link both definitions of the
Kontsevich integral coincide, since the boundary of a link is empty.

Example. Let (T, u, v) be the parenthesized tangle with T being the trivial
braid on 4 strands, all oriented upwards, u = (x(xx))x and v = ((xx)x)x.
We have

c1(u) =
1

2πi

(
+

)
, c1(v) =

1

2πi

(
+

)
,

c2(u) =
1

2πi
, c2(v) =

1

2πi
.

The combinatorial Kontsevich integral of (T, u, v) equals ΦKZ ⊗ id, and we
have

lim
ε→0

ε−
1

2πi

(
+

)
ε−

1
πi · Z(Tε,u,v) · ε

1
πi ε

1
2πi

(
+

)
= ΦKZ ⊗ id.

This is a particular case of Exercise 11 on page 317.
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10.3.8. Proof of Theorem 10.3.7. Let (T1, u1, v1) and (T2, u2, v2) be two
parenthesized tangles with v1 = u2 and such that the orientations of the
strands on the bottom of T1 agree with those on top of T2. Then we can
define their product to be the parenthesized tangle (T1T2, u1, v2). Every
parenthesized tangle is a product of tangles (T, u, v) of three types:

(1) associating tangles with T trivial (all strands vertical, though with
arbitrary orientations) and u 6= v;

(2) tangles where T is a tensor product, in some order, of one crossing
and several vertical strands;

(3) tangles where T is a tensor product, in some order, of one critical
point and several vertical strands.

In the latter two cases we require that u and v come from the same choice
of brackets on the elementary factors of T . For the tangles of type (2) this
implies that u = v; in the case of type (3) tangles one monomial is obtained
from the other by deleting one factor of the form (xx).

The two expressions on both sides of the equality in Theorem 10.3.7 are
multiplicative with respect to this product, so it is sufficient to consider the
three cases separately.

Let us introduce, for this proof only, the following notation. If x and

y are two elements of Âh(n) that depend on a parameter ε, by saying that

x ∼ y as ε→ 0 we shall mean that in some fixed basis of Âh(n) (and, hence,
in any basis of this algebra) the coefficient of each diagram in x − y is of
the same or smaller order of magnitude than ε lnN ε for some non-negative
integer N that may depend on the diagram. Note that for any non-negative
N the limit of ε lnN ε as ε→ 0 is equal to 0.

First let us consider the associating tangles. Without loss of generality
we can assume that all the strands of the tangle are oriented upwards. We
need to show that if I = id⊗n is a trivial tangle,

(10.3.1) ρε(u)−1 · Z(Iε,u,v) · ρε(v) ∼ Φ(u, v)

as ε→ 0.

Remark. An important corollary of the above formula is that Φ(u, v) is
well-defined, since the left-hand side is.

Let w be a non-associative word and t - a configuration of distinct points
in an interval. We denote by εt a configuration of the same cardinality and
in the same interval as t but whose distances between points are equal to
the corresponding distances in t, multiplied by ε. (There are many such
configurations, of course, but this is of no importance in what follows.)



308 10. The Drinfeld associator

Write Nε(w) for a tangle with no crossings which has εtwε and twε as its
top and bottom configurations of boundary points respectively, and each of
whose strands connects one point on the top to one on the bottom:

~ 2

~ 1

ε~

ε

As ε tends to 0, the Kontsevich integral of Nε(w) diverges. We have the
following asymptotic formula:

(10.3.2) Z(Nε(w)) ∼
∞∏
k=0

εck(w).

If t is a two-point configuration this formula is exact, and amounts to a
straightforward computation (see Exercise 6 to Chapter 8). In general, if
w = w1w2 and ni = degwi we can write Nε(w) as a product in the following
way:

1

2~ε2~ε2~

ε~ ε~

T

T
2

1

~

ε

As ε tends to 0, we have

Z(T1) ∼ ∆n1,n2ε /2πi = εc0(w1w2),

see Exercise 13 on page 274, and

Z(T2) ∼ Z(Nε(w1))⊗ Z(Nε(w2)).

Using induction and the definition of the ci we arrive to the formula (10.3.2).

Now, notice that it is sufficient to prove (10.3.1) in the case when u =
w1(w2w3) and v = (w1w2)w3. Let us draw 1ε,u,v as a product T1 · T2 · T3 as
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in the picture:

T

ε ~ε

~ε2
~ε2

2

3

1
T

T

~

As ε→ 0 we have:

• Z(T1) ∼ Z(Nε(w1))−1 ⊗ 1n2+n3 ;

• Z(T2) ∼ (1n1 ⊗ c0(w2w3)) ·∆n1,n2,n3ΦKZ · (c0(w1w2)⊗ 1n3)−1;

• Z(T3) ∼ 1n1+n2 ⊗ Z(Nε(w3)),

where ni = degwi. Notice that these asymptotic expressions for Z(T1),
Z(T2) and Z(T3) all commute with each other. Now (10.3.1) follows from
(10.3.2) and the definition of ρε(w).

Let us now consider the case when T is a tensor product of one crossing
and several vertical strands. In this case Tε,u,u is an iterated ε-parametrized
tensor product, so Proposition 8.4.5 gives Z(Tε,u,u) ∼ Zcomb(T, u, u). From
the definition of ck(u) we see that

ρε(u)↓t · Zcomb(T, u, u) = Zcomb(T, u, u) · ρε(u)↓b ,

and we are done.

Finally, let T be a tensor product of one critical point (say, minimum)
and several vertical strands. For example, assume that T = id⊗n ⊗ min−→,

and that u = v · (xx). Now Tε,u,v = T ′ε · Nε(v) where T ′ε is the iterated
ε-parametrized tensor product corresponding to the monomial u, so that, in
particular, T ′1 = T , and Nε(v) is as on page 308. As ε→ 0 we have

T ′ε ∼ Zcomb(T ).

As for the regularizing factors,

ρε(u) = ρε(v(xx)) =
(
ρε(v)⊗ id⊗2

)
·
(∏

k

εck(v) ⊗ ε 2πi

)
and we see that they cancel out together with Z(Nε(u)).

The general case for a tangle of type (3) is entirely similar.
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10.4. General associators

We have seen that the Kontsevich integral of a knot is assembled from
Knizhnik-Zamolodchikov associators and exponentials of a one-chord dia-
gram on two strands. Given that the coefficients of ΦKZ are multiple ζ-
values, the following theorem may come as a surprise:

10.4.1. Theorem. For any knot (or link) K the coefficients of the Kontse-
vich integral Z(K), in an arbitrary basis of A consisting of chord diagrams,
are rational.

The proof of this important theorem is rather involved, and we shall not
give it here. Nevertheless, in this section we sketch very briefly some ideas
central to the argument of the proof.

10.4.2. Axioms for associators. One may ask what properties of ΦKZ

imply that the combinatorial construction indeed produces the Kontsevich
integral for links. Here we shall give a list of such properties.

Consider the algebraA(n) of tangle chord diagrams on n vertical strands.
(Recall that, unlike in Ah(n), the chords of diagrams in A(n) need not be
horizontal.) There are various homomorphisms between the algebras A(n),
some of which we have already seen. Let us introduce some notation.

Definition. The operation εi : A(n) → A(n − 1) sends a tangle chord
diagram D to 0 if at least one chord of D has an endpoint on the ith strand;
otherwise εi(D) is obtained from D by removing the ith strand.

Examples. εi( ) = for any i, ε1( ) = ε2( ) = 0, ε3( ) = .

The following notation is simply shorthand for ∆1,...,1,2,1,...,1:

Definition. The operation ∆i : A(n) → A(n + 1) consists in doubling the
ith strand of a tangle chord diagram D and taking the sum over all possible
lifts of the chord endpoints of D from the ith strand to one of the two new
strands.

The symmetric group on 3 letters acts on A(3) by permuting the strands.
The action of σ can be thought of as conjugation

D → σDσ−1

by a strand-permuting diagram with no chords whose ith point on the
bottom is connected with the σ(i)th point on top. For D ∈ A(3) and
{i, j, k} = {1, 2, 3} we shall write Dijk for D conjugated by the permutation
that sends ( 1 2 3 ) to ( i j k ).

All the above operations can be extended to the graded completion Â(n)
of the algebra A(n) with respect to the number of chords.
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Finally, we write R for exp
(

2

)
∈ Â(2) and Rij for exp(uij/2) ∈ Â(3)

where uij has only one chord that connects the strands i and j.

Definition. An associator Φ is an element of the algebra Â(3) satisfying
the following axioms:

• (strong invertibility)

ε1(Φ) = ε2(Φ) = ε3(Φ) = 1

(this property, in particular, implies that the series Φ starts with 1

and thus represents an invertible element of the algebra Â(3));

• (skew symmetry)

Φ−1 = Φ321;

• (pentagon relation)

(id⊗ Φ) · (∆2Φ) · (Φ⊗ id) = (∆3Φ) · (∆1Φ);

• (hexagon relation)

Φ231 · (∆2R) · Φ = R13 · Φ213 ·R12.

A version of the last two relations appears in abstract category theory where
they form part of the definition of a monoidal category (see [ML, Sec.XI.1]).

10.4.3. Theorem. The Knizhnik–Zamolodchikov Drinfeld associator ΦKZ

satisfies the axioms above.

Proof. The main observation is that the pentagon and the hexagon relations
hold for ΦKZ as it can be expressed via the Kontsevich integral. The details
of the proof are as follows.

Property 1 immediately follows from the explicit formula 10.2.16 for the
associator ΦKZ, which shows that the series starts with 1 and every term
appearing with non-zero coefficient has endpoints of chords on each of the
three strands.

Property 2. Notice that Φ321 is obtained from Φ simply by flipping Φ
about a vertical axis. Now, consider the following tangle:

2

T1

ε

εε

T
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It is isotopic to a tangle whose all strands are vertical, so its Kontsevich
integral is equal to 1. As we know from Section 10.1.10, the Kontsevich
integral of the two halves of this tangle can be expressed as

Z(T1) = lim
ε→0

ε
1

2πi · ΦKZ · ε−
1

2πi ,

and

Z(T2) = lim
ε→0

ε
1

2πi · Φ321
KZ · ε−

1
2πi ,

since T2 is obtained from T1 by flipping it about a vertical axis. We see that
the regularizing factors cancel out and

ΦKZ · Φ321
KZ = 1.

Property 3. The pentagon relation for ΦKZ can be represented by the
following diagram:

=

a b

c d

((ab)c)d

(a(bc))d

a((bc)d) a(b(cd))

(ab)(cd)

Φ⊗ id

∆2Φ

id⊗ Φ

∆1Φ

∆3Φ

Both sides of this relation are, actually, two expressions for the combinatorial
Kontsevich integral of the trivial tangle parenthesized by x(x(xx)) at the
top and ((xx)x)x at the bottom. On the left-hand side it is written as a
product of three trivial tangles with the monomials x((xx)x) and (x(xx))x
in the middle. On the right-hand side it is a product of two trivial tangles,
the monomial in the middle being (xx)(xx).



10.4. General associators 313

Property 4, the hexagon relation, is illustrated by the following diagram:

=

a c
b

(ab)c

a(bc)

(bc)a

b(ca)

b(ac))

(ba)c

Φ

∆2R

Φ

R⊗ id

Φ

id⊗R

On both sides we have the combinatorial Kontsevich integral of the tangle

T =

parenthesized at the top as x(xx) and at the bottom as (xx)x. On the right-
hand side this integral is calculated by decomposing T into a product of two
crossings. On the left-hand side we use Theorem 10.3.7 and the expression
for the Kontsevich integral of Tε from Exercise 14 on page 274. We have

Φ

Φ

∆2(R)

R

R

Φ

which gives the hexagon relation. �

10.4.4. The set of all associators. Interestingly, the axioms do not de-
fine the associator uniquely. The following theorem describes the totality of
all associators.

Theorem ([Dr1, LM2]). Let Φ be an associator and F ∈ Â(2) an invert-
ible element. Then

Φ̃ = (id⊗ F−1) ·∆2(F−1) · Φ ·∆1(F ) · (F ⊗ id)

is also an associator. Conversely, for any two associators Φ and Φ̃ there

exists F ∈ Â(2) invertible so that Φ, Φ̃ and F are related as above. Moreover,
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F can be assumed to be symmetric, that is, invariant under conjugation by
the permutation of the two strands.

The operation Φ 7→ Φ̃ is called twisting by F . Diagrammatically, it looks
as follows:

Φ̃ =

F−1

∆2(F−1)

Φ

∆1(F )

F

Twisting and the above theorem were discovered by V. Drinfeld [Dr1] in
the context of quasi-triangular quasi-Hopf algebras, and adapted for chord
diagrams in [LM2]. We refer to [LM2] for the proof.

Exercise. Prove that the twist by an element F = exp(α m) is the
identity on any associator for any m.

Exercise. Prove that

(1) twisting by 1 + adds 2([a, b]− ac+ bc) to the degree 2 term of

an associator, where a = , b = and c = .

(2) twisting by 1 + does not change the degree 3 term of an asso-

ciator.

Example. Let ΦBN be the rational associator described in the next section.
It is remarkable that both ΦBN and ΦKZ are horizontal, that is, they belong
to the subalgebra Ah(3) of horizontal diagrams, but can be converted into
one another only by a non-horizontal twist. For example, twisting ΦBN by
the element

F = 1 + α

with an appropriate constant α ensures the coincidence with ΦKZ up to
degree 4.

On the other hand, the set of all horizontal associators can also be
described in terms of the action of the so-called Grothendieck-Techmüller
group(s), see [Dr2, BN6].
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V. Kurlin [Kur] described all group-like associators modulo the second
commutant.

10.4.5. Rationality of the Kontsevich integral. Let us replace ΦKZ in
the combinatorial construction of the Kontsevich integral for parenthesized
tangles by an arbitrary associator Φ; denote the result by ZΦ(K).

Theorem ([LM2]). For any two associators Φ and Φ̃ the corresponding
combinatorial integrals coincide for any link K: ZΦ(K) = Z

Φ̃
(K).

A more precise statement is that for any parenthesized tangle (T, u, v)
the integrals ZΦ(T ) and Z

Φ̃
(T ) are conjugate in the sense that Z

Φ̃
(T ) =

Fu · ZΦ(T ) · F−1
v , where the elements Fu and Fv depend only on u and

v respectively. This can be proved in the same spirit as Theorem 10.3.7
by decomposing a parenthesized tangle into building blocks for which the
statement is easy to verify. Then, since a link has empty boundary, the
corresponding combinatorial integrals are equal.

The fact that the Kontsevich integral does not depend on the associator
used to compute it is the key step to the proof of Theorem 10.4.1. Indeed,
V. Drinfeld [Dr2] (see also [BN6]) showed that there exists an associator
ΦQ with rational coefficients. Therefore, Z(K) = Zcomb(K) = ZΦQ(K). The
last combinatorial integral has rational coefficients.

We should stress here that the existence of a rational associator ΦQ
is a highly non-trivial fact, and that computing it is a difficult task. In
[BN2] D. Bar-Natan, following [Dr2], gave a construction of ΦQ by induc-
tion on the degree. He implemented the inductive procedure in Mathematica

([BN5]) and computed the logarithm of the associator up to degree 7. With

the notation a = , b = his answer, which we denote by ΦBN is as fol-
lows:

log ΦBN = 1
48 [ab]− 1

1440 [a[a[ab]]]− 1
11520 [a[b[ab]]]

+ 1
60480 [a[a[a[a[ab]]]]] + 1

1451520 [a[a[a[b[ab]]]]]

+ 13
1161216 [a[a[b[b[ab]]]]] + 17

1451520 [a[b[a[a[ab]]]]]

+ 1
1451520 [a[b[a[b[ab]]]]]

−(similar terms with a and b interchanged) + . . .

Remark. This expression is obtained from ΦKZ expanded to degree 7 (see
the formula on page 299) by substitutions ζ(3)→ 0, ζ(5)→ 0, ζ(7)→ 0.
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Exercises

(1) Find the monodromy of the reduced KZ equation (page 280) around the
points 0, 1 and ∞.

(2) Using the action of the symmetric group Sn on the configuration space
X = Cn \ H determine the algebra of values and the KZ equation on
the quotient space X/Sn in such a way that the monodromy gives the
Kontsevich integral of (not necessarily pure) braids. Compute the result
for n = 2 and compare it with Exercise 8.4.2 on page 236.

(3) Prove that the associator ΦKZ is group-like.
Hint. Use the fact the Kontsevich integral is group-like.

(4) Find Zcomb(31) up to degree 4 using the parenthesized presentation of
the trefoil knot given in Figure 8.10.1 (page 254).

(5) Compute the Kontsevich integral of the knot 41 up to degree 4, using the
parenthesized presentation of the knot 41 from Exercise 15 to Chapter 8
(page 258).

(6) Prove that the condition ε2(Φ) = 1 and the pentagon relation imply the
other two equalities for strong invertibility: ε1(Φ) = 1 and ε3(Φ) = 1.

(7) Prove the second hexagon relation

(Φ312)−1 · (∆1R) · Φ−1 = R13 · (Φ132)−1 ·R23

for an arbitrary associator Φ.

(8) Any associator Φ in the algebra of horizontal diagrams Ah(3) can be

written as a power series in non-commuting variables a = , b = ,

c = : Φ = Φ(a, b, c).
(a) Check that the skew-symmetry axiom is equivalent to the identity

Φ−1(a, b, c) = Φ(b, a, c). In particular, for an associator Φ(A,B)
with values in C〈〈A,B〉〉 (like ΦBN, or ΦKZ), we have Φ−1(A,B) =
Φ(B,A).

(b) Prove that the hexagon relation from page 311 can be written in
the form

Φ(a, b, c) exp
(b+ c

2

)
Φ(c, a, b) = exp

( b
2

)
Φ(c, b, a) exp

( c
2

)
.

(c) (V. Kurlin [Kur]) Prove that for a horizontal associator the hexagon
relation is equivalent to the relation

Φ(a, b, c)e
−a
2 Φ(c, a, b)e

−c
2 Φ(b, c, a)e

−b
2 = e

−a−b−c
2 .

(d) Show that for a horizontal associator Φ,

Φ ·∆2(R) · Φ ·∆2(R) · Φ ·∆2(R) = exp(a+ b+ c) .
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(9) Express Z(H) via ΦKZ. Is it true that the resulting power series contains
only even degree terms?

(10) Prove that

Φ = lim
ε→0

ε−
w
2πi
·
(

+
)
ε−

t
2πi
· ·Z(AT tb,w)·ε

b
2πi
· ·ε

w
2πi
·
(

+
)
,

where the tangle AT tb,w is as in Exercise 14 on page 257.

(11) Prove that for the tangle T tm,b,w in the
picture on the right

lim
ε→0

ε−
b−w
2πi

(
+

)
· ε−

t−w
2πi ·

·Z(T tm,b,w)· εb
εw

εm

εt

·ε
m−w
2πi · ε

b−w
2πi

(
+

)
= Φ⊗ id.

(12) Prove that for the tangle T t,mb,w in the

picture on the right

lim
ε→0

ε−
t−w
2πi

(
+

)
· ε−

m−w
2πi ·

·Z(T t,mb,w )· εb

εw

εm
εt

·ε
b−w
2πi · ε

t−w
2πi

(
+

)
= id⊗ Φ.





Chapter 11

The Kontsevich
integral: advanced
features

11.1. Mutation

The purpose of this section is to prove that the Kontsevich integral commutes
with the operation of mutation (this fact was first noticed by T. Le). As an
application, we construct a counterexample to the original intersection graph
conjecture (page 118) and describe, following [ChL], all Vassiliev invariants
which do not distinguish mutants.

11.1.1. Mutation of knots. Suppose we have a knot K with a distin-
guished tangle T whose boundary consists of two points at the bottom and
two points at the top. If the orientations of the strands of T agree both
at the top and the bottom of T , we can cut out the tangle, rotate it by
180◦ around a vertical axis and insert it back. This operation MT is called
mutation and the knot MT (K) thus obtained is called a mutant of K.

Here is a widely known pair of mutant knots, 11n34 and 11n42, which are
mirrors of the Conway and Kinoshita–Terasaka knots respectively:

11n34 = C = 11n42 = KT =

319
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11.1.2. Theorem ([MC]). There exists a Vassiliev invariant v of order 11
such that v(C) 6= v(KT ).

Morton and Cromwell manufactured the invariant v using the Lie algebra
glN with a nonstandard representation (or, in other words, the HOMFLY
polynomial of certain cablings of the knots).

J. Murakami [Mu] showed that any invariant or order at most 10 does
not distinguish mutants. So order 11 is the smallest where Vassiliev invari-
ants detect mutants.

11.1.3. Mutation of the Kontsevich integral. Let us describe the be-
haviour of the Kontsevich integral with respect to knot mutation.

First, recall the definition of a share from Section 4.8.5: it is a part of
the Wilson loop of a chord diagram, consisting of two arcs, such that each
chord has either both or no endpoints on it. A mutation of a chord diagram
is an operation of flipping the share with all the chords on it.

In the construction of the Kontsevich integral of a knot K the Wilson
loop of the chord diagrams is parametrized by the same circle as K. For
each chord diagram participating in Z(K), the mutation of K with respect
to a subtangle T gives rise to a flip of two arcs on the Wilson loop.

Theorem ([Le]). Let MT (K) be the mutant of a knot K with respect to a
subtangle T . Then Z(K) consists only of diagrams for which the part of the
Wilson loop that corresponds to T is a share. Moreover, if MT (Z(K)) is
obtained from Z(K) by flipping the T -share of each diagram, we have

Z(MT (K)) = MT (Z(K)).

Proof. The proof is a straightforward application of the combinatorial con-
struction of the Kontsevich integral. Write K as a product K = A·(T⊗B)·C
where A,B,C are some tangles. Then the mutation operation consists in
replacing T in this expression by its flip T ′ about a vertical axis.

First, observe that rotating a parenthesized tangle with two points at
the top and two points at the bottom by 180◦ about a vertical axis results
in the same operation on its combinatorial Kontsevich integral. Moreover,
since there is only one choice of parentheses for a product of two factors,
the non-associative monomials on the boundary of T are the same as those
of T ′ (all are equal to (xx)). Choose the non-associative monomials for B
to be u at the top and v at the bottom. Then

Z(K) = Z(A, 1, (xx)u) ·
(
Z(T, (xx), (xx))⊗ Z(B, u, v)

)
· Z(C, (xx)v, 1),

where we write simply Z for Zcomb, and

Z(MT (K)) = Z(A, 1, (xx)u)·
(
Z(T ′, (xx), (xx))⊗Z(B, u, v)

)
·Z(C, (xx)v, 1).
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Both expressions only involve diagrams for which the part of the Wilson
loop that corresponds to T is a share; they differ exactly by the mutation
of all the T -shares of the diagrams. �

11.1.4. Counterexample to the Intersection Graph Conjecture. It
is easy to see that the mutation of chord diagrams does not change the
intersection graph. Thus, if the intersection graph conjecture (see 4.8.4)
were true, the Kontsevich integrals of mutant knots would coincide, and all
Vassiliev invariants would take the same value on mutant knots. But this
contradicts Theorem 11.1.2.

11.1.5. Now we can prove the theorem announced on page 118:

Theorem ([ChL]). The symbol of a Vassiliev invariant that does not dis-
tinguish mutant knots depends on the intersection graph only.

Proof. The idea of the proof can be summarized in one sentence: a mutation
of a chord diagram is always induced by a mutation of a singular knot.

Let D1 and D2 be chord diagrams of degree n with the same intersection
graph. We must prove that if a Vassiliev knot invariant v, of order at most
n, does not distinguish mutants, then the symbol of v takes the same value
on D1 and D2.

According to the theorem of Section 4.8.5 (page 119), D2 can be obtained
from D1 by a sequence of mutations. It is sufficient to consider the case when
D1 and D2 differ by a single mutation in a share S.

Let K1 be a singular knot with n double points whose chord diagram is
D1. The share S corresponds to two arcs on K1; the double points on these
two arcs correspond to the chords with endpoints on S. Now, shrinking
and deforming the two arcs, if necessary, we can find a ball in R3 whose
intersection with K1 consists of these two arcs and a finite number of other
arcs. These other arcs can be pushed out of the ball, though not necessarily
by an isotopy, that is, passing through self-intersections. The result is a new
singular knot K ′1 with the same chord diagram D1, whose double points
corresponding to S are collected in a tangle TS . Performing an appropriate
rotation of TS we obtain a singular knot K2 with the chord diagram D2.
Since v does not distinguish mutants, its values on K1 and K2 are equal.
The theorem is proved. �
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To illustrate the proof, consider the chord diagram D1 below. Pick a
singular knot K1 representing D1.

D1 =
4

5

5

2 2

33

4

1
1

6

6

K1 =
2 3

4

51 6

By deforming K1 we achieve that the two arcs of the share form a tangle
(placed on its side in the pictures below), and then push all other segments
of the knot out of this subtangle:

deforming the knot to form the subtangle pushing out other segments

Combining the last theorem with 11.1.3 we get the following corollary.

Corollary. Let w be a weight system on chord diagrams with n chords. Con-
sider a Vassiliev invariant v(K) := w ◦ I(K). Then v does not distinguish
mutants if and only if the weight system w depends only on the intersection
graph.

11.2. Canonical Vassiliev invariants

Theorem 8.8.2) on the universality of the Kontsevich integral and its framed
version in Section 9.1.1 provide a means to recover a Vassiliev invariant of
order 6 n from its symbol, up to invariants of smaller order. It is natural to
consider those remarkable Vassiliev invariants whose recovery gives precisely
the original invariant.

11.2.1. Definition. ([BNG]) A (framed) Vassiliev invariant v of order
6 n is called canonical if for every (framed) knot K,

v(K) = symb(v)(I(K)) .

In the case of framed invariants one should write Ifr(K) instead of I(K).

A power series invariant f =
∑∞

n=0 fnh
n, with fn of order 6 n is called

canonical if

f(K) =
∞∑
n=0

(
wn(I(K))

)
hn

for every knot K, where w =
∑∞

n=0wn is the symbol of f . And, again, in

the framed case one should use Ifr(K) instead of I(K).



11.2. Canonical Vassiliev invariants 323

Recall that the power series invariants were defined on page 78 and their
symbols — in the remark after Proposition 4.5.1.

Canonical invariants define a grading in the filtered space of Vassiliev
invariants which is consistent with the filtration.

Example. The trivial invariant of order 0 which is identically equal to 1
on all knots is a canonical invariant. Its weight system is equal to I0 in the
notation of Section 4.5.

Example. The Casson invariant c2 is canonical. This follows from the
explicit formula 3.6.7 that defines it in terms of the knot diagram.

Exercise. Prove that the invariant j3 (see 3.6.1) is canonical.

Surprisingly many of the classical knot invariants discussed in Chapters
2 and 3 turn out to be canonical.

The notion of a canonical invariant allows one to reduce various relations
between Vassiliev knot invariants to some combinatorial relations between
their symbols, which gives a powerful tool to study knot invariants. This ap-
proach will be used in Section 14.1 to prove the Melvin–Morton conjecture.
Now we shall give examples of canonical invariants following [BNG].

11.2.2. Quantum invariants. Building on the work of Drinfeld [Dr1,
Dr2] and Kohno [Koh2], T. Le and J. Murakami [LM3, Th 10], and C. Kas-
sel [Kas, Th XX.8.3] (see also [Oht1, Th 6.14]) proved that the quantum
knot invariants θfr(K) and θ(K) introduced in Section 2.6 become canonical
series after substitution q = eh and expansion into a power series in h.

The initial data for these invariants is a semi-simple Lie algebra g and
its finite dimensional irreducible representation Vλ, where λ is its high-

est weight. To emphasize this data, we shall write θVλg (K) for θ(K) and

θfr,Vλg (K) for θfr(K) .

The quadratic Casimir element c (see Section 6.1) acts on Vλ as mul-
tiplication by a constant, call it cλ. The relation between the framed and
unframed quantum invariants is

θfr,Vλg (K) = q
cλ·w(K)

2 θVλg (K) ,

where w(K) is the writhe of K.

Set q = eh. Write θfr,Vλg and θVλg as power series in h:

θfr,Vλg =
∞∑
n=0

θfr,λg,n h
n θVλg =

∞∑
n=0

θλg,nh
n.
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According to the Birman–Lin theorem (3.6.6), the coefficients θfr,λg,n and

θλg,n are Vassiliev invariants of order n. The Le–Murakami—Kassel Theorem
states that they both are canonical series.

It is important that the symbol of θfr,Vλg is precisely the weight system

ϕVλg described in Chapter 6. The symbol of θVλg equals ϕ′Vλg . In other words,

it is obtained from ϕVλg by the deframing procedure of Section 4.5.6. Hence,
knowing the Kontsevich integral allows us to restore the quantum invariants

θfr,Vλg and θVλg from these weight systems without the quantum procedure
of Section 2.6.

11.2.3. Coloured Jones polynomial. The coloured Jones polynomials

Jk := θVλsl2 and Jfr,k := θfr,Vλsl2
are particular cases of quantum invariants for

g = sl2. For this Lie algebra, the highest weight is an integer λ = k − 1,
where k is the dimension of the representation, so in our notation we may use

k instead of λ. The quadratic Casimir number in this case is cλ = k2−1
2 , and

the relation between the framed and unframed coloured Jones polynomials
is

Jfr,k(K) = q
k2−1

4
·w(K)Jk(K) .

The ordinary Jones polynomial of Section 2.4 corresponds to the case k = 2,
that is, to the standard 2-dimensional representation of the Lie algebra sl2.

Set q = eh. Write Jfr,k and Jk as power series in h:

Jfr,k =

∞∑
n=0

Jfr,kn hn Jk =

∞∑
n=0

Jknh
n.

Both series are canonical with the symbols

symb(Jfr,k) = ϕVksl2 , symb(Jk) = ϕ′Vksl2

defined in Sections 6.1.4 and 6.2.3.

11.2.4. Alexander–Conway polynomial. Consider the unframed quan-
tum invariant θStslN as a function of the parameter N . Let us think of N
not as a discrete parameter but rather as a continuous variable, where for
non integer N the invariant θStslN is defined by the skein and initial relations

above. Its symbol ϕ′StslN
= ϕ′StglN

(see Exercise 13 to Chapter 6) also makes

sense for all real values of N , because for every chord diagram D, ϕ′StglN
(D)

is a polynomial of N . Even more, since this polynomial is divisible by N ,
we may consider the limit

lim
N→0

ϕ′StslN

N
.

Exercise. Prove that the weight system defined by this limit coincides with
the symbol of the Conway polynomial, symb(C) =

∑∞
n=0 symb(cn).
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Hint. Use Exercise 16 to Chapter 3.

Make the substitution θStslN

∣∣
q=eh

. The skein and initial relations for θStslN
allow us to show (see Exercise 5 to this chapter) that the limit

A := lim
N→0

θStslN

∣∣
q=eh

N

does exist and satisfies the relations

(11.2.1) A
( )

− A
( )

= (eh/2 − e−h/2)A
( )

;

(11.2.2) A
( )

=
h

eh/2 − e−h/2
.

A comparison of these relations with the defining relation for the Conway
polynomial 2.3.1 shows that

A =
h

eh/2 − e−h/2
C
∣∣
t=eh/2−e−h/2 .

Despite of the fact that the Conway polynomial C itself is not a canonical
series, it becomes canonical after the substitution t = eh/2 − e−h/2 and
multiplication by h

eh/2−e−h/2 . The weight system of this canonical series is

the same as for the Conway polynomial. Or, in other words,

h

eh/2 − e−h/2
C
∣∣
t=eh/2−e−h/2(K) =

∞∑
n=0

(
symb(cn) ◦ I(K)

)
hn .

Remark. We cannot do the same for framed invariants because none of the
limits

lim
N→0

θfr,StslN

∣∣
q=eh

N
, lim

N→0

ϕStslN
N

exists.

11.3. Wheeling

We mentioned in Section 5.8 of Chapter 5 that the relation between the
algebras B and C is similar to the relation between the invariants in the
symmetric algebra of a Lie algebra and the centre of its universal enveloping
algebra. One may then expect that there exists an algebra isomorphism
between B and C similar to the Duflo isomorphism for Lie algebras (see
page 329).

This isomorphism indeed exists. It is called wheeling and we describe
it in this section. It will be used in the next section to deduce an explicit
formula for the Kontsevich integral of the unknot.
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11.3.1. Diagrammatic differential operators and the wheeling map.
For an open diagram C with n legs, let us define the diagrammatic differ-
ential operator

∂C : B → B.

Take an open diagram D. If D has at most n legs, set ∂CD = 0. If D
has more than n legs, we define ∂C(D) ∈ B as the sum of all those ways of
glueing all the legs of C to some legs of D that produce diagrams having at
least one leg on each connected component. For example, if w2 stands for
the diagram , we have

∂w2( ) = 8 + 4 = 10 .

Also,

∂w2( ) = 8 ,

since the other four ways of glueing w2 into produce diagrams one
of whose components has no legs (see page 329).

Extending the definition by linearity, we can replace the diagram C in
the definition of ∂C by any linear combination of diagrams. Moreover, C
can be taken to be a formal power series in diagrams, with respect to the
grading by the number of legs. Indeed, for any given diagram D almost all
terms in such formal power series would have at least as many legs as D.

Recall that the wheel wn in the algebra B is the diagram

wn =

n spokes

The wheels wn with n odd are equal to zero; this follows directly from
Lemma 5.6.3.

Definition. The wheels element Ω is the formal power series

Ω = exp

∞∑
n=1

b2nw2n

where b2n are the modified Bernoulli numbers, and the products are under-
stood to be in the algebra B.

The modified Bernoulli numbers b2n are the coefficients at x2n in the
Taylor expansion of the function

1

2
ln

sinhx/2

x/2
.
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We have b2 = 1/48, b4 = −1/5760 and b6 = 1/362880. In general,

b2n =
B2n

4n · (2n)!
,

where B2n are the usual Bernoulli numbers.

Definition. The wheeling map is the map

∂Ω = exp
∞∑
n=1

b2n∂w2n

The wheeling map is a degree-preserving linear map B → B. It is, clearly,
a vector space isomorphism since ∂Ω−1 is an inverse for it.

11.3.2. Theorem (Wheeling Theorem). The map χ ◦ ∂Ω : B → C is an
algebra isomorphism.

There are several approaches to the proof of the above theorem. It has
been noted by Kontsevich [Kon3] that the Duflo-Kirillov isomorphism holds
for a Lie algebra in any rigid tensor category; Hinich and Vaintrob showed in
[HV] that the wheeling map can be interpreted as a particular case of such
a situation. Here, we shall follow the proof of Bar-Natan, Le and Thurston
[BLT].

Example. At the beginning of Section 5.8 (page 151) we saw that χ is
not compatible with the multiplication. Let us check the multiplicativity of
χ ◦ ∂Ω on the same example:

χ ◦ ∂Ω( ) = χ ◦ (1 + b2∂w2)( )

= χ
(

+ 1
48 · 8 ·

)
= χ

(
+ 1

6

)
= 1

3 + 2
3 + 1

6 = ,

which is the square of the element χ ◦ ∂Ω( ) = in the algebra C.

11.3.3. The algebra B◦. For what follows it will be convenient to enlarge
the algebras B and C by allowing diagrams with components that have no
legs.

A diagram in the enlarged algebra B◦ is a union of a unitrivalent graph
with a finite number of circles with no vertices on them; a cyclic order of
half-edges at every trivalent vertex is given. The algebra B◦ is spanned by all
such diagrams modulo IHX and antisymmetry relations. The multiplication
in B◦ is the disjoint union. The algebra B is the subalgebra of B◦ spanned
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by graphs which have at least one univalent vertex in each connected com-
ponent. Killing all diagrams which have components with no legs, we get a
homomorphism B◦ → B, which restricts to the identity map on B ⊂ B◦.

The algebra of 3-graphs Γ from Chapter 7 is also a subspace of B◦. In
fact, the algebra B◦ is the tensor product of B and the symmetric algebra
S(Γ) of the vector space Γ.

The reason to consider B◦ instead of B can be roughly explained as
follows. One of our main tools for the study of B is the universal weight
system

ρg : B → S(g)

with the values in the symmetric algebra of a Lie algebra g. In fact, much
of our intuition about B comes from Lie algebras, since ρg respects some
basic constructions. For instance, glueing together the legs of two diagrams
corresponds to a contraction of the corresponding tensors. However, there
is a very simple operation in S(g) that cannot be lifted to B via ρg. Namely,
there is a pairing Sn(g) ⊗ Sn(g) → C which extends the invariant form
g ⊗ g → C. Roughly, if the elements of S(g) are thought of as symmetric
tensors (see page 465), this pairing consists in taking the sum of all possible
contractions of two tensors of the same rank. This operation is essential if
one works with differential operators on S(g), and it cannot be lifted to B
since glueing two diagrams with the same number of legs produces a diagram
with no univalent vertices. The introduction of B◦ remedies this problem.

Indeed, the map ρg naturally extends to B◦. On a connected diagram
with no legs it coincides with the C-valued weight system ϕg for 3-graphs
described in Section 7.5; in particular, it takes value dim g on a circle with
no vertices. Finally, ρg is multiplicative with respect to the disjoint union
of diagrams.

There is a bilinear symmetric pairing on B◦ whose image lies in the
subspace spanned by legless diagrams.

Definition. For two diagrams C,D ∈ B◦ with the same number of legs we
define 〈C,D〉 to be the sum of all ways of glueing all legs of C to those of
D. If the numbers of legs of C and D do not coincide we set 〈C,D〉 = 0.

Now, if C and D are two diagrams with the same number of legs,
ρg(〈C,D〉) is the sum of all possible contractions of ρg(C) and ρg(D) con-
sidered as symmetric tensors.

Definition. Let C be an open diagram. The diagrammatic differential op-
erator

∂◦C : B◦ → B◦

sends D ∈ B◦ to the sum of all ways of glueing the legs of C to those of D, if
D has at least as many legs as C; if D has less legs than C, then ∂◦C(D) = 0.
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For example,

∂◦w2
( ) = 8 + 4 .

This definition of diagrammatic operators is consistent with the definition of
diagrammatic operators in B. Namely, if C is a diagram in B and p : B◦ → B
is the projection, we have

∂C ◦ p = p ◦ ∂◦C .

Note that while ∂C and ∂◦C are compatible with the projection p, they are
not compatible with the inclusion B → B◦.

Similarly to the algebra B◦ one defines the algebra C◦ by considering
not necessarily connected trivalent graphs in the definition of C. The vector
space isomorphism χ : B → C extends to an isomorphism B◦ ' C◦ whose
definition literally coincides with that of χ (and which we also denote by
χ). In particular, for a legless diagram in B◦ the map χ consists in simply
erasing the Wilson loop.

Our method of proving the Wheeling Theorem will be to prove it for the
algebras B◦ and C◦, with the diagrammatic operator ∂◦Ω : B◦ → B◦. Then
the version for B and C will follow immediately by applying the projection
map. First, however, let us explain the connection of the Wheeling Theorem
with the Duflo isomorphism for Lie algebras.

11.3.4. The Duflo isomorphism. The wheeling map is a diagrammatic
analogue of the Duflo-Kirillov map for metrized Lie algebras.

Recall that for a Lie algebra g the Poincaré-Birkhoff-Witt isomorphism

S(g) ' U(g)

sends a commutative monomial in n variables to the average of all possible
non-commutative monomials in the same variables, see page 467. It is not
an algebra isomorphism, of course, since S(g) is commutative and U(g) is
not (unless g is abelian); however, it is an isomorphism of g-modules. In
particular, we have an isomorphism of vector spaces

S(g)g ' U(g)g = Z(U(g))

between the subalgebra of invariants in the symmetric algebra and the centre
of the universal enveloping algebra. This map does not respect the product
either, but it turns out that S(g)g and Z(U(g)) are actually isomorphic as
commutative algebras. The isomorphism between them, known as the Duflo
isomorphism, is given by the Duflo-Kirillov map, which is described in the
Appendix, see page 467.
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Lemma. The wheeling map ∂◦Ω : B◦ → B◦ is taken by the universal Lie
algebra weight system ρg to the Duflo-Kirillov map:√

j ◦ ρg = ρg ◦ ∂◦Ω.

Proof. Observe that a diagrammatic operator ∂◦C : B◦ → B◦ is taken by ρg
to the corresponding differential operator ∂◦ρg(C) : S(g)→ S(g) in the sense

that

ρg ◦ ∂◦C = ∂ρg(C) ◦ ρg.
This simply reflects the fact that glueing the legs of two diagrams corre-
sponds to a contraction of the corresponding tensors.

On page 194 we have calculated the value of ρg on the wheel wk:

ρg(wk) =
∑
i1,...,ik

Tr (ad ei1 . . . ad eik) · ei1 . . . eik ,

where {ei} is a basis for g. In order to interpret this expression as an
element of Sk(g∗), we must contract it with k copies of x ∈ g. The resulting
homogeneous polynomial of degree k on g sends x ∈ g to Tr (adx)k.

Since ρg is multiplicative, it carries the wheeling map ∂◦Ω to

exp

(∑
n

b2n Tr (adx)2n

)
= exp Tr

(∑
n

b2n(adx)2n

)

= det exp

(
1

2
ln

sinh 1
2adx

1
2adx

)
=
√
j,

that is, to the Duflo-Kirillov map. �

The Duflo isomorphism is a rather mysterious fact. Remarkably, more
than one of its proofs involve diagrammatic techniques: apart from being
a consequence of the Wheeling Theorem, it follows from Kontsevich’s work
on deformation quantization [Kon3]. In fact, in [Kon3] the Duflo isomor-
phism is generalized to a sequence of isomorphisms between H i(g, S(g)) and
H i(g, U(g)) with the usual Duflo isomorphism being the case i = 0.

11.3.5. Pairings on diagram spaces and cabling operations. Every-
thing we said about the algebras B◦ and C◦ can be generalized for the case
of tangles with several components. In particular, there is a bilinear pairing

C◦(x |y)⊗ B◦(y)→ C◦(x).

For diagrams C ∈ C◦(x |y) and D ∈ B◦(y) define the diagram 〈C,D〉y ∈
C◦(x) as the sum of all ways of glueing all the y-legs of C to the y-legs of
D. If the numbers of y-legs of C and D are not equal, we set 〈C,D〉y to be
zero. This is a version of the inner product for diagram spaces defined in
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Section 5.10.2; Lemma 5.10.3 shows that it is well-defined. In what follows
we shall indicate by a subscript the component along which the inner product
is taken.

The inner product can be used to express the diagrammatic differential
operators in B◦ via the disconnected cabling operations. These are defined
for B◦ in the same way as for B; for instance, ψ2·1(D) is the sum of all
diagrams obtained from D by replacing the label (say, y) on its univalent
vertices by one of the two labels y1 or y2. If D ∈ B(y), the labels y1,y2 are
obtained by doubling y and the diagram C is considered as an element of
B(y1), we have

∂◦C(D) =
〈
C,ψ2·1(D)

〉
y1
.

The proof consists in simply comparing the diagrams on both sides.

The cabling operation ψ2·1 can be thought of as a coproduct in B◦, dual
to the disjoint union with respect to the inner product:

(11.3.1) 〈C,D1 ∪D2〉 =
〈
ψ2·1(C), D1 ⊗D2

〉
y1,y2

,

where on the right-hand side y1 and y2 are the two labels for the legs of
ψ2·1(C), and D1 ⊗ D2 belongs to B◦(y1) ⊗ B◦(y2). The proof of this last
formula is also by inspection of both sides.

11.3.6. The Hopf link and the map Φ0. In what follows we shall often
write # for the connected sum and ∪ — for the disjoint union product, in
order to avoid confusion.

Consider the framed Hopf link with one interval component labelled x,
one closed component labelled y, zero framing, and orientations as indicated:

y

x

The framed Kontsevich integral Ifr( ) lives in C(x,y) or, via the isomor-
phism

χ−1
y : C(x,y)→ C(x |y),

in C(x |y).

Let us write Z( ) for the image of Ifr( ) in C(x |y). For any dia-
gram D ∈ B◦(y), the pairing 〈Z( ), D〉y is well-defined and lives in C◦(x).
Identifying B◦(y) with B◦ and C◦(x) with C◦, we obtain a map

Φ : B◦ → C◦
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defined by

D → 〈Z( ), D〉y.

Lemma. The map Φ : B◦ → C◦ is a homomorphism of algebras.

Proof. Taking the disconnected cabling of the Hopf link along the com-
ponent y, we obtain a link with one interval component labelled x and
two closed parallel components labelled y1 and y2:

y1

y2

x

In the same spirit as Φ, we define the map

Φ2 : B◦ ⊗ B◦ → C◦

using the link instead of . Namely, given two diagrams, D1 ∈ B◦(y1)
and D2 ∈ B◦(y2), we have

D1 ⊗D2 ∈ B◦(y1,y2).

Write Z( ) for the image of the Kontsevich integral Ifr( ) under the map

χ−1
y1,y2

: C(x,y1,y2)→ C(x |y1,y2).

Identify B◦(y1,y2) with B◦ ⊗ B◦ and C◦(x) with C◦, and define Φ2 as

D1 ⊗D2
Φ2−→ 〈Z( ), D1 ⊗D2〉y1,y2

.

The map Φ2 glues the legs of the diagram D1 to the y1-legs of Z( ), and
the legs of D2 — to the y2-legs of Z( ).

There are two ways of expressing Φ2(D1⊗D2) in terms of Φ(Di). First,
we can use the fact that is a product (as tangles) of two copies of the
Hopf link . Since the legs of D1 and D2 are glued independently to the
legs corresponding to y1 and y2, it follows that

Φ2(D1 ⊗D2) = Φ(D1)#Φ(D2).

On the other hand, we can apply the formula (11.3.1) that relates the
disjoint union multiplication with disconnected cabling. We have

Φ2(D1 ⊗D2) = 〈ψ2·1
y (Z( )), D1 ⊗D2〉y1,y2

= 〈Z( ), D1 ∪D2〉y
= Φ(D1 ∪D2),

and, therefore,

Φ(D1)#Φ(D2) = Φ(D1 ∪D2).
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�

Given a diagram D ∈ C(x |y), the map B◦ → C◦ given by sending
C ∈ B◦(y) to 〈D,C〉y ∈ C◦(x) shifts the degree of C by the amount equal to
the degree of D minus the number of y-legs of D. If D appears in Z( ) with
a non-zero coefficient, this difference is non-negative. Indeed, the diagrams
participating in Z( ) contain no struts (interval components) both of whose
ends are labelled with y, since the y component of comes with zero framing
(see Exercise 3 on page 273). Also, if two y-legs are attached to the same
internal vertex, the diagram is zero, because of the antisymmetry relation,
and therefore, the number of inner vertices of D is at least as big as the
number of y-legs.

It follows that the Kontsevich integral Z( ) can be written as Z0( ) +
Z1( ) + . . ., where Zi( ) is the part consisting of diagrams whose degree
exceeds the number of y legs by i. We shall be interested in the term Z0( )
of this sum.

Each diagram that appears in this term is a union of a comb with some
wheels:

Indeed, each vertex of such diagram is either a y-leg, or is adjacent to
exactly one y-leg.

Denote a comb with n teeth by un. Strictly speaking, un is not really a
product of n copies of u since C(x |y) is not an algebra. However, we can
introduce a Hopf algebra structure in the space of all diagrams in C(x |y)
that consist of combs and wheels. The product of two diagrams is the
disjoint union of all components followed by the concatenation of the combs;
in particular ukum = uk+m. The coproduct is the same as in C(x |y). This
Hopf algebra is nothing else but the free commutative Hopf algebra on a
countable number of generators.

The Kontsevich integral is group-like, and this implies that

δ(Z0( )) = Z0( )⊗Z0( ).

Group-like elements in the completion of the free commutative Hopf algebra
are the exponentials of linear combinations of generators and, therefore

Z0( ) = exp(cu ∪
∑
n

a2nw2n),

where c and a2n are some constants.



334 11. The Kontsevich integral: advanced features

In fact, the constant c is precisely the linking number of the components
x and y, and, hence is equal to 1. We can write

Z0( ) =
∑
n

un

n!
∪ Ω′,

where Ω′ the part of Z0( ) containing wheels:

Ω′ = exp
∑
n

a2nw2n.

Define the map Φ0 : B◦ → C◦ by taking the pairing of a diagram in
B◦(y) with Z0( ):

D → 〈Z0( ), D〉y.
The map Φ0 can be thought of as the part of Φ that shifts the degree by
zero. Since Φ is multiplicative Φ0 also is. In fact, we shall see later that
Φ0 = Φ.

11.3.7. Lemma. Φ0 = χ ◦ ∂◦Ω′ .

Proof. Let us notice first that if C ∈ C(x |y) and D ∈ B◦(y), we have

〈C ∪ w2n, D〉y = 〈C, ∂◦w2n
(D)〉y.

Also, for any D ∈ B◦ the expression〈∑
n

un

n!
, D

〉
y

is precisely the average of all possible ways of attaching the legs of D to the
line x.

Therefore, for D ∈ B◦(y)

Φ0(D) =

〈∑
n

un

n!
∪ Ω′, D

〉
y

=

〈∑
n

un

n!
, ∂◦Ω′D

〉
y

= χ ◦ ∂◦Ω′D.

�

11.3.8. The coefficients of the wheels in Φ0. If D ∈ B is a diagram,
we shall denote by Dy the result of decorating all the legs of D with the
label y; the same notation will be used for linear combinations of diagrams.

First, let us observe that Ω′ is group-like with respect to the coproduct
ψ2·1:

Lemma.

ψ2·1
y Ω′y = Ω′y1

⊗ Ω′y2
,

where y1 and y2 are obtained by doubling y.
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Proof. We again use the fact that the sum of the Hopf link with itself
coincides with its two-fold disconnected cabling along the closed component
y. Since the Kontsevich integral is multiplicative, we see that

ψ2·1
y Z0( )x,y = Z0( )x,y1

Z0( )x,y2
,

where the subscripts indicate the labels of the components and product on
the right-hand side lives in the graded completion of C(x |y1,y2). Now, if
we factor out on both sides the diagrams that have at least one vertex on
the x component, we obtain the statement of the lemma. �

Lemma. For any D ∈ B◦

∂◦D(Ω′) = 〈D,Ω′〉Ω′.

Proof. It is clear from the definitions and from the preceding lemma that

∂◦D(Ω′) = 〈Dy1
, ψ2·1

y Ω′〉 = 〈Dy1
,Ω′y1

Ω′y2
〉 = 〈D,Ω′〉Ω′.

�

Lemma. The following holds in B◦:

〈Ω′, ( )n 〉 =

(
1

24

)n
.

Proof. According to Exercise 16 on page 346, the Kontsevich integral of
the Hopf link up to degree two is equal to

Z0( ) = + +
1

2
+

1

48
.

It follows that the coefficient a2 in Ω′ is equal to 1/48 and that

〈Ω′, 〉 =
1

24
.

This establishes the lemma for n = 1. Now, use induction:

〈Ω′, ( )n 〉 = 〈 ∂◦ Ω′, ( )n−1 〉

=
1

24
· 〈Ω′, ( )n−1〉

=

(
1

24

)n
.
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The first equality follows from the obvious identity valid for arbitrary
A,B,C ∈ B◦:

〈C,A ∪B〉 = 〈∂◦B(C), A〉.
The second equality follows from the preceding lemma, and the third is the
induction step. �

In order to establish that Ω′ = Ω we have to show that the coefficients
a2n in the expression Ω′ = exp

∑
n a2nw2n are equal to the modified Bernoulli

numbers b2n. In other words, we have to prove that

(11.3.2)
∑
n

a2nx
2n =

1

2
ln

sinhx/2

x/2
, or exp

(
2
∑
n

a2nx
2n
)

=
sinhx/2

x/2
.

To do this we compute the value of the sl2-weight system ϕsl2 from

Section 7.5 (page 217) on the 3-graph 〈Ω′, ( )n〉 ∈ Γ in two different ways.

Using the last lemma and Theorem 6.2.3 on page 185 we have

ϕsl2

(
〈Ω′, ( )n〉

)
= ϕsl2

(( 1

24

)n)
=

1

2n
.

On the other hand, according to Exercise 24 on page 204, the value of
the sl2 weight system on the wheel w2n is equal to 2n+1 times its value on
( )n. Therefore,

ϕsl2

(
〈Ω′, ( )n〉

)
= ϕsl2

(
〈 exp

∑
m

a2m2m+1 ( )m, ( )n〉
)
.

Denote by fn the coefficient of zn of the power series expansion of the func-
tion exp

(
2
∑

n a2nz
n
)

=
∑

n fnz
n. We get

ϕsl2

(
〈Ω′, ( )n〉

)
= 2nfn ϕsl2

(
〈( )n, ( )n〉

)
Now, using Exercise 19 on page 346 and the fact that for the circle without
vertices

ϕsl2( ) = 3,

(see page 217) we obtain

ϕsl2

(
〈( )n, ( )n〉

)
= (2n+ 1)(2n) ϕsl2

(
〈( )n−1, ( )n=1〉

)
= . . .

= (2n+ 1)! .

Comparing these two calculations we find that

fn =
1

4n(2n+ 1)!
,
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which is the coefficient of zn of the power series expansion of

sinh
√
z/2√

z/2
.

Hence,

exp
(

2
∑
n

a2nz
n
)

=
sinh
√
z/2√

z/2
.

Substituting z = x2 we get the equality (11.3.2) which establishes that
Ω′ = Ω and completes the proof of the Wheeling Theorem 11.3.2.

11.3.9. Wheeling for tangle diagrams. A version of the Wheeling The-
orem exists for more general spaces of tangle diagrams. For our purposes
it is sufficient to consider the spaces of diagrams for links with two closed
components x and y.

For D ∈ B define the operator

(∂D)x : B(x,y)→ B(x,y)

as the sum of all possible ways of glueing all the legs of D to some of the
x-legs of a diagram in B(x,y) that do not produce components without legs.

Exercise. Show that (∂D)x respects the link relations, and, therefore, is
well-defined.

Define the wheeling map Φx as χx ◦ (∂Ω)x. The Wheeling Theorem can
now be generalized as follows:

Theorem. The map

Φx : B(x,y)→ C(x |y)

identifies the B(x)-module B(x,y) with the C(x)-module C(x |y).

The proof is, essentially, the same as the proof of the Wheeling Theorem,
and we leave it to the reader.

11.4. The unknot and the Hopf link

The arguments similar to those used in the proof of the Wheeling Theorem
allow us to write down an explicit expression for the framed Kontsevich
integral of the zero-framed unknot O. Let us denote by Z(O) the image
χ−1Ifr(O) of the Konstevich integral of O in the graded completion of B.
(Note that we use the notation Z( ) in a similar, but not exactly the same
context.)

11.4.1. Theorem.

(11.4.1) Z(O) = Ω = exp
∞∑
n=1

b2nw2n.
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A very similar formula holds for the Kontsevich integral of the Hopf link :

11.4.2. Theorem.

Z( ) =
∑
n

un

n!
∪ Ω.

This formula implies that the maps Φ and Φ0 of the previous section, in
fact, coincide.

We start the proof with a lemma.

11.4.3. Lemma. If C1, . . . , Cn are non-trivial elements of the algebra C,
then χ−1(C1# . . .#Cn) is a combination of diagrams in B with at least n
legs.

Proof. We shall use the same notation as before. If D ∈ B is a diagram,
we denote by Dy the result of decorating all the legs of D with the label y.
Applying the operation ψ2·1

y the components obtained from y will be called
y1 and y2

Let Di = (χ ◦ ∂Ω)−1(Ci) ∈ B be the inverse of Ci under the wheeling
map. By the Wheeling Theorem we have that

χ−1(C1# . . .#Cn) = ∂Ω(D1 ∪ . . . ∪Dn) = 〈Ωy1
, ψ2·1

y (D1 ∪ . . . ∪Dn)〉.

Decompose ψ2·1
y (Di) as a sum (Di)y1

+D′i where D′i contains only diagrams
with at least one leg labelled by y2.

Recall that in the completion of the algebra B◦ we have ∂◦D(Ω) = 〈D,Ω〉Ω.
By projecting this equality to B we see that ∂D(Ω) vanishes unless D is
empty. Hence,

〈Ωy1
, (D1)y1

∪ ψ2·1
y (D2 ∪ . . . ∪Dn)〉 = 〈(∂D1Ω)y1

, ψ2·1
y (D2 ∪ . . . ∪Dn)〉 = 0.

As a result we have

∂Ω(D1 ∪ . . . ∪Dn) = 〈Ωy1
, (D1)y1

∪ ψ2·1
y (D2 ∪ . . . ∪Dn)〉

+〈Ωy1
, D′1 ∪ ψ2·1

y (D2 ∪ . . . ∪Dn)〉
= 〈Ωy1

, D′1 ∪ ψ2·1
y (D2 ∪ . . . ∪Dn)〉

= 〈Ωy1
, D′1 ∪ . . . ∪D′n〉.

Each of the D′i has at least one leg labelled y2, and these legs are preserved
by taking the pairing with respect to the label y1. �

11.4.4. The Kontsevich integral of the unknot. The calculation of
the Kontsevich integral for the unknot is based on the following geometric
fact: the nth connected cabling of the unknot is again an unknot.

The cabling formula on page 268 in this case reads

(11.4.2) ψn
(
Ifr(O)# exp

(
1

2n

))
= Ifr(O(p,1)) = Ifr(O)# exp

(
n
2

)
.
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In each degree, the right-hand side of this formula depends on n poly-
nomially. The term of degree 0 in n is precisely the Kontsevich integral of
the unknot Ifr(O).

As a consequence, the left-hand side also contains only non-negative
powers of n. We shall be specifically interested in the terms that are of
degree 0 in n.

The operator ψn has a particularly simple form in the algebra B (see
Section 9.2.3): it multiplies a diagram with k legs by nk. Let us expand the
argument of ψn into a power series and convert it to B term by term.

It follows from Lemma 11.4.3 that if a diagram D is contained in

χ−1
(
Ifr(O)#

(
1

2n

)k)
,

then it has k′ > k legs. Moreover, by the same lemma it can have precisely
k legs only if it is contained in

χ−1
(

1
2n

)k
.

Applying ψn, we multiply D by nk
′
, hence the coefficient of D on the left-

hand side of (11.4.2) depends on n as nk
′−k. We see that if the coefficient

of D is of degree 0 as a function of n, then the number of legs of D must be
equal to the degree of D.

Thus we have proved that Z(O) contains only diagrams whose number
of legs is equal to their degree. We have seen in 11.3.6 that the part of
the Kontsevich integral of the Hopf link that consists of such diagrams has
the form

∑ un

n! ∪ Ω. Deleting from this expression the diagrams with legs
attached to the interval component, we obtain Ω. On the other hand, this
is the Kontsevich integral of the unknot Z(O).

11.4.5. The Kontsevich integral of the Hopf link. The Kontsevich
integral of the Hopf link both of whose components are closed with zero
framing is computed in [BLT]. Such Hopf link can be obtained from the
zero-framed unknot in three steps: first, change the framing of the unknot
from 0 to +1, then take the disconnected twofold cabling, and, finally, change
the framings of the resulting components from +1 to 0. We know how the
Kontsevich integral behaves under all these operations and this gives us the
following theorem (see 11.3.9 for notation):

Theorem. Let be the Hopf link both of whose components are closed
with zero framing and oriented counterclockwise. Then

Ifr( ) = (Φx ◦ Φy)(exp |xy),

where |xy ∈ B(x,y) is an interval with one x leg and one y-leg.
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We shall obtain Theorem 11.4.2 from the above statement.

Proof. Let O+1 be the unknot with +1 framing. Its Kontsevich integral is
related to that of the zero-framed unknot as in the theorem on page 262:

Ifr(O+1) = Ifr(O)# exp
(

1
2

)
.

Applying the inverse of the wheeling map we get

∂−1
Ω Z(O+1) = ∂−1

Ω Z(O) ∪ exp

(
1

2
∂−1

Ω χ−1
( ))

= Ω ∪ exp

(
1

2
∂−1

Ω ( )

)
.

Recall that in the proof of Lemma 11.4.3 we have seen that ∂D(Ω) = 0 unless
D is empty. In particular, ∂−1

Ω (Ω) = Ω. We see that

(11.4.3) Z(O+1) = ∂Ω

(
Ω ∪ exp

(
1
2

))
,

since ∂−1
Ω ( ) = .

Our next goal is the following formula:

(11.4.4) ∂−2
Ω (Z(O+1)) = exp

(
1
2

)
.

Applying ∂Ω to both sides of this equation and using (11.4.3), we obtain
an equivalent form of (11.4.4):

∂Ω

(
exp
(

1
2

))
= Ω ∪ exp

(
1
2

)
.

To prove it, we observe that

∂Ω

(
exp
(

1
2

))
= 〈Ωy1

, ψ2·1
y exp

(
1
2

)
〉y1

= 〈Ωy1
, exp

(
1
2

∣∣y1

y1

)
exp
(∣∣y2

y1

)
exp
(

1
2

∣∣y2

y2

)
〉y1

.

The pairing B(y1,y2)⊗ B(y1)→ B(y2) satisfies

〈C,A ∪B〉y1
= 〈∂B(C), A〉y1

.

for all A,B ∈ B(y1), C ∈ B(y1,y2). Therefore, the last expression can be
re-written as

〈∂exp ( 1
2
|y1
y1

)Ωy1
, exp(

∣∣y2

y1
)〉y1
∪ exp

(
1
2

∣∣y2

y2

)
.

Taking into the account the fact that ∂D(Ω) = 0 unless D is empty, we see
that this is the same thing as

〈Ωy1
, exp(

∣∣y2

y1
)〉y1
∪ exp

(
1
2

∣∣y2

y2

)
= Ω ∪ exp

(
1
2

)
,

and this proves (11.4.4).

To proceed, we need the following simple observation:
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Lemma.

ψ2·1
y ∂C(D) = (∂C)y1

(ψ2·1
y (D)) = (∂C)y2

(ψ2·1
y (D)).

Now, let +1 be the Hopf link both of whose components are closed
with +1 framing. Since ∂−1

Ω = ∂Ω−1 , the above lemma and the cabling
formula on page 268 imply that

ψ2·1∂−2
Ω (Z(O+1)) = (∂Ω)−1

y1
(∂Ω)−1

y2

(
χ−1
y1,y2

Ifr( +1)
)
.

On the other hand, this, by (11.4.4) is equal to

ψ2·1 exp
(

1
2

)
= exp(

∣∣y2

y1
) · exp

(
1
2

∣∣y1

y1

)
· exp

(
1
2

∣∣y2

y2

)
.

Applying Φy1
◦ Φy2

to the first expression, we get exactly Ifr( +1). On
the second expression, this evaluates to

Φy1
(Φy2

(exp(
∣∣y2

y1
))# exp#

(
1
2 y1

)
# exp#

(
1
2 y2

)
.

Changing the framing, we see that

Ifr( ) = (Φy1
◦ Φy2

)(exp
∣∣y1

y2
).

The statement of the theorem follows by a simple change of notation. �

Proof of Theorem 11.4.2. First, let us observe that for any diagram D ∈
B we have

(∂D)x exp
∣∣y
x

= Dy ∪ exp
∣∣y
x
.

Now, we have

Ifr( )#χx(Ωx) = Ifr( )

= Φx(Φy(exp
∣∣y
x

))

= Φx(exp
∣∣y
x
∪ Ωx) by the observation above.

Since ∂Ω = Ω, it follows that χx(Ωx = Φx(Ωx)) and

Ifr( ) = Φx(Ω−1
x )#Φx(exp

∣∣y
x
∪ Ωx)

= Φx(exp
∣∣y
x
∪ Ωx ∪ Ω−1

x ) by the Wheeling Theorem

= Φx(exp
∣∣y
x

)

= χx(Ω ∪ exp
∣∣y
x

).

�
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11.5. Rozansky’s rationality conjecture

This section concerns a generalization of the wheels formula for the Kontse-
vich integral of the unknot to arbitrary knots. The generalization is, how-
ever, not complete – the Rozansky–Kricker theorem does not give an explicit
formula, it only suggests that Ifr(K) can be written in a certain form.

It turns out that the terms of the Kontsevich integral Ifr(K) with values
in B can be rearranged into lines corresponding to the number of loops in
open diagrams from B. Namely, for any term of Ifr(K), shaving off all legs
of the corresponding diagram G ∈ B, we get a trivalent graph γ. Infinitely
many terms of Ifr(K) give rise to the same γ. It turns out that these terms
behave in a regular fashion, so that it is possible to recover all of them from
γ and some finite information.

To make this statement precise we introduce marked open diagrams
which are represented by a trivalent graph whose edges are marked by power
series (it does matter on which side of the edge the mark is located, and we
shall indicate the side in question by a small leg near the mark). We use such
marked open diagrams to represent infinite series of open diagrams which
differ by the number of legs. More specifically, an edge marked by a power
series f(x) = c0 + c1x+ c2x

2 + c3x
3 + . . . stands for the following series of

open diagrams:

f(x) := c0 + c1 + c2 + c3 + . . .

In this notation the wheels formula (Theorem 11.4.1) can be written as

ln Ifr(O) =

1
2

ln ex/2−e−x/2
x

Now we can state the

Rozansky’s rationality conjecture. [Roz2]

ln Ifr(K) =

1
2

ln ex/2−e−x/2
x

− 1
2

lnAK(ex)

+
finite∑
i

pi,1(ex)/AK(ex)

pi,2(ex)/AK(ex)

pi,3(ex)/AK(ex)

+ (terms with > 3 loops) ,

where AK(t) is the Alexander polynomial of K normalized so that AK(t) =
AK(t−1) and AK(1) = 1, pi,j(t) are polynomials, and the higher loop terms
mean the sum over marked trivalent graphs (with finitely many copies of
each graph) whose edges are marked by a polynomial in ex divided by AK(t).
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The word “rationality” refers to the fact that the labels on all 3-graphs
of degree > 1 are rational functions of ex. The conjecture was proved by
A. Kricker in [Kri2]. Due to AS and IHX relations the specified presenta-
tion of the Kontsevich integral is not unique. Hence the polynomials pi,j(t)
themselves cannot be knot invariants. However, there are certain combina-
tions of these polynomials that are genuine knot invariants. For example,
consider the polynomial

Θ′K(t1, t2, t3) =
∑
i

pi,1(t1)pi,2(t2)pi,3(t3) .

Its symmetrization,

ΘK(t1, t2, t3) =
∑
ε=±1

{i,j,k}={1,2,3}

Θ′K(tεi , t
ε
j , t

ε
k) ∈ Q[t±1

1 , t±1
2 , t±1

3 ]/(t1t2t3 = 1) ,

over the order 12 group of symmetries of the theta graph, is a knot invariant.
It is called the 2-loop polynomial ofK. Its values on knots with few crossings
are tabulated in [Roz2]. T. Ohtsuki [Oht2] found a cabling formula for the
2-loop polynomial and its values on torus knots T (p, q).

Exercises

(1) ∗ Find two chord diagrams with 11 chords which have the same intersec-
tion graph but unequal modulo four- and one-term relations. According
to Section 11.1.1, eleven is the least number of chords for such diagrams.
Their existence is known, but no explicit examples were found yet.

(2) ∗ In the algebra A consider the subspace AM generated by those chord
diagrams whose class in A is determined by their intersection graph
only. It is natural to regard the quotient space A/AM as the space of
chord diagram distinguishing mutants. Find the dimension of An/AMn .
It is known that it is zero for n 6 10 and greater than zero for n = 11.
Is it true that dim(A11/AM11) = 1?

(3) Find a basis in the space of canonical invariants of degree 4.
Answer: j4, c4 + c2/6, c2

2.

(4) Show that the self-linking number defined in Section 2.2.3 is a canonical
framed Vassiliev invariant of order 1.

(5) Show the existence of the limit from Section 11.2.4

A = lim
N→0

θslN ,V
∣∣
q=eh

N
.
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Hint. Choose a complexity function on link diagrams in such a way
that two of the diagrams participating in the skein relation for θslN ,V are
strictly simpler then the third one. Then use induction on complexity.

(6) Let f(h) =

∞∑
n=0

fnh
n and g(h) =

∞∑
n=0

gnh
n be two power series Vassiliev

invariants.
(a) Prove that their product f(h) · g(h) as formal power series in h is

a Vassiliev power series invariant, and

symb(f · g) = symb(f) · symb(g) .

(b) Suppose that f and g are related to each other via substitution and
multiplication:

f(h) = β(h) · g
(
α(h)

)
,

where α(h) and β(h) are formal power series in h, and

α(h) = ah+ (terms of degree > 2) , β(h) = 1 + (terms of degree > 1) .

Prove that symb(fn) = ansymb(gn).

(7) Prove that a canonical Vassiliev invariant is primitive if its symbol is
primitive.

(8) Prove that the product of any two canonical Vassiliev power series is a
canonical Vassiliev power series.

(9) If v is a canonical Vassiliev invariant of odd order and K an amphicheiral
knot, then v(K) = 0.

(10) Let κ ∈ Wn be a weight system of degree n. Construct another weight
system (κ ◦ ψp)′ ∈ Wn, where ψp is the pth connected cabling operator,
and (·)′ is the deframing operator from Section 4.5.6. We get a function
fκ : p 7→ (κ ◦ ψp)′ with values in Wn. Prove that
(a) fκ(p) is a polynomial in p of degree 6 n if n is even, and of degree
6 n− 1 if n is odd.

(b) The nth degree term of the polynomial fκ(p)

is equal to −κ(wn)

2
symb(cn)pn , where wn is

wn =

n spokes

the wheel with n spokes, and cn is the nth coefficient of the Conway
polynomial.

(11) Find the framed Kontsevich integrals Zfr(H) and Ifr(H) for the hump
unknot with zero framing up to order 4.
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Answer.

Zfr
( )

= 1− 1
24 + 1

24 + 7
5760 − 17

5760

+ 7
2880 − 1

720 + 1
1920 + 1

5760 .

Ifr
( )

= 1
/
Zfr

( )
.

(12) Using Exercise 4 to Chapter 5 (page 163) show that up to degree 4

Zfr
( )

= 1− 1
48 + 1

4608 + 1
46080 + 1

5760 ,

Ifr
( )

= 1 + 1
48 + 1

4608 − 1
46080 − 1

5760 .

(13) Using the previous problem and Exercise 24 to Chapter 5 (page 167)
prove that up to degree 4

Z(O) = χ−1Ifr(O) = 1 +
1

48
+

1

4608
− 1

5760
.

This result confirms Theorem 11.4.1 from page 337 up to degree 4.

(14) Compute the framed Kontsevich integral
Zfr( ) up to degree 4 for the Hopf link
with one vertical interval component x and
one closed component y represented by the
tangle on the picture. Write the result as an
element of C(x,y).

=

x

y

Answer.

Zfr( ) = + + 1
2 + 1

6 − 1
24 + 1

24 − 1
48 .

(15) Check that the expansion of the final framed Kontsevich integral Ifr( )
up to degree 4 is

Ifr( ) = + + 1
2 + 1

48 + 1
6 − 1

24 + 1
48

+ 1
24 − 1

48 + 1
4608 − 1

46080 − 1
5760 + 1

96 .
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(16) Using the previous problem and Exercise 24 to Chapter 5 (page 163)
prove that up to degree 4

Z( ) = χ−1
y Ifr( ) = + + 1

2 + 1
6 + 1

24 + 1
48 + 1

48

+ 1
96 − 1

5760 + 1
4608 + 1

384 .

Indicate the parts of this expression forming Z0( ), Z1( ), Z2( ) up
to degree 4. This result confirms Theorem 11.4.2 from page 338 up to
degree 4.

(17) Prove that χ ◦ ∂Ω : B → C is a bialgebra isomorphism.

(18) Compute χ ◦ ∂Ω( ), χ ◦ ∂Ω( ), χ ◦ ∂Ω(w6).

(19) Show that the pairing 〈( )n, ( )n〉 satisfies the recurrence relation

〈( )n, ( )n〉 = 2n ·
(

+ 2n− 2
)
· 〈( )n−1, ( )n−1〉 ,

where is a 3-graph in Γ0 ⊂ Γ ⊂ B◦ of degree 0 represented by a circle

without vertices and multiplication is understood in algebra B◦ (disjoint
union).

(20) Prove that, after being carried over from B to Afr, the right-hand side of
Equation 11.4.1 (page 337) belongs in fact to the subalgebra A ⊂ Afr.
Find an explicit expression of the series through some basis of A up to
degree 4.

Answer. The first terms of the infinite series giving the Kontsevich
integral of the unknot, are:

I(O) = 1− 1

24
− 1

5760
+

1

1152
+

1

2880
+ . . .

Check that this agrees with the answer to Exercise 11.



Chapter 12

Braids and string links

Essentially, the theory of Vassiliev invariants of braids is a particular case
of the Vassiliev theory for tangles, and the main constructions are very
similar to the case of knots. There is, however, one big difference: many
of the questions that are still open for knots are rather easy to answer in
the case of braids. This, in part, can be explained by the fact that braids
form groups, and it turns out that the whole Vassiliev theory for braids
can be described in group-theoretic terms. In this chapter we shall see that
the Vassiliev filtration on the pure braid groups coincides with the filtrations
coming from the nilpotency theory of groups. In fact, for any given group the
nilpotency theory could be thought of as a theory of finite type invariants.

The group-theoretic techniques of this chapter can be used to study
knots and links. One such application is the theorem of Goussarov which
says that n-equivalence classes of string links on m strands form a group.
Another application of the same methods is a proof that Vassiliev invariants
of pure braids extend to invariants of string links of the same order. In
order to make these connections we shall describe a certain braid closure
that produces string links out of pure braids.

The theory of the finite type invariants for braids was first developed
by T. Kohno [Koh1, Koh2] several years before Vassiliev knot invariants
were introduced. The connection between the theory of commutators in
braid groups and the Vassiliev knot invariants was first made by T. Stanford
[Sta4].

347
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12.1. Basics of the theory of nilpotent groups

We shall start by reviewing some basic notions related to nilpotency in
groups. These will not only serve us a technical tool: we shall see that the
theory of Vassiliev knot invariants has the logic and structure similar to
those of the theory of nilpotent groups. The classical reference for nilpotent
groups are the lecture notes of P. Hall [H]. For modern aspects of the
theory see [MP]. Iterated integrals are described in the papers of K.T.Chen
[Chen1, Chen2].

12.1.1. The dimension series. Let G be an arbitrary group. The group
algebra ZG consists of finite linear combinations

∑
aigi where gi are elements

of G and ai are integers. The product in ZG is the linear extension of the
product in G. The group itself can be considered as a subset of the group
algebra if we identify g with 1g. The identity in G is the unit in ZG and we
shall denote it simply by 1.

Let JG ⊂ ZG be the augmentation ideal, that is, the kernel of the
homomorphism ZG → Z that sends each g ∈ G to 1. Elements of JG are
the linear combinations

∑
aigi with

∑
ai = 0. The powers JnG of the

augmentation ideal form a descending filtration on ZG.

Let Dk(G) be the subset of G consisting of all g ∈ G such that

g − 1 ∈ JkG.

Obviously, the neutral element of G always belongs to Dk(G). Also, for all
g, h ∈ Dk(G) we have

gh− 1 = (g − 1)(h− 1) + (g − 1) + (h− 1)

and, hence, Dk(G) is closed under the product. Finally,

g−1 − 1 = −(g − 1)g−1

which shows that Dk(G) is a subgroup of G; it is called the kth dimension
subgroup of G. Clearly, D1(G) = G and for each k the subgroup Dk+1(G) is
contained in Dk(G).

Exercise. Show that Dk(G) is invariant under all automorphisms of G. In
particular, it is a normal subgroup of G.

The descending series of subgroups

G = D1(G) ⊇ D2(G) ⊇ D3(G) ⊇ . . .

is called the dimension series of G.
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Consider the group commutator which can be1 defined as

[g, h] := g−1h−1gh.

If g ∈ Dp(G) and h ∈ Dq(G), we have

g−1h−1gh− 1 = g−1h−1
(
(g − 1)(h− 1)− (h− 1)(g − 1)

)
,

and, hence, [g, h] ∈ Dp+q(G). It follows that the group commutator descends
to a bilinear bracket on

D(G) :=
⊕
k

Dk(G)/Dk+1(G).

Exercise. Show that this bracket on D(G) is antisymmetric and satisfies
the Jacobi identity. In other words, show that the commutator endows D(G)
with the structure of a Lie ring.

This exercise implies that D(G) ⊗ Q is a Lie algebra over the ratio-
nals. The universal enveloping algebra of D(G) ⊗ Q admits a very simple
description. Denote by Ak(G) the quotient JkG/Jk+1G. Then the direct
sum

A(G) :=
⊕
Ak(G)

is a graded ring, with the product induced by that of ZG. Quillen shows in
[Q1] that A(G)⊗Q is the universal enveloping algebra of D(G)⊗Q.

The dimension series can be generalized by replacing the integer coeffi-
cients in the definition of the group algebra by coefficients in an arbitrary
ring. The augmentation ideal is defined in the same fashion as consisting
of linear combinations whose coefficients add up to zero, and the arguments
given in this section for integer coefficients remain unchanged. We denote
the kth dimension subgroup of G over a ring R by Dk(G,R). Since there is
a canonical homomorphism of the integers to any ring, Dk(G) is contained
in Dk(G,R) for any ring R.

Exercise. Show that Dk(G,Q)/Dk+1(G,Q) is a torsion-free abelian group
for any k.

12.1.2. Commutators and the lower central series. For many groups,
the dimension subgroups can be described entirely in terms of group com-
mutators. For H,K normal subgroups of G, denote by [H,K] the subgroup
of G generated by all the commutators of the form [h, k] with h ∈ H and
k ∈ K. The lower central series subgroups γkG of a group G are defined
inductively by setting γ1G = G and

γkG = [γk−1G,G].

1there are other, equally good, options, such as [g, h] = ghg−1h−1.
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A group G is called nilpotent if γnG = 1 for some n. The maximal n such
that γnG 6= 1 is called the nilpotency class of G. If the intersection of all
γnG is trivial, the group G is called residually nilpotent.

Exercise. Show that γkG is invariant under all automorphisms of G. In
particular, it is a normal subgroup of G.

Exercise. Show that for any p and q the subgroup [γpG, γqG] is contained
in γp+qG.

We have already seen that the commutator of any two elements of G
belongs to D2(G). Using induction, it is not hard to show that γkG is always
contained in Dk(G). If γkG is actually the same thing as the kth dimension
subgroup of G over the integers, it is said that G has the dimension subgroup
property. Many groups have the dimension subgroup property. In fact, it
was conjectured that all groups have this property until E. Rips found a
counterexample, published in 1972 [Rips]. His counterexample was later
simplified; we refer to [MP] for the current state of knowledge in this field.
In general, if x ∈ Dk(G), there exists q such that xq ∈ γkG, and the group
Dk(G,Q) consists of all x with this property, see Theorem 12.1.6 on page
352 .

The subtlety of the difference between the lower central series and the
dimension subgroups is underlined by the fact that for all groups γkG =
Dk(G) when k < 4. In order to give the reader some feeling of the subject
let us treat one simple case here:

Proposition. For any group G we have γ2G = D2(G).

Proof. First let us assume thatG is abelian, that is, γ2G = 1 (or, in additive
notation, γ2G = 0). In this case there is a homomorphism of abelian groups
s : ZG → G defined by replacing a formal linear combination by a linear
combination in G. The homomorphism s sends g−1 ∈ ZG to g ∈ G. On the
other hand, s(J2G) = 0. Indeed, it is easy to check that J2G is additively
spanned by products of the type (x− 1)(y − 1) with x, y ∈ G; we have

s
(
(x− 1)(y − 1)

)
= s(xy − x− y + 1) = xy − x− y = 0

since G is abelian. It follows that g ∈ D2(G) implies that g = 0.

Now, letG be an arbitrary group. It can be seen from the definitions that
group homomorphisms respect both the dimension series and the lower cen-
tral series. Moreover, it is clear that a surjective homomorphism of groups
induces surjections on the corresponding terms of the lower central series.
This means that if D2(G) is strictly greater than γ2G, the same is true for
G/γ2G. On the other hand, G/γ2G is abelian. �
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Recall that H1(G) is the abelianization of G, that is, its maximal abelian
quotient G/γ2G, and that H1(G,Q) = H1(G)⊗Q.

Exercise. Show that H1(G,Q) is canonically isomorphic to A1(G)⊗Q.

12.1.3. Filtrations induced by series of subgroups. Let {Gi} be a
descending series of subgroups

G = G1 ⊇ G2 ⊇ . . .

of a group G with the property that [Gp, Gq] ⊆ Gp+q. For x ∈ G denote by
µ(x) the maximal k such that x ∈ Gk. Let QG be the group algebra of G
with rational coefficients and EnG its ideal spanned by the products of the
form (x1 − 1) · . . . · (xs − 1) with

∑s
i=1 µ(xi) > n. We have the filtration of

QG:

QG ⊃ JG = E1G ⊇ E2G ⊇ . . . .

This filtration is referred to as the canonical filtration induced by the series
{Gn}.

12.1.4. Theorem. Let

G = G1 ⊇ G2 ⊇ . . . ⊇ GN = {1}

be a finite series of subgroups of a group G with the property that [Gp, Gq] ⊆
Gp+q, and such that Gi/Gi+1 is torsion-free for all 1 6 i < N . Then for all
i > 1

Gi = G ∩ (1 + EiG),

where {EiG} is the canonical filtration of QG induced by {Gi}.

As stated above, this theorem can be found in [PIB, Pas]. The most
important case of it has been proved by Jennings [Jen], see also [H]. It
clarifies the relationship between the dimension series and the lower central
series.

For a subset H of a group G let
√
H be the set of all x ∈ G such that

xp ∈ H for some p > 0. If H is a normal subgroup, and G/H is nilpotent,

then
√
H is again a normal subgroup of G. The set

√
{1} is precisely the

set of all periodic (torsion) elements of G; it is a subgroup if G is nilpotent.

12.1.5. Theorem. Let

G = G1 ⊇ G2 ⊇ . . . ⊇ GN = {1}

be a finite series of subgroups of a group G with the property that [Gp, Gq] ⊆
Gp+q. Then [

√
Gp,

√
Gq] ⊆

√
Gp+q and the canonical filtration of QG in-

duced by {
√
Gi} coincides with the filtration induced by {Gi}.
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For the proof see the proofs of Lemmas 1.3 and 1.4 in Chapter IV of
[PIB].

Now, consider a nilpotent group G. We have mentioned that γnG is
always contained in Dn(G), and, hence, EnG in this case coincides with
JnG. It follows from Theorems 12.1.4 and 12.1.5 that

Dn(G) =
√
γnG

for all n. The assumption that G is nilpotent can be removed by considering
the group G/γnG instead of G, and we get the following characterization of
the dimension series over Q:

12.1.6. Theorem (Jennings, [Jen]). For an arbitrary group G, an element
x of G belongs to Dn(G,Q) if and only if xr ∈ γnG for some r > 0.

12.1.7. Semi-direct products. The augmentation ideals, the dimension
series and the lower central series behave in a predictable way under taking
direct products of groups. When G = G1 ×G2 we have

ZG = ZG1 ⊗ ZG2.

Moreover,

JkG =
∑
i+j=k

J iG1 ⊗ J jG2,

and this implies

Dk(G) = Dk(G1)×Dk(G2).

It is also easy to see that

γkG = γkG1 × γkG2.

When G is a semi-direct, rather than direct, product of G1 and G2

these isomorphisms break down in general. However, they do extend to one
particular case of semi-direct products, namely, the almost direct product
defined as follows.

Having a semi-direct product An B is the same as having an action of
B on A by automorphisms. An action of B on A gives rise to an action of
B on the abelianization of A; we say that a semi-direct product A n B is
almost direct if this latter action is trivial.

Proposition. For an almost direct product G = G1 nG2

γkG = γkG1 n γkG2

for all k. Moreover,

Jk(G) =
∑
i+j=k

J i(G1)⊗ J j(G2),
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inside ZG and, hence,

DkG = DkG1 nDkG2

and

A(G) = A(G1)⊗A(G2)

as a graded Z-module.

The proof is not difficult and we leave it as an exercise. The case of the
lower central series is proved in [FR]; for the dimension subgroups see [Pap]
(or [MW] for the case when G is a pure braid group).

12.1.8. The free group. Let x1, . . . , xm be a set of free generators of the
free group Fm and set Xi = xi−1 ∈ ZFm. Then, for any k > 0 each element
w ∈ Fm can be uniquely expressed inside ZFm as

w = 1 +
∑

16i6m

aiXi + . . .+
∑

16i1,...,ik6m

ai1,...,ikXi1 . . . Xik + r(w),

where ai1,...,ij are integers and r(w) ∈ Jk+1Fm. This formula can be consid-
ered as a Taylor formula for the free group. In fact, the coefficients ai1,...,ij
can be interpreted as some kind of derivatives, see [Fox].

To show that such formula exists, it is enough to have it for the genera-
tors of Fm and their inverses:

xi = 1 +Xi

and

x−1
i = 1−Xi +X2

i − . . .+ (−1)kXk
i + (−1)k+1Xk+1

i x−1
i .

The uniqueness of the coefficients ai1,...,ij will be clear from the construction
below.

Having defined the Taylor formula we can go further and define some-
thing like the Taylor series.

Let Z〈〈X1, . . . , Xm〉〉 be the algebra of formal power series in m non-
commuting variables Xi. Consider the homomorphism of Fm into the group
of units of this algebra

M : Fm → Z〈〈X1, . . . , Xm〉〉,

which sends the ith generator xi of Fm to 1 +Xi. In particular,

M(x−1
i ) = 1−Xi +X2

i −X3
i + . . .

This homomorphism is called the Magnus expansion. It is injective: the
Magnus expansion of a reduced word xε1α1

. . . xεkαk contains the monomial
Xα1 . . . Xαk with the coefficient ε1 . . . εk, and, hence, the kernel of M is
trivial.
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The Magnus expansion is very useful since it gives a simple test for an
element of the free group to belong to a given dimension subgroup.

Lemma. For w ∈ Fm the power seriesM(w)−1 starts with terms of degree
k if and only if w ∈ Dk(Fm) and w /∈ Dk+1(Fm).

Proof. Extend the Magnus expansion by linearity to the group algebra
ZFm. The augmentation ideal is sent by M to the set of power series
with no constant term and, hence, the Magnus expansion of anything in
Jk+1Fm starts with terms of degree at least k+ 1. It follows that the first k
terms of the Magnus expansion coincide with the first k terms of the Taylor
formula. Notice that this implies the uniqueness of the coefficients in the
Taylor formula. Now, the term of lowest non-zero degree on right-hand side
of the Taylor formula has degree k if and only if w − 1 ∈ JkFm. �

One can easily see that the non-commutative monomials of degree k in
the Xi give a basis for JkFm/J

k+1Fm. The Magnus expansion gives a map

Mk : JkFm → Ak(Fm) = JkFm/J
k+1Fm

which sends x ∈ JkFm to the degree k term of M(x). The following is
straightforward:

12.1.9. Lemma. The map Mk is the quotient map JkFm → Ak(Fm).

The dimension subgroups for the free group coincide with the corre-
sponding terms of the lower central series. In other words, the free group
Fm has the dimension subgroup property. A proof can be found, for exam-
ple, in Section 5.7 of [MKS]. As a consequence, we see that the free groups
are residually nilpotent since the kernel of the Magnus expansion is trivial.

12.1.10. Chen’s iterated integrals. The Magnus expansion for the free
group does not generalize readily to arbitrary groups. However, there is a
general geometric construction which works in the same way for all finitely
generated groups and detects the terms of the dimension series for any group
just as the Magnus expansion detects them for the free group. This con-
struction is given by Chen’s iterated integrals, [Chen1, Chen2]. We shall
only describe it very briefly here since we shall not need it in the sequel. An
accessible introduction to Chen’s integrals can be found in [Ha].

Let us assume that the group G is the fundamental group of a smooth
manifold M . Let X1, . . . , Xm be a basis for H1(M,R) and w1, . . . , wm be a
set of real closed 1-forms on M representing the basis of H1(M,R) dual to
the basis {Xi}.
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Consider an expression

α =
∑
i

αiXi +
∑
i,j

αijXiXj +
∑
i,j,k

αijkXiXjXk + . . .

where all the coefficients α∗ are 1-forms on M . We shall say that α is a
R〈〈X1, . . . , Xm〉〉-valued 1-form on M . We refer to

∑
i αiXi as the linear

part of α. Denote by x the ideal in R〈〈X1, . . . , Xm〉〉 consisting of the power
series with no constant term.

In [Chen1] K.T.Chen proves the following fact:

Theorem. There exists a R〈〈X1, . . . , Xm〉〉-valued 1-form w on M whose
linear part is

∑
iwiXi and an ideal j of R〈〈X1, . . . , Xm〉〉 such that there is

a ring homomorphism

Z : Rπ1M → R〈〈X1, . . . , Xm〉〉/j

given by

Z(g) =
∑
06k

16i1,...,ik6m

∫
0<tk<···<t1<1

w(t1) ∧ . . . ∧ w(tk) ,

where w(t) is the pull-back to the interval [0, 1] of the 1-form w under a
map γ : [0, 1] → M representing g, with the property that the kernel of the
composite map is

Z : Rπ1M → R〈〈X1, . . . , Xm〉〉/j→ R〈〈X1, . . . , Xm〉〉/(j + xn)

is precisely Jn(π1M)⊗ R.

We shall call the map Z the Chen expansion.

In certain important situations the algebra R〈〈X1, . . . , Xm〉〉/j can be
replaced by the algebra A(π1M) ⊗ R. Suppose that the algebra ΛM of
the differential forms on M has a differential graded subalgebra A with the
following properties:

• the inclusion A→ ΛM induces isomorphisms in cohomology in all
dimensions;

• each element in H∗(M,R) can be represented by a closed form in
A so that there is a direct sum decomposition

A = H∗(M,R)⊕A′

where A′ is an ideal.

Chen shows in [Chen2] (Lemma 3.4.2) that in this situation the ideal j is
actually homogeneous. As a consequence, the algebra R〈〈X1, . . . , Xm〉〉/j is
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graded. Since the Chen expansion sends Jn(π1M)⊗R to the terms of degree
n and higher, it induces an injective map

A(π1M)⊗ R→ R〈〈X1, . . . , Xm〉〉/j

and the image of the Chen expansion is contained in the graded completion
of the image of this map. This means that the 1-form

w =
∑
i

wiXi +
∑
i,j

wijXiXj + . . .

is, actually, A(π1M) ⊗ R-valued and we can think of Xi as the generators
of A1(π1M).

Examples of manifolds with a subalgebra A satisfying the above con-
ditions include all compact Kähler manifolds. Another example of great
importance for us is the configuration space of k distinct ordered particles
z1, . . . , zk in C: its fundamental group is the pure braid group on n strands.
If we allow complex, rather than real coefficients in the Chen expansion, we
obtain a particularly simple form w which only contains linear terms:

w =
1

2πi

∑
d log (zi − zj) ·Xij ,

where Xij can be thought of as a chord diagram with one horizontal chord
connecting the ith and the jth strands. Comparing the definitions, we see
that the Chen expansion of a pure braid coincides exactly with its Kontsevich
integral.

12.2. Vassiliev invariants for free groups

The main subject of this chapter are the Vassiliev braid invariants, and, more
specifically, the invariants of pure braids, that is, the braids whose associated
permutation is trivial. Pure braids are a particular case of tangles and thus
we have a general recipe for constructing their Vassiliev invariants. The
only special feature of braids is the requirement that the tangent vector to a
strand is nowhere horizontal. This leads to the fact that the chord diagrams
for braids have only horizontal chords on a skeleton consisting of vertical
lines; the relations they satisfy are the horizontal 4T-relations.

We shall start by treating what may seem to be a very particular case:
braids on m+1 strands whose all strands, apart from the last (the rightmost)
one, are straight. Such a braid can be thought of as the graph of a path
of a particle in a plane with m punctures. (The punctures correspond to
the vertical strands.) The set of equivalence classes of such braids can be
identified with the fundamental group of the punctured plane, that is, with
the free group Fm on m generators xi, where 1 6 i 6 m.
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i− 1 i i+ 1

Figure 12.2.1. The generator xi of Fm as a braid and as a path in a
plane with m punctures.

A singular path in the m-punctured plane is represented by a braid with a
finite number of transversal double points, whose first m strands are vertical.
Resolving the double points of a singular path with the help of the Vassiliev
skein relation we obtain an element of the group algebra ZFm. Singular
paths with k double points span the kth term of a descending filtration on
ZFm which is analogous to the singular knot filtration on ZK, defined in
Section 3.2.1. A Vassiliev invariant of order k for the free group Fm is, of
course, just a linear map from ZFm to some abelian group that vanishes on
singular paths with more than k double points.

Tangle chord diagrams which correspond to singular paths have a very
specific form: these are horizontal chord diagrams (see page 161) on m +
1 strands whose all chords have one endpoint on the last strand. Such
diagrams form an algebra, which we denote temporarily by A′(Fm), freely
generated by m diagrams of degree 1. We shall see in Section 12.3.2 that
this algebra is a subalgebra of A(m+1), or, equivalently, that the horizontal
4T relations do not imply any relations in A′(Fm).

The radical difference between the singular knots and singular paths
(and, for that matter, arbitrary singular braids) lies in the following

12.2.1. Lemma. A singular path in the m-punctured plane with k double
points is a product of k singular paths with one double point each.

This is clear from the picture:

~

Lemma 12.2.1 allows us to describe the singular path filtration in purely
algebraic terms. Namely, singular paths span the augmentation ideal JFm
in ZFm and singular paths with k double points span the kth power of this
ideal.
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Indeed, each singular path is an alternating sum of non-singular paths,
and, hence, it defines an element of the augmentation ideal of Fm. On the
other hand, the augmentation ideal of Fm is spanned by differences of the
form g−1 where g is some path. By successive crossing changes on its braid
diagram, the path g can be made trivial. Let g1 , . . . , gs be the sequence of
paths obtained in the process of changing the crossings from g to 1. Then

g − 1 = (g − g1) + (g1 − g2) + ...+ (gs − 1),

where the difference enclosed by each pair of brackets is a singular path with
one double point.

We see that the Vassiliev invariants are those that vanish on some power
of the augmentation ideal of Fm. The dimension subgroups of Fm are the
counterpart of the Goussarov filtration: DkFm consists of elements that
cannot be distinguished from the unit by Vassiliev invariants of order less
than k. We shall refer to these as to being k − 1-trivial.

The algebra A′(Fm) of chord diagrams for paths is the same thing as
the algebra

A(Fm) =
⊕
k

JkFm/J
k+1Fm.

Indeed, the set of chord diagrams of degree k is the space of paths with
k double points modulo those with k + 1 double points. The generator of
A(Fm) which is the class of the element xi−1, where xi is the ith generator
of Fm, is represented by a chord joining the ith and the m+ 1st strands:

xi − 1 =

1 i m+ 1

In fact, the Magnus expansion identifies the algebra Z〈〈X1, . . . , Xm〉〉
with the completion Â(Fm) of the algebra of the chord diagrams A(Fm).
The following statement is a reformulation of Lemma 12.1.9:

Theorem. The Magnus expansion is a universal Vassiliev invariant.

Since the Magnus expansion is injective, we have

Corollary. The Vassiliev invariants distinguish elements of the free group.

12.2.2. Observation. If a word w ∈ Fm contains only positive powers of
the generators xi, the Magnus expansion of w has a transparent combina-
torial meaning: M(w) is simply the sum of all subwords of w, with the
letters capitalized. This is also the logic behind the construction of the uni-
versal invariant for virtual knots discussed in Chapter 13: it associates to a
diagram the sum of all its subdiagrams.
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12.2.3. The Kontsevich integral. The Magnus expansion is not the only
universal Vassiliev invariant. (See Exercise 2 on page 379.) Another impor-
tant universal invariant is, of course, the Kontsevich integral. In this case,
the Kontsevich integral is nothing but the Chen expansion of Fm where the
manifold M is taken to be the plane C with m punctures z1, . . . , zm and

w =
1

2πi
· dz

z − zj
·Xj .

Note that the Kontsevich integral depends on the positions of the punctures
zj (Exercise 3 on page 379).

In contrast to the Kontsevich integral, the Magnus expansion has integer
coefficients. We shall see that it also gives rise to a universal Vassiliev invari-
ant of pure braids with integer coefficients; however, unlike the Kontsevich
integral, this invariant fails to be multiplicative.

12.3. Vassiliev invariants of pure braids

The interpretation of the Vassiliev invariants for the free group Fm in terms
of the powers of the augmentation ideal in ZFm remains valid if the free
groups are replaced by the pure braid groups. One new difficulty is that
instead of the free algebra A(Fm) we have to study the algebra A(Pm) =
Ah(m) of horizontal chord diagrams (see page 161). The multiplicative
structure of Ah(m) is rather complex, but an explicit additive basis for this
algebra can be easily described. This is due to the very particular structure
of the pure braid groups.

12.3.1. Pure braids and free groups. Pure braid groups are, in some
sense, very close to being direct products of free groups.

Erasing one (say, the rightmost) strand of a pure braid on m strands
produces a pure braid on m − 1 strands. This procedure respects braid
multiplication, so, in fact, it gives a homomorphism Pm → Pm−1. Note that
this homomorphism has a section Pm−1 → Pm defined by adding a vertical
non-interacting strand on the right.

The kernel of erasing the rightmost strand consists of braids onm strands
whose first m− 1 strands are vertical. Such braids are graphs of paths in a
plane with m − 1 punctures, and they form a group isomorphic to the free
group on m− 1 letters Fm−1.

All the above can be re-stated as follows: there is a split extension

1→ Fm−1 → Pm � Pm−1 → 1.
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Figure 12.3.1. An example of a combed braid.

It follows that Pm is a semi-direct product Fm−1 n Pm−1, and, proceeding
inductively, we see that

Pm ∼= Fm−1 n . . . F2 n F1.

Here Fk−1 can be identified with the free subgroup of Pm formed by pure
braids which can be made to be totally straight apart from the kth strand
which is allowed to braid around the strands to the left. As a consequence,
every braid in Pn can be written uniquely as a product βm−1βm−2 . . . β1,
where βk ∈ Fk. This decomposition is called the combing of a pure braid.

One can show that the above semi-direct products are not direct (see
Exercise 4 at the end of the chapter). However, they are almost direct (see
the definition on page 352).

Lemma. The semi-direct product Pm = Fm−1 n Pm−1 is almost direct.

Proof. The abelianization F abm−1 of Fm−1 is a direct sum of m− 1 copies of

Z. Given a path x ∈ Fm−1, its image in F abm−1 is given by the m− 1 linking
numbers with each puncture. The action of a braid b ∈ Pm−1 on a generator
xi ∈ Fm−1 consists in “pushing” the xi through the braid:

It is clear the linking numbers of the path b−1xib with the punctures in
the plane are the same as those of xi, therefore the action of Pm−1 on F abm−1

is trivial. �

Remark. Strictly speaking, in Section 2.2 we have only defined the linking
number for two curves in space, while in the above proof we use the linking
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number of a point and a loop in a plane. This number can be defined as
the intersection (or incidence) number of the point with an immersed disk
whose boundary is the loop.

Generally, the linking number is defined for two disjoint cycles (for in-
stance, oriented submanifolds) in Rn when the sum of the dimensions of
the cycles is one less than n, see, for instance, [Do]. This linking number
is crucial for the definition of the Alexander duality which we shall use in
Chapter 15.

12.3.2. Vassiliev invariants and the Magnus expansion. The Vas-
siliev filtration on the group algebra ZPm can be described in the same
algebraic terms as in the Section 12.2. Indeed, singular braids can be iden-
tified with the augmentation ideal JPm ⊂ ZPm. It is still true that each
singular braid with k double points can be written as a product of k singu-
lar braids with one double point each; therefore, such singular braids span
the kth power of JPm. The (linear combinations of) chord diagrams with
k chords are identified with JkPm/J

k+1Pm = Ak(Pm) and the Goussarov
filtration on Pm is given by the dimension subgroups Dk(Pm).

Now, since Pm is an almost direct product of Fm−1 and Pm−1 we have
that

Jk(Pm) =
∑
i+j=k

J i(Fm−1)⊗ J j(Pm−1),

Ak(Pm) =
⊕
i+j=k

Ai(Fm−1)⊗Aj(Pm−1),

and

Dk(Pm) = Dk(Fm−1) nDk(Pm−1),

see Section 12.1.7.

These algebraic facts can be re-stated in the language of Vassiliev in-
variants as follows.

Firstly, each singular braid with k double points is a linear combination
of combed singular braids with the same number of double points. A combed
singular braid with k double points is a product bm−1bm−2 . . . b1 where bi is
a singular path in ZFi with ki double points, and km−1 + . . .+ k1 = k.

Secondly, combed diagrams form a basis in the space of all horizontal
chord diagrams. A combed diagram D is a product Dm−1Dm−2 . . . D1 where
Di is a diagram whose all chords have their rightmost end on the ith strand.

Thirdly, a pure braid is n-trivial if and only if, when combed, it becomes
a product of n-trivial elements of free groups. In particular, the only braid
that is n-trivial for all n is the trivial braid.
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Let β ∈ Pm be a combed braid: β = βm−1βm−2 . . . β1, where βk ∈ Fk.
The Magnus expansions of the elements βi can be “glued together”. Let
ik : A(Fk) ↪→ Ah(m) be the map that adds m− k− 1 vertical strands, with
no chords on them, to the right:

m1 ... k+1 1 ... k+1 ...

The maps ik extend to the completions of the algebrasA(Fk) andAh(m).
Define the Magnus expansion

M : Pm → Âh(m)

as the map sending β to im−1M(βm−1) . . . i1M(β1). For example:

M

( )
=

(
1 +

)(
1− + − + . . .

)

= 1 + − − + + − + . . . .

The following theorem is a consequence of the discussions above.

Theorem. The Magnus expansion is a universal Vassiliev invariant of pure
braids.

As in the case of free groups, the Magnus expansion is injective, and,
therefore, Vassiliev invariants distinguish pure braids. Note that combing is
not multiplicative so the Magnus expansion is not multiplicative either.

12.3.3. A dictionary. The theory of finite type invariants for the pure
braids suggests the following dictionary between the nilpotency theory for
groups and the theory of Vassiliev invariants:
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Nilpotency theory for groups Vassiliev theory

a group G a class of tangles

with a fixed skeleton X

A(G) = ⊕JkG/Jk−1G diagram space C(X)

functions ZG→ R R-valued Vassiliev invariants

that vanish on Jn+1G of order n

Chen expansion Kontsevich integral

dimension series DnG filtration by n-trivial tangles

lower central series γnG filtration by γn-trivial tangles

The notion of γn-triviality (that is, γn-equivalence to the trivial tangle) that
appears in the last line will be discussed later in this chapter, for string
links rather than for general tangles. Note that we do not have a general
definition for the trivial tangle with a given skeleton X, so in the last two
lines we should restrict our attention to knots or (string) links.

The above dictionary must be used with certain care, as illustrated in
the following paragraph.

12.3.4. Invariants for the full braid group. The finite type invariants
for braids, considered as tangles, are defined separately for each permutation.
The set of braids on m strands corresponding to the same permutation is in
one-to-one (non-canonical) correspondence with the pure braid group Pm:
given a braid b the subset bPm ⊂ Bm consists of all the braids with the
same permutation as b. This correspondence also identifies the Vassiliev
invariants for Pm with those of bPm. In particular, the Vassiliev invariants
separate braids.

On the other hand, the dimension series for the full braid group contains
very little information. Indeed, it is known from [GL] that for m > 5 the
lower central series of Bm stabilizes at k = 2:

γkBm = γ2Bm

for k > 2.

Exercise. Show that for all m the quotient Bm/γ2Bm is an infinite cyclic
group.

12.4. String links as closures of pure braids

The Vassiliev invariants for pure braids can be used to prove some facts
about the invariants of knots, and, more generally, string links.
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12.4.1. The short-circuit closure. String links can be obtained from
pure braids by a procedure called short-circuit closure. Essentially, it is a
modification of the plat closure construction described in [Bir2].

In the simplest case when string links have one component, the short-
circuit closure produces a long knot out of a pure braid on an odd number
of strands by joining the endpoints of the strands in turn at the bottom and
at the top:

In order to get a string link with m components we must start with a pure
braid on (2k + 1)m strands and proceed as follows.

Draw a braid in such a way that its top and bottom consist of the integer
points of the rectangle [1,m]×[0, 2k] in the plane. A string link on m strands
can be obtained from such a braid by joining the points (i, 2j−1) and (i, 2j)
(with 0 < j 6 k) in the top plane and (i, 2j) and (i, 2j+ 1) (with 0 6 j < k)
in the bottom plane by little arcs, and extending the strands at the points
(i, 0) in the top plane and (i, 2k) in the bottom plane. Here is an example
with m = 2 and k = 1:

The short-circuit closure can be thought of as a map Sk from the pure
braid group P(2k+1)m to the monoid Lm of string links on m strands. This
map is compatible with the stabilization, which consists of adding 2m un-
braided strands to the braid on the right, as in Figure 12.4.1.
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Figure 12.4.1. The stabilization map.

Therefore, if P∞ denotes the union of the groups P(2k+1)m with respect
to the inclusions P(2k+1)m → P(2k+3)m, there is a map

S : P∞ → Lm.

The map S is onto, while Sk, for any finite k, is not2.

One can say when two braids in P∞ give the same string link after the
short-circuit closure:

12.4.2. Theorem. There exist two subgroups HT and HB of P∞ such that
the map Sn is constant on the double cosets of the form HTxHB. The
preimage of every string link is a coset of this form.

In other words, Lm = HT \P∞/HB.

Theorem 12.4.2 generalizes a similar statement for knots (the case m =
1), which was proved for the first time by J. Birman in [Bir2] in the setting of
the plat closure. Below we sketch a proof which closely follows the argument
given for knots in [MSt].

First, notice that the short-circuit closure of a braid in P(2k+1)m is not
just a string link, but a Morse string link: the height in the 3-space is a
function on the link with a finite number of isolated critical points, none
of which is on the boundary. We shall say that two Morse string links are
Morse equivalent if one of them can be deformed into the other through
Morse string links.

Lemma. Assume that the short-circuit closures of b1, b2 ∈ P(2k+1)m are
isotopic. There exist k′ > k such that the short-circuit closures of the images
of b1 and b2 in P(2k′+1)m under the (iterated) stabilization map are Morse
equivalent.

The proof of this Lemma is not difficult; it is identical to the proof of
Lemma 4 in [MSt] and we omit it.

2To show this one has to use the bridge number (see page 64) of knots.
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Let us now describe the groups HT and HB. The group HT is gen-
erated by elements of two kinds. For each pair of strands joined on top
by the short-circuit map take (a) the full twist of this pair of strands (b)
the braid obtained by taking this pair of strands around some strand, as in
Figure 12.4.2:

Figure 12.4.2. A generator of HT .

The group HB is defined similarly, but instead of pairs of strands joined
on top we consider those joined at the bottom. Clearly, multiplying a braid
x on the left by an element of HT and on the right by an element of HB

does not change the string link S(x).

Now, given a Morse string link with the same numbers of maxima of
the height function on each component (say, k), we can reconstruct a braid
whose short-circuit closure it is, as follows.

Suppose that the string link is situated between the top and the bottom
planes of the braid. Without loss of generality we can also assume that the
top point of ith strand is the point (i, 0) in the top plane and the bottom
point of the same strand is (i, 2k) in the bottom plane. For the jth maximum
on the ith strand, choose an ascending curve that joins it with the point
(i, 2j− 1/2) in the top plane, and for the jth minimum choose a descending
curve joining it to the point (i, 2k − 3/2) in the bottom plane. We choose
the curves in such a way that they are all disjoint from each other and only
have common points with the string link at the corresponding maxima and
minima. On each of these curves choose a framing that is tangent to the
knot at one end and is equal to (1, 0, 0) at the other end. Then, doubling
each of this curves in the direction of its framing, we obtain a braid as in
Figure 12.4.3.

Each braid representing a given string link can be obtained in this way.
Given two Morse equivalent string links decorated with systems of framed
curves, there exists a deformation of one string link into the other through
Morse links. It extends to a deformation of the systems of framed curves
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Figure 12.4.3. Obtaining a braid from a string link.

if we allow a finite number of transversal intersections of curves with each
other or with the string link, all at distinct values of the parameter of the
deformation, and changes of framing. When a system of framed curves
passes such a singularity, the braid that it represents changes. A change of
framing on a curve ascending from a maximum produces the multiplication
on the left by some power of the twist on the pair of strands corresponding to
the curve. An intersection of the curve ascending from a maximum with the
link or with another curve gives the multiplication on the left by a braid in
HT obtained by taking the pair of strands corresponding to the curve around
some other strands. Similarly, singularities involving a curve descending
from a minimum produce multiplications on the right by elements of HB.

12.4.3. Remark. The subgroups HT and HB can be described in the fol-
lowing terms. The short-circuit map S can be thought of as consisting of
two independent steps: joining the top ends of the strands and joining the
bottom ends. A braid belongs to HT if and only if the tangle obtained from
it after joining the top strands only is “trivial”, that is, equivalent to the
tangle obtained in this way from the trivial braid. The subgroup HB is
described in the same way.

12.4.4. Vassiliev knot invariants as pure braid invariants. A knot
invariant v gives rise to a pure braid invariant v ◦ S which is just the pull-
back of v with respect to the short-circuit map. It is clear that if v is of
order n the same is true for v ◦ S since the short-circuit map sends braids
with double points to singular knots with the same number of double points.

An example is provided by the Conway polynomial. Each of its co-
efficients gives rise to an invariants of pure braids; these invariants factor
through the Magnus expansion since the latter is the universal Vassiliev
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invariant. As a result, we get a function on the chord diagram algebra
A(2m+ 1) which can be explicitly described, at least for m = 1.

Recall that the algebra A(3) has a basis consisting of diagrams of the
form w(u13, u23) · um12 where the uij are the generators (horizontal chords
connecting the strands i and j) and w is some non-commutative monomial
in two variables. Let

χ : A(3)→ Z[t]

be the map such that for all x ∈ P3 the Conway polynomial of S(x) coincides
with χ(M(x)). The following description of χ is given in [Du4].

First, it can be shown that χ vanishes on all the basis elements of the
form uu12 and u23u for any u, and on all uu2

23u
′ for any u and u′. This

leaves us with just two kinds of basis elements:

[c1, . . . , ck] := uc113u23 . . . u
ck−1

13 u23u
ck
13

and

[c1, . . . , ck]
′ := uc113u23 · . . . · u23u

ck−1

13 u23u
ck
13u23.

The values of χ on the elements of the second kind are expressed via those
on the elements of the first kind:

χ([c1, . . . , ck]
′) = t−2 · χ([c1, . . . , ck, 1]).

As for the elements of the first kind, we have

χ([c1, . . . , ck]) = (−1)k−1

(
k−1∏
i=1

p1pci−1

)
· pck ,

where ps = χ([s]) is a sequence of polynomials in t that are defined recur-
sively by p0 = 1, p1 = t2 and ps+2 = t2(ps + ps+1) for s > 0.

12.5. Goussarov groups of knots

There are several facts about the Vassiliev string link invariants that can
be proved by studying the interaction between the short-circuit closure and
the dimension/lower central series for the pure braid groups. (In view of
the results in Section 12.1.7 these two series on Pm always coincide.) In this
section we shall consider the case of knots which is slightly simpler than the
general case of string links.

Definition. Two knotsK1 andK2 are γn-equivalent if there are x1, x2 ∈ P∞
such that Ki = S(xi) and x1x

−1
2 ∈ γnP∞.

Exercise. Show that the connected sum of knots descends to their γn-
equivalence classes.

12.5.1. Theorem ([G1, Ha2]). For each n, the γn-equivalence classes of
knots form an abelian group under the connected sum.
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The group of knots modulo γn+1-equivalence is called the nth Goussarov
group and is denoted by K(n).

12.5.2. Theorem. Two knots cannot be distinguished by Vassiliev invari-
ants (with values in any abelian group) of degree at most n if and only if
they define the same element in K(n).

In other words, two knots are γn+1-equivalent if and only if they are
n-equivalent (see Section 3.2.1).

The rest of this section is dedicated to the proof of Theorems 12.5.1 and
12.5.2. The main idea behind the proof of Theorem 12.5.2, which is due to
T. Stanford [Sta3], is to interpret knot invariants as pure braid invariants.

12.5.3. The shifting endomorphisms. For k > 0, define τk to be the
endomorphism of P∞ which replaces the kth strand by three parallel copies
of itself as in Figure 12.5.1:

Figure 12.5.1

Denote by τ0 the endomorphism of P∞ which adds 2 non-interacting
strands to the left of the braid (this is in contrast to the stabilization map,
which adds 2 strands to the right and is defined only for P2k+1 with finite
k).

Strand-tripling preserves both HT and HB. Also, since τk is an endo-
morphism, it respects the lower central series of P∞.

Lemma. [CMS] For any n and any x ∈ γnP2N−1 there exist t ∈ HT ∩
γnP2N+1 and b ∈ HB ∩ γnP2N+1 such that τ0(x) = txb.

Proof. Let t2k−1 = τ2k−1(x)(τ2k(x))−1, and let b2k = (τ2k+1(x))−1τ2k(x).
Notice that t2k−1, b2k ∈ γnP∞. Moreover, t2k−1 looks as in Figure 12.5.2
and, by the Remark 12.4.3, lies in HT . Similarly, b2k ∈ HB. We have

τ2k−1(x) = t2k−1τ2k(x),

τ2k(x) = τ2k+1(x)b2k.

There exists N such that τ2N+1(x) = x. Thus the following equality holds:

τ0(x) = t1 · · · t2N−1xb2N · · · b0,
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and this completes the proof. �

Figure 12.5.2. Braids x and t2k−1.

12.5.4. Existence of inverses. Theorem 12.5.1 is a consequence of the
following, stronger, statement:

Proposition. For any x ∈ γkP2N−1 and any n there exists y ∈ γkP∞ such
that:

• y is contained in the image of τN0 ;

• xy = thb with h ∈ γnP∞ and t, b ∈ γkP∞.

The first condition implies that S(xy) = S(x)#S(y). It follows from the
second condition that the class of S(y) is the inverse for S(x). The fact that
t and b lie in γkP∞ is not needed here, but will be useful for Theorem 12.6.2.

Proof. Fix n. For k > n there is nothing to prove.

Assume there exist braids for which the statement of the proposition
fails; among such braids choose x with the maximal possible value of k. By
Lemma 12.5.3 we have τN0 (x−1) = t1x

−1b1 with t1 ∈ HT ∩ γkP4N−1 and
b1 ∈ HB ∩ γkP4N−1. Then

xτN0 (x−1) = xt1x
−1b1 = t1 · t−1

1 xt1x
−1 · b1.

Since t−1
1 xt1x

−1 ∈ γk+1P4N−1, there exists y′ ∈ γk+1P∞ ∩ Imτ2N
0 such that

t−1
1 xt1x

−1 · y′ = t2hb2 where h ∈ γnP∞, t2 ∈ HT ∩ γk+1P∞ and b2 ∈
HB ∩ γk+1P∞. Note that y′ commutes with b1, and, hence,

x · τN0 (x−1)y′ = t1t2 · h · b2b1.

Setting y = τN0 (x−1)y′, t = t1t2 and b = b2b1 we see that for x the statement
of the proposition is satisfied. We get a contradiction, and the proposition
is proved. �
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12.5.5. Vassiliev invariants and γn-equivalence. If we consider knot
invariants as braid invariants via the short-circuit closure, it becomes clear
that the value of a knot invariant of order n or less only depends on the
γn+1-equivalence class of the knot. Indeed, multiplying a pure braid by an
element of γn+1Pm amounts to adding an element of Jn+1Pm, and this does
not affect the invariants of degree n or less.

Lemma. The map

K → K(n)

that sends a knot to its γn+1-equivalence class is an invariant of degree n.

This lemma establishes Theorem 12.5.2 since it tautologically implies
that Vassiliev invariants of degree at most n distinguish γn+1-equivalence
classes of knots.

Proof. Extend the map K → K(n) by linearity to a homomorphism of
abelian groups ZK → K(n). The kernel of this map is spanned by two types
of elements:

• elements of the form x− y where x and y are γn+1-equivalent;

• elements of the form x1#x2 − x1 − x2.

Note that the trivial knot is in the kernel since, up to sign, it is an element
of the second type. The subspace of elements of the second type in ZK
coincides with K1#K1, where K1 is the ideal of singular knots.

We need to show that the composite map

ZP∞
S−→ ZK → K(n)

sends Jn+1P∞ to zero.

Define a relator of order d and length s as an element of ZK of the form

S((x1 − 1)(x2 − 1) . . . (xs − 1)y)

with y ∈ P∞, xi ∈ γdiP∞ and
∑
di = d. The greatest d such that a relator

is of order d will be called the exact order of a relator. A composite relator
is an element of K1#K1 ⊂ ZK.

As we noted, the kernel of the map ZK → K(n) contains all the relators
of length 1 and order n + 1 and all the composite relators. On the other
hand, an element of S(Jn+1P∞) is a linear combination of relators of length
n+ 1 and, hence, of order n+ 1. Thus we need to show that any relator of
order n + 1 is a linear combination of relators of order n + 1 and length 1
and composite relators.

Suppose that there exist relators of order n + 1 which cannot be rep-
resented as linear combinations of the above form. Among such relators
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choose the relator R of minimal length and, given the length, of maximal
exact order.

Assume that R is of the form (12.5.5) as above, with y, xi ∈ P2N−1.
Choose t ∈ HT and b ∈ HB such that the braid tx1b coincides with the
braid obtained from x1 by shifting it by 2N strands to the right, that is,
with τN0 (x1). By Lemma 12.5.3 the braids t and b can be taken to belong to
the same term of the lower central series of P∞ as the braid x. The relator

R′ = S((tx1b− 1)(x2 − 1) . . . (xs − 1)y)

is a connected sum of two relators and, hence, is a combination of composite
relators. On the other hand,

R′ −R = S((tx1b− x1)(x2 − 1) . . . (xs − 1)y)
= S(x1(b− 1)(x2 − 1) . . . (xs − 1)y)

Notice now that (b−1) can be exchanged with (xi−1) and y modulo relators
of shorter length or higher order. Indeed,

(b− 1)y = y(b− 1) + ([b, y]− 1)yb

and

(b− 1)(xi − 1) = (xi − 1)(b− 1) + ([b, xi]− 1)(xib− 1) + ([b, xi]− 1).

Thus, modulo relators of shorter length or higher order

S(x1(b− 1)(x2 − 1) . . . (xm − 1)y) = S(x1(x2 − 1) . . . (xm − 1)y(b− 1)) = 0.

and this means that R is a linear combination of composite relators and
relators of length 1 and order n. �

12.6. Goussarov groups of string links

Much of what was said about the Goussarov groups of knots can be extended
to string links without change. Just as in the case of knots, two string
links L1 and L2 are said to be γn-equivalent if there are x1, x2 ∈ P∞ such
that Li = S(xi) and x1x

−1
2 ∈ γnP∞. A string link is γn-trivial if it is γn-

equivalent to the trivial link. The product of string links descends to their
γn-equivalence classes.

12.6.1. Theorem ([G1, Ha2]). For each m and n, the γn-equivalence
classes of string links on m strands form a group under the string link prod-
uct.

These groups are also referred to as Goussarov groups. We shall denote
the group of string links on m strands modulo γn+1-equivalence by Lm(n),
or simply by L(n), dropping the reference to the number of strands. Let
L(n)k be the subgroup of L(n) consisting of the classes of k-trivial links.
Note that L(n)k = 1 for k > n.
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For string links with more than one component the Goussarov groups
need not be abelian. The most we can say is the following

12.6.2. Theorem ([G1, Ha2]). For all p, q we have

[L(n)p,L(n)q] ⊂ L(n)p+q.

In particular, L(n) is nilpotent of nilpotency class at most n.

As for the relation between γn+1-equivalence and n-equivalence for string
links, it is not known whether Theorem 12.5.2 is valid for string links in the
same form as for knots. We shall prove a weaker statement:

12.6.3. Theorem ([Mas]). Two string links cannot be distinguished by Q-
valued Vassiliev invariants of degree n and smaller if and only if the elements
they define in L(n) differ by an element of finite order.

We refer the reader to [Mas] for further results.

The proof of Theorem 12.6.1 coincides with the proof of Theorem 12.5.1
word for word. The only modification necessary is in the definition of the
shifting endomorphisms: rather than tripling the kth strand, τk triples the
kth row of strands. In other words, τk replaces each strand with ends at
the points (i, k − 1) in the top and bottom planes, with 1 6 i 6 n, by
three parallel copies of itself as in Figure 12.6.1. Similarly, τ0 adds 2m

Figure 12.6.1

non-interacting strands, arranged in 2 rows, to the left of the braid.

12.6.4. The nilpotency of L(n). Let x ∈ γpP∞ and x′ ∈ γqP∞. Choose
the braids y and y′ representing the inverses in L(n) of x and x′, respectively,
such that the conditions of Proposition 12.5.4 are satisfied, with n replaced
by n + 1: xy = t1h1b1 and x′y′ = t2h2b2 with hi ∈ γn+1P∞, t1, b1 ∈ γpP∞
and t2, b2 ∈ γqP∞. Replacing the braids by their iterated shifts to the right,
if necessary, we can achieve that the braids x, x′, y and y′ all involve different
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blocks of strands, and, therefore, commute with each other. Then

S(x) · S(x′) · S(y) · S(y′) = S(xx′yy′) = S(xyx′y′)

= S(t1h1b1t2h2b2) = S(h1b1t2h2).

The latter link is n-equivalent to S(t−1
2 b1t2b

−1
1 ) which lives in L(n)p+q.

It follows that each n-fold (that is, involving n + 1 terms) commutator
in L(n) is trivial, which means that L(n) is nilpotent of nilpotency class at
most n. Theorem 12.6.2 is proved.

12.6.5. Vassiliev invariants and γn-equivalence. As in the case of knots,
the value of any order n Vassiliev invariant on a string link depends only on
the γn+1-equivalence class of the link. The following proposition is the key
to determining when two different γn+1-equivalence classes of string links
cannot be distinguished by Vassiliev invariants of order n:

12.6.6. Proposition. The filtration by the powers of the augmentation
ideal JP∞ ⊂ QP∞ is carried by short-circuit map to the canonical filtra-
tion {EiL(n)} of the group algebra QL(n), induced by {L(n)i}.

We remind that the canonical filtration was defined in Section 12.1.3.

Proof. We use induction on the power k of JP∞. For k = 1 there is nothing
to prove.

Any product of the form

(∗) (x1 − 1)(x2 − 1) . . . (xs − 1)y

with y ∈ P∞, xi ∈ γdiP∞ and
∑
di = d belongs to JdP∞ since for any di we

have γdiP∞ − 1 ⊂ JdiP∞. We shall refer to s as the length of such product,
and to d as its degree. The maximal d such that a product of the form (∗)
is of degree d, will be referred to as the exact degree of the product.

The short-circuit closure of a product of length 1 and degree k is in
EkL(n). Assume there exists a product of the form (∗) of degree k whose
image R is not in EkL(n); among such products choose one of minimal
length, say r, and, given the length, of maximal exact degree.

There exists N such that

R′ := S((τN0 (x1)−1)(x2−1) . . . (xr−1)y) = S((x2−1) . . . (xr−1)y)·S(x1−1).

The length of both factors on the right-hand side is smaller that k, so, by
the induction assumption, R′ ∈ EkL(n). If τN0 (x1) = tx1b, we have

R′ −R = S((tx1b− x1)(x2 − 1) . . . (xm+1 − 1)y)
= S(x1(b− 1)(x2 − 1) . . . (xm+1 − 1)y)
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Notice now that (b−1) can be exchanged with (xi−1) and y modulo closures
of products having shorter length or higher degree. Indeed,

(b− 1)y = y(b− 1) + ([b, y]− 1)yb

and

(b− 1)(xi − 1) = (xi − 1)(b− 1) + ([b, xi]− 1)(xib− 1) + ([b, xi]− 1).

Thus, modulo elements of EkL(n)

S(x1(b−1)(x2−1) . . . (xm+1−1)y) = S(x1(x2−1) . . . (xm+1−1)y(b−1)) = 0.

�

By Proposition 12.6.6 the elements of L(n) that cannot be distinguished
from the trivial link by the Vassiliev invariants of degree n form the subgroup

L(n) ∩ (1 + En+1L(n)).

Since L(n)n+1 = 1, by Theorems 12.1.4 and 12.1.5 this subgroup consists of
all the elements of finite order in L(n). Finally, if the classes of two links
L1 and L2 cannot be distinguished by invariants of order n, then L1−L2 ∈
En+1L(n), and, hence, L1L

−1
2 − 1 ∈ En+1L(n) and L1L

−1
2 is of finite order

in L(n). Theorem 12.6.3 is proved.

12.6.7. Some comments.

Remark. Rational-valued Vassiliev invariants separate pure braids, and the
Goussarov group of γn+1-equivalence classes of pure braids on k strands is
nothing but Pk/γn+1Pk, which is nilpotent of class n for k > 2. Since this
group is a subgroup of L(n), we see that L(n) is nilpotent of class n for links
on at least 3 strands. String links on 1 strand are knots, in this case L(n)
is abelian. The nilpotency class of L(n) for links on 2 strands is unknown.
Note that it follows from the results of [DK] that L(n) for links on 2 strands
is, in general, non-abelian.

Remark. The relation of the Goussarov groups of string links on more than
one strand to integer-valued invariants seems to be a much more difficult
problem. While in Proposition 12.6.6 the field Q can be replaced by the
integers with no changes in the proof, Theorem 12.1.4 fails over Z.

Remark. Proposition 12.6.6 shows that the map

Lm → L(n)→ QL(n)/En+1L(n)

is the universal degree n Vassiliev invariant in the following sense: each
Vassiliev invariant of links in Lm of degree n can be extended uniquely to a
linear function on QL(n)/En+1L(n).
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12.7. Braid invariants as string link invariants

A pure braid is a string link so every finite type string link invariant is also
a braid invariant of the same order (at most). It turns out that the converse
is true:

12.7.1. Theorem. A finite type integer-valued pure braid invariant extends
to a string link invariant of the same order.

Corollary. The natural map Ah(m) → A(m), where Ah(m) is the algebra
of the horizontal chord diagrams and A(m) is the algebra of all string link
chord diagrams, is injective.

This was first proved in [BN8] by Bar-Natan. He considered quantum
invariants of pure braids, which all extend to string link invariants, and
showed that they span the space of all Vassiliev braid invariants.

Our approach will be somewhat different. We shall define a map

Lm(n)→ Pm/γn+1Pm

from the Goussarov group of γn+1-equivalence classes of string links to the
group of γn+1-equivalence classes of pure braids on m strands, together with
a section Pm/γn+1Pm → Lm(n). A Vassiliev invariant v of order n for pure
braids is just a function on Pm/γn+1Pm, its pullback to Lm(n) gives the
extension of v to string links.

Remark. Erasing one strand of a string link gives a homomorphism Lm →
Lm−1, which has a section. If Lm were a group, this would imply that string
links can be combed, that is, that Lm splits as a semi-direct product of
Lm−1 with the kernel of the strand-erasing map. Of course, Lm is only a
monoid, but it has many quotients that are groups, and these all split as
iterated semi-direct products. For instance, string links form groups modulo
concordance or link homotopy [HL]; here we are interested in the Goussarov
groups.

Denote by FLm−1(n) the kernel of the homomorphism Lm(n)→ Lm−1(n)
induced by erasing the last strand. We have semi-direct product decompo-
sitions

Lm(n) ∼= FLm−1(n) n . . .FL2(n) n FL1(n).

We shall see that any element of FLk(n) can be represented by a string
link on k+1 strands whose first k strands are vertical. Moreover, taking the
homotopy class of the last strand in the complement of the first k strands
gives a well-defined map

πk : FLk(n)→ Fk/γn+1Fk.
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Modulo the n + 1st term of the lower central series, the pure braid group
has a semi-direct product decomposition

P∞/γn+1P∞ ∼= Fm−1/γn+1Fm−1 n . . .n F1/γn+1F1.

The homomorphisms πi with i < m can now be assembled into one surjective
map

Lm(n)→ Pm/γn+1Pm.

Considering a braid as a string link gives a section of this map; this will
establish the theorem stated above as soon as we justify the our claims
about the groups FLk(n).

12.7.2. String links with one non-trivial component. The fundamen-
tal group of the complement of a string link certainly depends on the link.
However, it turns out that all this dependence is hidden in the intersection
of all the lower central series subgroups.

Let X be a string link on m strands and X̃ be its complement. The

inclusion of the top plane of X, punctured at the endpoints, into X̃ gives a

homomorphism it of Fm into π1X̃.

Lemma ([HL]). For any n the homomorphism

Fm/γnFm → π1X̃/γnπ1X̃

induced by it is an isomorphism.

A corollary of this lemma is that for any n there is a well-defined map

Lm(n)→ Fm−1/γn+1Fm−1

given by taking the homotopy class of the last strand of a string link in the
complement of the first m − 1 strands. We must prove that if two string
links represent the same element of FLm−1(n), their images under this map
coincide.

In terms of braid closures, erasing the last strand of a string link cor-
responds to erasing all strands of P∞ with ends at the points (m, i) for all
i > 0. Erasing these strands, we obtain the group which we denote by Pm−1

∞ ;
write Φ for the kernel of the erasing map. We have a semi-direct product
decomposition

P∞ = Φ n Pm−1
∞ ,

and the product is almost direct. In particular, this means that

γkP∞ = γkΦ n γkP
m−1
∞

for all k.

Lemma. Let x ∈ Φ, and h ∈ γn+1Φ. The string links S(x) and S(xh)
define the same element of Fm−1/γn+1Fm−1.



378 12. Braids and string links

Proof. Each braid in Φ can be combed: Φ is an almost direct product
of the free groups Gi which consist of braids all of whose strands, apart
from the one with the endpoints at (m, i), are straight, and whose strands
with endpoints at (m, j) with j < i do not interact. Each element a of Gi
gives a path in the complement of the first m− 1 strands of the string link,
and, hence, an element [a] of Fm−1. Notice that this correspondence is a
homomorphism of Gi to Fm−1. (Strictly speaking, these copies of Fm−1 for
different i are only isomorphic, since these are fundamental groups of the
same space with different basepoints. To identify these groups we need a
choice of paths connecting the base points. Here we shall choose intervals
of straight lines.)

Given x ∈ Φ we can write it as x1x2 . . . xr with xi ∈ Gi. Then the
homotopy class of the last strand of Sn(x) produces the element

[x1][x2]−1 . . . [xr]
(−1)r−1 ∈ Fm−1.

Let x′ = xh with h ∈ γn+1Φ. Then the fact that Φ is an almost direct
product of the Gi implies that if x′ = x′1x

′
2 . . . x

′
r with xi ∈ Gi, then xi ≡ x′i

mod γn+1Gi. It follows that the elements of Fm−1 defined by S(x) and
Sn(x′) differ by multiplication by an element of γn+1Fm−1. �

Lemma. Let x ∈ Φ, and y ∈ γn+1P
m−1
∞ . The string links S(x) and S(xy)

define the same element of Fm−1/γn+1Fm−1.

Proof. Denote by X̃ the complement of S(y). We shall write a presentation

for the fundamental group of X̃. It will be clear from this presentation that
the element of

Fm−1/γn+1Fm−1 = π1X̃/γn+1π1X̃

given by the homotopy class of the last strand of S(xy) does not depend on
y.

Let us assume that both x and y lie in the braid group Pm(2N+1). Let
H be the horizontal plane coinciding with the top plane of the braid y.

The plane H cuts the space X̃ into the upper part H+ and the lower part
H−. The fundamental groups of H+, H− and H+ ∩ H− are free. Let us
denote by {αi,j}, {βi,j} y {γi,k} the corresponding free sets of generators
(here 1 6 i < m, 1 6 j 6 N + 1 and 1 6 k 6 2N + 1) as in Figure 12.7.1.

By the Van Kampen Theorem, π1X̃ has a presentation

〈αi,j , βi,j , γi,k | θ−1
y (γi,2q−1) = βi,q, θ−1

y (γi,2q) = β−1
i,q

γi,2q−1 = αi,q, γi,2q = α−1
i,q+1 〉,

where 1 6 q 6 N + 1 and θy is the automorphism of F(m−1)(2N+1) given by
the braid y. Since y ∈ γn+1P(m−1)(2N+1), it is easy to see that

θ−1
y (γi,j) ≡ γi,j mod γm+1π1X̃.
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α  =γ         γ        α  =γ         γ         α  =γ
 

1,1       1,1                1,2                1,2       1,3                1,4                  1,3       1,5                    

2,1       2,1                2,2                2,2       2,3                2,4                  2,3       2,5                    

β                      β                        β

β                      β                        β
1,1                                           1,2                                               1,3               

α  =γ         γ        α  =γ         γ         α  =γ 

2,1                                           2,2                                               2,3               

Figure 12.7.1

Replacing θ−1
y (γi,j) by γi,j in the presentation of π1X̃ we obtain a presenta-

tion of the free group Fm−1. �

Now, a string link that gives rise to an element of FLm−1(n) can be
written as S(xy) where x ∈ Φ and y ∈ γn+1P

m−1
∞ . Any link n-equivalent to

it is of the form S(txyb · h) where t ∈ HT , b ∈ HB and h ∈ γn+1P∞. We
have

S(txyb · h) = S(xy · bhb−1) = S(xh′yh′′),

where h′ ∈ γn+1Φ and h′′ ∈ γn+1P
m−1
∞ . It follows from the two foregoing

lemmas that S(xh′yh′′) and S(xy) define the same element of Fm−1/γn+1Fm−1.

Exercises

(1) Show that reducing the coefficients of the Magnus expansion of an el-
ement of Fn modulo m, we obtain the universal Zm-valued Vassiliev
invariant for Fn. Therefore, all mod m Vassiliev invariants for Fn are
mod m reductions of integer-valued invariants.

(2) Let M′ : Fn → Z〈〈X1, . . . , Xn〉〉 be any multiplicative map such that for
all xi we have M′(xi) = 1 + αiXi + . . . with αi 6= 0. Show that M′ is a
universal Vassiliev invariant for Fn.

(3) Show that the Kontsevich integral of an element of a free group Fm
thought of as a path in a plane with m punctures depends on the posi-
tions of the punctures.

(4) (a) Show that the semi-direct product in the decomposition P3 = F2nZ
given by combing is not direct.
(b) Find an isomorphism between P3 and F2 × Z.
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(5) A twin [Kho], or a flat braid [Mer], on n strands is a collection of n de-
scending arcs in the plane which connect the set of points (1, a), . . . , (n, a)
with the set of points (1, b), . . . , (n, b) for some a > b, such that no three
arcs intersect in one point. Flat braids are considered modulo horizon-
tal deformations, vertical re-scalings and translations and the second
Reidemeister move:

Figure 12.7.2. The second Reidemeister move on flat braids

Just as the usual braids, flat braids form a group with respect to
concatenation. Develop the Vassiliev theory for the group of flat braids
on n strands.

(6)∗Find the nilpotency class of the group L(n) for string links on two
strands.



Chapter 13

Gauss diagrams

In this chapter we shall show how the finite type invariants of a knot can
be read off its Gauss diagram. It is not surprising that this is possible in
principle, since the Gauss diagram encodes the knot completely. However,
the particular method we describe, invented by Polyak and Viro and whose
efficiency was proved by Goussarov, turns out to be conceptually very simple.
For a given Gauss diagram, it involves only counting its subdiagrams of some
particular types.

We shall prove that each finite type invariant arises in this way and
describe several examples of such formulae.

13.1. The Goussarov theorem

Recall that in Chapter 12 we have constructed a universal Vassiliev invariant
for the free group by sending a word to the sum of all of its subwords. A
similar construction can be performed for knots if we think of a knot as
being “generated by its crossings”.

Let GD be the set of all Gauss diagrams (we shall take them to be based,
or long, even though for the moment it is of little importance). Denote by
ZGD the set of all finite linear combinations of the elements of GD with
integer coefficients. We define the map I : ZGD→ ZGD by simply sending
a diagram to the sum of all its subdiagrams:

I(D) :=
∑
D′⊆D

D′

and continuing this definition to the whole of ZGD by linearity. In other
terms, the effect of this map can be described as

381
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I : 7−→ +

For example, we have

I
( )

= +

+ + + +2 +

Here all signs on the arrows are assumed to be, say, positive.

Define the pairing 〈A,D〉 of two Gauss diagrams A and D as the coeffi-
cient of A in I(D):

I(D) =
∑

A∈GD

〈A,D〉A.

In principle, the integer 〈A,D〉 may change if a Reidemeister move is per-
formed on D. However, one can find invariant linear combinations of these
integers. For example, in Section 3.6.7 we have proved that the Casson
invariant c2 of a knot can be expressed as〈+ + , D

〉
−
〈− + , D

〉
−
〈+ − , D

〉
+
〈− − , D

〉
.

More examples of such invariant expressions can be found in Section 13.4.
In fact, as we shall now see, for each Vassiliev knot invariant there exists a
formula of this type.

13.1.1. The Goussarov Theorem. Each linear combination of the form∑
A∈GD

cA〈A,D〉

with integer coefficients, considered as a function of D, is just the composi-
tion c ◦ I, where c : ZGD→ Z is the linear map with c(A) = cA.

In what follows, usual knots will be referred to as classical knots, in
order to distinguish them from virtual knots. Gauss diagrams that encode
long classical knots, or, in other words, realizable, diagrams, form a subset
GDre ⊂ GD. Any integer-valued knot invariant v gives rise to a function
GDre → Z which extends by linearity to a function ZGD → Z. We also
denote this extension by v. Here ZGDre is the free abelian group generated
by the set GDre.

Theorem (Goussarov). For each integer-valued Vassiliev invariant v of
classical knots of order 6 n there exists a linear map c : ZGD → Z such
that

v = c ◦ I |ZGDre

and such that c is zero on each Gauss diagram with more than n arrows.

The proof of the Goussarov Theorem is the main goal of this section.
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13.1.2. Construction of the map c. Consider a given Vassiliev knot
invariant v of order 6 n as a linear function v : ZGDre → Z. We are going
to define a map c : ZGD→ Z such that the equality c ◦ I = v holds on the
submodule ZGDre.

Since the map I is an isomorphism with the inverse being

I−1(D) =
∑
D′⊆D

(−1)|D−D
′|D′,

where |D − D′| is the number of arrows of D not contained in D′, the
definition appears obvious:

(13.1.1) c = v ◦ I−1 .

However, for this equation to make sense we need to extend v from ZGDre

to the whole of ZGD since the image of I−1 contains all the subdiagrams of
D and a subdiagram of a realizable diagram does not have to be realizable.

To make such an extension consistent we need it to satisfy the Vassiliev
skein relation. Thus we first express this relation in terms of Gauss diagrams
in Section 13.1.3 introducing Gauss diagrams with undirected signed chords.
It turns out (Section 13.1.6) that via Vassiliev’s skein relation an arbitrary
Gauss diagram can be presented as a linear combination of some realizable
Gauss diagrams (which we call descending and define them in Section 13.1.4)
plus Gauss diagrams with more than n chords. Since v is of order 6 n, it is
natural to extend it by zero on Gauss diagrams with more than n chords.
Also, we know the values of v on descending Gauss diagrams since they are
realizable, and, thus, such a presentation gives us the desired extension. We
complete the proof of the Theorem in Section 13.1.7.

13.1.3. Gauss diagrams with chords. Gauss diagrams can also be nat-
urally defined for knots with double points. Apart from the arrows, these
diagrams have solid undirected chords on them, each chord labelled with a
sign. The sign of a chord is positive if in the positive resolution of the double
point the overcrossing is passed first. (Recall that we are dealing with long
Gauss diagrams, and that the points on a long knot are ordered.)

Gauss diagrams with at most n chords span the space ZGDn, which is
mapped to ZGD by a version of the Vassiliev skein relation:

(13.1.2)
ε

= ε
ε

− ε
−ε

Using this relation, any knot invariant, or, indeed, any function on Gauss
diagrams can be extended to diagrams with chords. Note that the map
ZGDn → ZGD is not injective; in particular, changing the sign of a chord
in a diagram from GDn multiplies its image in ZGD by −1. We have a
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commutative diagram

ZGDn
skein (13.1.2) //

I
��

ZGD

I
��

ZGDn
skein (13.1.2) // ZGD

where I : ZGDn → ZGDn is the isomorphism that sends a diagram to the
sum of all its subdiagrams that contain the same chords.

13.1.4. Descending Gauss diagrams. We shall draw the diagrams of
the long knots in the plane (x, y), assuming that the knot coincides with the
x-axis outside some ball.

A diagram of a (classical) long knot is descending if for each crossing the
overcrossing comes first. A knot whose diagram is descending is necessarily
trivial. The Gauss diagram corresponding to a descending knot diagram has
all its arrows pointed in the positive direction of the knot (that is, to the
right).

The notion of a descending diagram can be generalized to diagrams of
knots with double points.

Definition. A Gauss diagram of a long knot with double points is called
descending if

(1) all the arrows are directed to the right;

(2) no endpoint of an arrow can be followed by the left endpoint of a
chord.

In other words, the following situations are forbidden:

For these two conditions to make sense the Gauss diagram with double points
need not be realizable; we shall speak of descending diagrams irrespective
of whether they can be realized by classical knots with double points.

Descending diagrams are useful because of the following fact.

13.1.5. Lemma. Each long chord diagram with signed chords underlies a
unique (up to isotopy) singular classical long knot that has a descending
Gauss diagram.

Proof. The endpoints of the chords divide the line of the parameter into
intervals, two of which are semi-infinite. Let us say that such an interval is
prohibited if it is bounded from the right by a left end of a chord. Clearly, of
the two semi-infinite intervals the left one is prohibited while the right one is
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not. If a chord diagram D underlies a descending Gauss diagram GD, then
GD has no arrow endpoints on the prohibited intervals. We shall refer to
the union of all prohibited intervals with some small neighbourhoods of the
chord endpoints (which do not contain endpoints of other chords or arrows)
as the prohibited set.

c

fg
d

e

a

bChord diagram

prohibited set

Prohibited set

a b c d e gf

Immersion of the

Descending singular knot

Its Gauss diagram

b e

a
g

f

d

c

The prohibited set of a diagram can be immersed into the plane with
double points corresponding to the chords, in such a way that the signs
of the chords are respected. Such an immersion is uniquely defined up to
isotopy. The image of the prohibited set will be an embedded tree T .

The leaves of T are numbered in the order given by the parameter along
the knot. Note that given T , the rest of the plane diagram can be recon-
structed as follows: the leaves of T are joined, in order, by arcs lying outside
of T ; these arcs only touch T at their endpoints and each arc lies below
all the preceding arcs; the last arc extends to infinity. Such reconstruction
is unique since the complement of T is homeomorphic to a 2-disk, so all
possible choices of arcs are equivalent, that is, leading to isotopic knots. �

13.1.6. Extension of v. Here, using the Vassiliev skein relation, we extend
v not only to singular long knots (realizable Gauss gauss diagrams with
chords) but also to arbitrary Gauss diagrams with signed chords.

If D is a descending Gauss diagram with signed chords, by Lemma 13.1.4
there exists precisely one singular classical knot K which has a descending
diagram with the same signed chords. We set v(D) := v(K).

If D is an arbitrary diagram, we apply the algorithm which is described
below to represent D as a linear combination

∑
aiDi of descending diagrams

modulo diagrams with the number of chords > n. The algorithm uses the



386 13. Gauss diagrams

Vassiliev skein relation and has the property that it transforms a realizable
Gauss diagram into the linear combination of realizable diagrams.

Now, if we set

v(D) :=
∑

aiv(Di);

this expression naturally vanishes on diagrams with more than n chords
since v is of order 6 n. Therefore, indeed, we get an extension of v.

The algorithm consists in the iteration of a certain transformation P of
Gauss diagrams which makes a diagram, in a sense, “more descending”. The
map P works as follows.

Take a diagram D. Replace all the arrows of D that point to the left
by the arrows that point to the right (possibly creating new chords in the
process), using relation (13.1.2).

Denote by
∑
aiD

′
i the resulting linear combination. Now, each of the

D′i may contain “prohibited pairs”: these are the arrow endpoints which are
followed by the left endpoint of a chord. Using the Reidemeister moves a
prohibited pair can be transformed as follows:

On a Gauss diagram this transformation can take one of the forms shown
in Figure 13.1.1 where the arrows corresponding to the new crossings are
thinner.

For each D′i consider the leftmost prohibited pair, and replace it with
the corresponding configuration of arrows and chords as in Figure 13.1.1;
denote the resulting diagram by D′′i . Set P (D) :=

∑
aiD

′′
i and extend P

linearly to the whole ZGD∞ =
⋃
n ZGDn.

If D is descending, then P (D) = D. We claim that applying P repeat-
edly to any diagram we shall eventually arrive to a linear combination of
descending diagrams, modulo the diagrams with more than n chords.

Let us order the chords in a diagram by their left endpoints. We say that
a diagram is descending up to the kth chord if the closed interval from −∞
up to the left end of the kth chord contains neither endpoints of leftwards-
pointing arrows, nor prohibited pairs.

If D is descending up to the kth chord, each diagram in P (D) also is.
Moreover, applying P either decreases the number of arrow heads to the left
of the left end of the (k + 1)st chord, or preserves it. In the latter case, it
decreases the number of arrow tails in the same interval. It follows that for
some finite m each diagram in Pm(D) will be decreasing up to the (k+ 1)st
chord. Therefore, repeating the process, we obtain after a finite number
of steps a combination of diagrams descending up to the (n + 1)st chord.
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−ε ε −ε ε −εε
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ε −ε ε −ε ε−ε

εε ε ε−εε

Figure 13.1.1

Those of them that have at most n chords are descending, and the rest can
be disregarded.

Remark. By construction, P respects the realizability of the diagrams. In
particular, the above algorithm expresses a long classical knot as a linear
combination of singular classical knots with descending diagrams.

13.1.7. Proof of the Goussarov Theorem. To prove the Goussarov
Theorem we now need to show that c = v ◦ I−1 vanishes on Gauss diagrams
with more than n arrows.

Let us evaluate c on a descending Gauss diagram A whose total number
of chords and arrows is greater than n. We have

c(A) = v(I−1(A)) =
∑
A′⊆A

(−1)|A−A
′|v(A′).

All the subdiagrams A′ of A have the same chords as A and therefore are
descending. Hence, by the construction of the extension of v to ZGD, the
values of v on all the A′ are equal to v(A). If A has more than n chords,
then v(A) = 0. If A has at most n chords, it has at least one arrow. It

is easy to see that in this case
∑

A′⊆A(−1)|A−A
′| = 0, and it follows that
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c(A) = 0. In particular, c vanishes on all descending Gauss diagrams with
more than n arrows.

In order to treat non-descending Gauss diagrams, we shall introduce an
algorithm, very similar to that of Section 13.1.6 (see page 386) that con-
verts any long Gauss diagram with chords into a combination of descending
diagrams with at least the same total number of chords and arrows. The
algorithm consists in the iteration of a certain map Q, similar to P , which
also makes a diagram “more descending”. We shall prove that the map Q
preserves c in the sense that c ◦Q = c and does not decrease the total num-
ber of chords and arrows. Then applying Q to a Gauss diagram A enough
number of times we get a linear combination of descending diagrams without
altering the value of c. Then the arguments of the previous paragraph show
that c(A) = 0 which will conclude the proof of the Goussarov Theorem.

Take a Gauss diagram A. As in Section 13.1.6, we replace all the arrows
of A that point leftwards by the arrows that point to the right, using relation
(13.1.2).

Denote by
∑
aiA

′
i the resulting linear combination and check if the sum-

mands A′i contain prohibited pairs. Here is where our new construction
differs from the previous one. For each A′i consider the leftmost prohibited
pair, and replace it with the sum of the seven non-empty subdiagrams of the
corresponding diagram from the right column of Figure 13.1.1 containing at
least one of the three arrows. Denote the sum of these seven diagrams by A′′i .
For example, if A′i is the first diagram from the left column of Figure 13.1.1,

A′i =
−εε

, then A′′i =
ε −ε

+

+
ε −ε

+
−ε −ε

+
ε −εε

+

+
−ε −εε

+
−ε −εε

+
−ε −εε ε

.

Now, set Q(A) =
∑
aiA

′′
i and extend Q linearly to the whole ZGD∞.

As before, applying Q repeatedly to any diagram we shall eventually
arrive to a linear combination of descending diagrams, modulo the diagrams
with more than n chords. Note that Q does not decrease the total number
of chords and arrows.
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It remains to prove that Q preserves c. Since I : ZGD → ZGD is
epimorphic, it is sufficient to check this on diagrams of the form I(D).
Assume that we have established that c(Q(I(D)))) = c(I(D)) for all Gauss
diagrams D with some chords and at most k arrows. If there are no arrows
at all then D is descending and Q(I(D)) = I(D). Let now D have k + 1
arrows. If D is descending, than again Q(I(D)) = I(D) and there is nothing
to prove. If D is not descending, then let us first assume for simplicity that
all the arrows of D point to the right. Denote by l the arrow involved in the
leftmost prohibited pair, and let Dl be the diagram D with l removed. We
have

I(P (D)) = Q
(
I(D)− I(Dl)

)
+ I(Dl).

Indeed, P (D) is a diagram from the right column of Figure 13.1.1. Its
subdiagrams fall into two categories depending on whether they contain at
least one of the three arrows indicated on Figure 13.1.1 or none of them. The
latter are subdiagrams of Dl and they are included in I(Dl). The former
can be represented as Q

(
I(D)− I(Dl)

)
.

By the induction assumption, c(Q(I(Dl))) = c(I(Dl)). Therefore,

c(Q(I(D))) = c(I(P (D))) = v(P (D)) .

But applying P does not change the value of v because of our definition of
the extension of v from Section 13.1.2. Therefore,

c(Q(I(D))) = v(P (D)) = v(D) = c(I(D)) ,

and, hence c(Q(A)) = c(A) for any Gauss diagram A.

If some arrows of D point to the left, the argument remains essentially
the same and we leave it to the reader. �

13.1.8. Example. The Casson invariant. We exemplify the proof of the
Goussarov theorem by deriving the Gauss diagram formula for the Casson
invariant, that is, the second coefficient of the Conway polynomial c2. At
the beginning of this chapter we already mentioned a formula for it, first
given in Section 3.6.7. However, the expression that we are going to derive
following the proof of the Goussarov theorem will be different.

Let v = c2. We shall use the definition c = v ◦ I−1 to find the function
c : ZGD→ Z.

If a Gauss diagram A has at most one arrow then obviously c(A) = 0.
Also, if A consists of two non-intersecting arrows then c(A) = 0. So we need
to consider the only situation when A consists of two intersecting arrows.
There are 16 such diagrams differing by the direction of arrows and signs on
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them. The following table shows the values of c on all of them.

c(+ + ) = 0 c(− + ) = 0 c(+ − ) = 0 c(− − ) = 0

c(+ + ) = 0 c(− + ) = 0 c(+ − ) = 0 c(− − ) = 0

c(+ + ) = 0 c(− + ) = 0 c(+ − ) = 0 c(− − ) = 0

c(+ + ) = 1 c(− + )=−1 c(+ − )=−1 c(− − ) = 1

Let us do the calculation of some of these values in detail.

Take A = + − . According to the definition of I−1 from page 383

we have

c(A) = v( )− v( + )− v( − ) + v(+ − )

The first three values vanish. Indeed, the first and third Gauss diagrams are
descending, so they represent the trivial long knot, and the value of c2 on
it is equal to zero. For the second value one should use the Vassiliev skein
relation (13.1.2)

v( + ) = v( − ) + v( − )

and then notice that the both diagrams are descending. Moreover, for the
second diagram with a single chord both resolutions of the corresponding
double point lead to the trivial knot.

Thus we have

c(A) = v(+ − ) = v(− − ) + v(− − ) .

The last two Gauss diagrams are descending. Therefore, c(A) = 0.

Now let us take A = + + . Applying I−1 to A we get that the value

of c on the first three diagrams is equal to zero as before, and

c(+ + ) = v(+ + ).

To express the last Gauss diagram as a combination of descending diagrams
first we should reverse its right arrow using the relation (13.1.2):

+ + = + − + + − .

The first Gauss diagram here is descending. But the second one is not, it
has a prohibited pair. So we have to apply the map P from Section 13.1.6
to it. According to the first case of Figure 13.1.1 we have

+ − = = + .

In the first diagram we have to reverse one more arrow, and to the second
diagram we need to apply the map P again. After that, the reversion of
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arrows in it would not create any problem since the additional terms would
have 3 chords, and we can ignore them if we are interested in the second
order invariant v = c2 only. Modulo diagrams with three chords, we have

+ − = − + .

The first and third diagrams here are descending. But with the second one
we have a problem because it has a prohibited interval with many (three) ar-
row ends on it. We need to apply P five times in order to make it descending
modulo diagrams with three chords. The result will be a descending dia-
gram B with two non-intersecting chords, one inside the other. So the value
of v on it would be zero and we may ignore this part of the calculation (see
Exercise 2 on page 405). Nevertheless, we give the answer here so that the
interested readers can check their understanding of the procedure:

B = .

Combining all these results we have

+ + = + − −B + +

modulo diagrams with at least three chords. The value of v on the last
Gauss diagram is equal to its value on the descending knot with the same
chord diagram, − − , namely, the knot

.

It is easy to see that the only resolution that gives a non-trivial knot is
the positive resolution of the right double point together with the negative
resolution of the left double point; the resulting knot is 41. The value of
v = c2 on it is −1 according to the Table 2.3.1 on page 47. Thus the value
of v on this Gauss diagram is equal to 1. The values of v on the other three
descending Gauss diagrams are zero. Therefore, we have

c(+ + ) = 1.

As an exercise, the reader may wish to check all the other values of c
from the table.

This table implies that the value of c2 on a knot K with the Gauss
diagram D is

c2(K) =
〈+ + − − + − + − + − − , D

〉
.
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This formula differs from the one at the beginning of the chapter by the
orientation of all its arrows.

13.2. Canonical actuality tables

As a byproduct of the proof of the Goussarov Theorem, namely the Lemma
13.1.5 on page 384, we have the following refinement of the notion of an
actuality table from Section 3.7.

In that section we have described a procedure of calculating a Vassiliev
invariant given by an actuality table. This procedure involves some choices.
Firstly, in order to build the table, we have to choose for each chord diagram
a singular knot representing it. Secondly, when calculating the knot invari-
ant we have to choose repeatedly sequences of crossing changes that will
express our knot as a linear combination of singular knots from the table.

It turns out that for long knots these choices can be eliminated. We
shall now define something that can be described as a canonical actuality
table and describe a calculation procedure for Vassiliev invariants that only
depends on the initial Gauss diagram representing a knot. Strictly speaking,
our “canonical actuality tables” are not actuality tables, since they contain
one singular knot for each long chord diagram with signed chords.

A canonical actuality table for an invariant of order n is the set of its
values on all singular long knots with descending diagrams and at most n
double points.

For example, here is the canonical actuality table for the second coeffi-
cient c2 of the Conway polynomial.

+ − + + − + + − − −

0 0 0 0 0 0 0

+
+

−
+

+
−

−
−

+ + − + + − − −

0 0 0 0 1 1 1 1

To remove the second ambiguity in the procedure of calculating a Vas-
siliev invariant we use the algorithm from Section 13.1.6. It expresses an
arbitrary Gauss diagram with chords as a linear combination of descending
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diagrams, modulo diagrams with more than n chords. The algorithm rep-
resents the value of a Vassiliev invariant as a linear combination of values
from the canonical actuality table.

13.3. The Polyak algebra for virtual knots

The fact that all Vassiliev invariants can be expressed with the help of
Gauss diagrams suggests that finite type invariants can be actually defined
in the setup of Gauss diagrams. This is true and, moreover, there are two
(inequivalent) ways to define Vassiliev invariants for virtual knots: that of
[GPV] and that of [Ka5]. Here we review the construction of [GPV].
The reader should be warned that it is not known whether this definition
coincides with the usual definition on classical knots. However, the logic
behind it is very transparent and simple: the universal finite type invariant
should send a knot to the sum of all of its “subknots”. We have already
seen this approach in action in Chapter 12 where the Magnus expansion of
the free group was defined in precisely this way.

13.3.1. The universal invariant of virtual knots. The map I : ZGD→
ZGD from Section 13.1, sending a diagram to the sum of all its subdiagrams
I(D) =

∑
D′⊆DD

′, is clearly not invariant under the Reidemeister moves.
However, we can make it invariant by simply taking the quotient of the im-
age of I by the images of the Reidemeister moves, or their linearizations.
These linearizations have the following form:

ε

= 0,

 ε

−ε

+
 ε

+
 −ε

= 0,

 ε

 ε

 ε

+  ε

 ε

+
 ε

 ε

+  ε

 ε

=

=

 ε

 ε

 ε +  ε

 ε

+

 ε

 ε

+
 ε

 ε .

The space ZGD modulo the linearized Reidemeister moves is called the
Polyak algebra. The structure of an algebra comes from the connected sum
of long Gauss diagrams; we shall not use it here. The Polyak algebra, which
we denote by P, looks rather different from the quotient of ZGD by the
usual Reidemeister moves, the latter being isomorphic to the free Abelian
group spanned by the set of all virtual knots VK. Note, however, that by
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construction, the resulting invariant I∗ : ZVK → P is an isomorphism, and,
therefore, contains the complete information about the virtual knot.

It is not clear how to do any calculations in P, since the relations are not
homogeneous. It may be more feasible to consider the (finite-dimensional)
quotient Pn of P which is obtained by setting all the diagrams with more
than n arrows equal to zero. In fact, the space Pn plays an important
role in the theory of Vassiliev invariants for virtual knots. Namely, the map
In : ZVK → Pn obtained by composing I∗ with the quotient map is an order
n Vassiliev invariant for virtual knots, universal in the sense that any other
order n invariant is obtained by composing In with some linear function on
Pn.

Let us now make this statement precise and define the Vassiliev invari-
ants .

While the simplest operation on plane knot diagrams is the crossing
change, for Gauss diagrams there is a similar, but even simpler manipulation:
deleting/inserting of an arrow. An analogue of a knot with a double point
for this operation is a diagram with a dashed arrow. A dashed arrow can
be resolved by means of the following “virtual Vassiliev skein relation”:

= − .

An invariant of virtual knots is said to be of finite type (or Vassiliev)
of order n if it vanishes on all Gauss diagrams with more than n dashed
arrows.

Observe that the effect of I on a diagram all of whose arrows are dashed
consists in just making all the arrows solid. More generally, the image under
I of a Gauss diagram with some dashed arrows is a sum of Gauss diagrams
all of which contain these arrows. It follows that In is of order n: indeed, if
a Gauss diagram has more than n dashed arrows it is sent by I to a Gauss
diagram with at least n arrows, which is zero in Pn.

13.3.2. Dimensions of Pn. The universal invariants In, in marked con-
trast with the Kontsevich integral, are defined in a simple combinatorial
fashion. However, nothing comes for free: In takes its values in the space
Pn which is hard to describe. For small n, the dimensions of Pn (over the
real numbers) were calculated in [BHLR]:

n 1 2 3 4

dimPn − dimPn−1 2 7 42 246

13.3.3. Open problems. A finite type invariant of order n for virtual
knots gives rise to a finite type invariant of classical knots of at least the
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same order. Indeed, a crossing change can be thought of as deleting an
arrow followed by inserting the same arrow with the direction reversed.

Exercise. Define the Vassiliev invariants for closed (unbased) virtual knots
and show that the analogue of the space P2 is 0-dimensional. Deduce that
the Casson knot invariant cannot be extended to a Vassiliev invariant of
order 2 for closed virtual knots.

It is not clear, however, whether a finite type invariant of classical knots
can be extended to an invariant of virtual long knots of the same order. The
calculation of [GPV] show that this is true in orders 2 and 3.

Given that I∗ is a complete invariant for virtual knots, one may hope
that each virtual knot is detected by In for some n. It is not known whether
this is the case. A positive solution to this problem would also mean that
Vassiliev invariants distinguish classical knots.

It would be interesting to describe the kernel of the natural projection
Pn → Pn−1 which kills the diagrams with n arrows. First of all, notice that
using the linearization of the second Reidemeister move, we can get rid of
all signs in the diagrams in Pn that have exactly n arrows: changing the
sign of an arrow just multiplies the diagram by −1. Now, the diagrams that
have exactly n arrows satisfy the following 6T-relation in Pn:

+ + =

= + + .

Consider the space ~An of chord diagrams with n oriented chords, or

arrows, modulo the 6T-relation. There is a map in : ~An → Pn, whose image
is the kernel of the projection to Pn−1. It is not clear, however if in is an

inclusion. The spaces ~An were introduced in [Po] where their relation with
usual chord diagrams is discussed. A further discussion of these spaces and
their generalizations can be found in [BN9].

One more open problem is as follows. Among the linear combinations of
Gauss diagrams of the order no greater than n there are some that produce
a well defined invariant of degree n. Obviously, such combinations form a
vector space, call it Ln. The combinations that lead to the identically zero
invariant form a subspace L′n. The quotient space Ln/L

′
n is isomorphic to

the space of Vassiliev invariants Vn. The problem is to obtain a description
of (or some information about) the spaces Ln and L′n and in these terms
learn something new about Vn. For example, we have seen that the Cas-
son invariant c2 can be given by two different linear combinations k1, k2



396 13. Gauss diagrams

of Gauss diagrams of order 2. It is not difficult to verify that these two
combinations, together with the empty Gauss diagram k0 that corresponds
to the constant 1, span the space L2. The subspace L′2 is spanned by the
difference k1 − k2. We see that dimL2/L

′
2 = 2 = dimV2. For degree 3 the

problem is already open. We know, for instance, three linearly independent
combinations of Gauss diagrams that produce the invariant j3 (see Sections
13.4.2 and 13.4.4 below), but we do not know if their differences generate
the space L′3. Neither do we have any description of the space L3.

13.4. Examples of Gauss diagram formulae

13.4.1. Highest part of the invariant. Let us start with one observation
that will significantly simplify our formulae.

Lemma. Let c : ZGD → Z be a linear map representing an invariant of
order n. If A1, A2 ∈ GD are diagrams with n arrows obtained from each
other by changing the sign of one arrow, then c(A1) = −c(A2).

Proof. As we noted before, a knot invariant c vanishes on all linearized
Reidemeister moves of the form I(R), where R = 0 is a usual Reidemeister
move on realizable diagrams. Consider a linearized second Reidemeister
move involving one diagram A0 with n + 1 arrows and two diagrams A1

and A2 with n arrows. Clearly, c vanishes on A0, and therefore c(A1) =
−c(A2). �

This observation gives rise to the following notation. Let A be a Gauss
diagram with n arrows without signs, an unsigned Gauss diagram. Given a
Gauss diagram D, we denote by 〈A,D〉 the alternating sum∑

i

(−1)signAi〈Ai, D〉,

where the Ai are all possible Gauss diagrams obtained from A by putting
signs on its arrows, and signAi is the number of chords of Ai whose sign is
negative. Since the value of c on all the Ai coincides, up to sign, we can
speak of the value of c on A.

For example, the formula for the Casson invariant of a knot K with the
Gauss diagram D can be written as

c2(K) =
〈

, D
〉
.

13.4.2. Invariants of degree 3. Apart from the Casson invariant, the
simplest Vassiliev knot invariant is the coefficient j3(K) in the power series
expansion of the Jones polynomial (see Section 3.6). Many formulae for
j3(K) are known; the first such formula was found by M. Polyak and O. Viro
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in terms of unbased diagrams, see [PV1]. From the results of [GPV] the
following Polyak–Viro expression for j3 is easily derived:

−3
〈

+ + +

+ + + +

+ + + + + − − +

+ + − − 2 − + − − − , D
〉
.

(In this formula a typo of [GPV] is corrected.) Here the bracket 〈·, ·〉 is
assumed to be linear in its first argument.

S. Willerton in his thesis [Wil3] found the following formula for j3:

−3
〈

+ + +

+ − + −

+2 + 2 + 2 , D
〉
.

A third Gauss diagram formula for j3 will be given in Section 13.4.4.

Other combinatorial formulae for c2(K) and j3(K) were found earlier by
J. Lannes [Lan]: they are not Gauss diagram formulae.

13.4.3. Coefficients of the Conway polynomial. Apart from the Gauss
diagram formulae for the low degree invariants, two infinite series of such
formulae are currently known: those for the coefficients of the Conway and
the HOMFLY polynomials. The former can be, of course, derived from the
latter, but we start from the discussion of the Conway polynomial, as it is
easier. We shall follow the original exposition of [CKR].

Definition. A chord diagram D is said to be k-component if after the par-
allel doubling of each chord as in the picture

,

the resulting curve will have k components. We use the notation |D| = k.
(See also Section 3.6.2).

Example. For chord diagrams with two chords we have:∣∣∣ ∣∣∣ = 1 ⇐= ,
∣∣∣ ∣∣∣ = 3 ⇐= .
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We shall be interested in one-component diagrams only. With four chords,
there are four one-component diagrams (the notation is borrowed from Ta-
ble 4.4.1):

d4
1 = , d4

5 = , d4
6 = , and d4

7 = .

Definition. We can turn a one-component chord diagram with a base point
into an arrow diagram according to the following rule. Starting from the
base point we travel along the diagram with doubled chords. During this
journey we pass both copies of each chord in opposite directions. Choose an
arrow on each chord which corresponds to the direction of the first passage
of the chord. Here is an example.

.

We call the Gauss diagram obtained in this way ascending.

Definition. The Conway combination ×2n is the sum of all based one-
component ascending Gauss diagrams with 2n arrows. For example,

×2 := ,

×4 := + + + + +

+ + + + + + + + +

+ + + + + + + + .

Note that for a given one-component chord diagram we have to consider
all possible choices for the base point. However, some choices may lead to
the same Gauss diagram. In ×2n we list them without repetitions. For
instance, all choices of a base point for the diagram d4

1 give the same Gauss
diagram. So d4

1 contributes only one Gauss diagram to ×4. The diagram d4
7

contributes four Gauss diagrams because of its symmetry, while d4
5 and d4

6

contribute eight Gauss diagrams each.

Theorem. For n > 1, the coefficient c2n of z2n in the Conway polynomial
of a knot K with the Gauss diagram G is equal to

c2n = 〈×2n, G〉 .



13.4. Examples of Gauss diagram formulae 399

Example. Consider the knot K := 62 and its Gauss diagram G := G(62):

6

3

1

4 5

2
knot 62 G =

5

1

3

4

2

6

Gauss diagram
of 62

In order to compute the pairing 〈×4, G〉 we must match the arrows of each
diagram of ×4 with the arrows of G. One common property of all terms
in ×2n is that in each term both endpoints of the arrows that are adjacent
to the base point are arrowtails. This follows from our construction of ×2n.
Hence, the arrow {1} of G can not participate in the matching with any
diagram of ×4. The only candidates to match with the first arrow of a
diagram of ×4 are the arrows {2} and {4} of G. If it is {4}, then {1, 2, 3}
cannot participate in the matching, and there remain only 3 arrows to match
with the four arrows of ×4. Therefore, the arrow of G which matches with
the first arrow of a diagram of ×4 must be {2}. In a similar way, we can find
that the arrow of G which matches with the last arrow of a diagram of ×4

must be {6}. This leaves three possibilities to match with the four arrows of
×4: {2, 3, 4, 6}, {2, 3, 5, 6}, and {2, 4, 5, 6}. Checking them all we find only
one quadruple, {2, 3, 5, 6}, which constitute a diagram equal to the second
diagram in the second row of ×4. The product of the local writhes of the
arrows {2, 3, 5, 6} is equal to (−1)(−1)(+1)(−1) = −1. Thus,

〈×4, G〉 = 〈 , G〉 = −1 ,

which coincides with the coefficient c4 of the Conway polynomial ∇(K) =
1− z2 − z4.

13.4.4. Coefficients of the HOMFLY polynomial. Let P (K) be the
HOMFLY polynomial of the knot K. Substitute a = eh and take the Taylor
expansion in h. The result will be a Laurent polynomial in z and a power
series in h. Let pk,l(K) be the coefficient of hkzl in that expression. The
numbers p0,l coincide with the coefficients of the Conway polynomial, since
the latter is obtained from HOMFLY by fixing a = 1.

Remark. It follows from Exercise 22 on page 96 that

(1) for all nonzero terms the sum k + l is non-negative;

(2) pk,l is a Vassiliev invariant of degree no greater than k + l;

(3) if l is odd, then pk,l = 0.

We shall describe a Gauss diagram formula for pk,l following [CP].
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Let A be a (based, or long) Gauss diagram, S a subset of its arrows
(referred to as a state) and α an arrow of A. Doubling all the arrows in A
that belong to S, in the same fashion as in the preceding section, we obtain a
diagram consisting of one or several circles with some signed arrows attached
to them. Denote by 〈α|A|S〉 the expression in two variables h and z that
depends on the sign of the chord α and the type of the first passage of α
(starting from the basepoint) according to the following table:

First passage:

e−hz 0 e−2h − 1 0

−ehz 0 e2h − 1 0

To the Gauss diagram A we then assign a power series W (A) in h and z
defined by

W (A) =
∑
S

〈A|S〉
(
eh − e−h

z

)c(S)−1

,

where 〈A|S〉 =
∏
α∈A〈α|A|S〉 and c(S) is the number of components ob-

tained after doubling all the chords in S. Denote by wk,l(A) the coefficient

of hkzl in this power series and consider the following linear combination of
Gauss diagrams: Ak,l :=

∑
wk,l(A) · A. Note that the number wk,l(A) is

non-zero only for a finite number of diagrams A.

Theorem. Let G be a Gauss diagram of a knot L. Then

pk,l(K) = 〈Ak,l, G〉 .

For a proof of the theorem, we refer the reader to the original paper
[CP]. Here we only give one example. To facilitate the practical application
of the theorem, we start with some general remarks.

A state S of a Gauss diagram A is called ascending, if in traversing the
diagram with doubled arrows we approach the neighbourhood of every arrow
(not only the ones in S) first at the arrow head. As follows directly from
the construction, only ascending states contribute to W (A).

Note that since e±2h − 1 = ±2h + (higher degree terms) and ±e∓hz =
±z + (higher degree terms), the power series W (A) starts with terms of
degree at least |A|, the number of arrows of A. Moreover, the z-power of

〈A|S〉
(
eh−e−h

z

)c(S)−1
is equal to |S| − c(S) + 1. Therefore, for fixed k and

l, the weight wk,l(A) of a Gauss diagram may be non-zero only if A satisfies
the following conditions:
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(i) |A| is at most k + l;

(ii) there is an ascending state S such that c(S) = |S|+ 1− l.
For diagrams of the highest degree |A| = k + l, the contribution of an

ascending state S to wk,l(A) is equal to (−1)|A|−|S|2kε(A), where ε(A) is
the product of signs of all arrows in A. If two such diagrams A and A′

with |A| = k+ l differ only by signs of the arrows, their contributions to Ak,l
differ by the sign ε(A)ε(A′). Thus all such diagrams may be combined to the

unsigned diagram A, appearing in Ak,l with the coefficient
∑

S(−1)|A|−|S|2k

(where the summation is over all ascending states ofA with c(S) = |S|+1−l).

Exercise. Prove that Gauss diagrams with isolated arrows do not con-
tribute to Ak,l. (Hint: all ascending states cancel out in pairs.)

Now, by way of example, let us find an explicit formula for A1,2. The
maximal number of arrows is equal to 3. To get z2 in W (A) we need as-
cending states with either |S| = 2 and c(S) = 1, or |S| = 3 and c(S) = 2.
In the first case the equation c(S) = 1 means that the two arrows of S
must intersect. In the second case the equation c(S) = 2 does not add any
restrictions on the relative position of the arrows. In the cases |S| = |A| = 2
or |S| = |A| = 3, since S is ascending, A itself must be ascending as well.

For diagrams of the highest degree |A| = 1 + 2 = 3, we must count

ascending states of unsigned Gauss diagrams with the coefficient (−1)3−|S|2,
that is, −2 for |S| = 2 and +2 for |S| = 3. There are only four types of
(unsigned) 3-arrow Gauss diagrams with no isolated arrows:

; , , .

Diagrams of the same type differ by the directions of arrows.

For the first type, recall that the first arrow should be oriented towards
the base point; this leaves 4 possibilities for the directions of the remaining

two arrows. One of them, namely , does not have ascending states

with |S| = 2, 3. The remaining possibilities, together with their ascending
states, are shown in the table:
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The final contribution of this type of diagrams to A1,2 is equal to

−2 − 2 .

The other three types of degree 3 diagrams differ by the location of the
base point. A similar consideration shows that 5 out of the total of 12 Gauss
diagrams of these types, namely

, , , ,

do not have ascending states with |S| = 2, 3. The remaining possibilities,
together with their ascending states, are shown in the table:

The contribution of this type of diagrams to A1,2 is thus equal to

−2 − 2 − 2 + 2 − 2 .

Apart form diagrams of degree 3, some degree 2 diagrams contribute
to A1,2 as well. Since |A| = 2 < k + l = 3, contributions of 2-diagrams
depend also on their signs. Such diagrams must be ascending (since |S| =
|A| = 2) and should not have isolated arrows. There are four such diagrams:

, with all choices of the signs ε1, ε2 for the arrows. For each choice

we have 〈A|S〉 = ε1ε2e
−(ε1+ε2)hz2. If ε1 = −ε2, then 〈A|S〉 = −z2, so the

coefficient of hz2 vanishes and such diagrams do not occur in A1,2. For the
two remaining diagrams with ε1 = ε2 = ±, the coefficients of hz2 in 〈A|S〉
are equal to ∓2 respectively.

Combining all the above contributions, we finally get

A1,2 = −2
(

+ + + + − + + −
)
.

At this point we can see the difference between virtual and classical long
knots. For classical knots the invariant IA1,2 = 〈A1,2, ·〉 can be simplified
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further. Note that any classical Gauss diagram G satisfies

〈 , G〉 = 〈 , G〉.

This follows from the symmetry of the linking number. Indeed, suppose we
have matched two vertical arrows (which are the same in both diagrams)
with two arrows of G. Let us consider the orientation preserving smoothings
of the corresponding two crossings of the link diagram D associated with

G. The smoothed diagram D̃ will have three components. Matchings of the
horizontal arrow of our Gauss diagrams with an arrow of G both measure

the linking number between the first and the third components of D̃, using
crossings when the first component passes over (respectively, under) the

third one. Thus, as functions on classical Gauss diagrams, 〈, , ·〉 is

equal to 〈 , ·〉 and we have

p1,2(G) = −2〈 + + + + + − , G〉 .

For virtual Gauss diagrams this is no longer true.

In a similar manner one may check that A3,0 = −4A1,2.

The obtained result implies one more formula for the invariant j3 (com-
pare it with the two other formulae given in Section 13.4.2). Indeed, j3 =
−p3,0 − p1,2 = 3p1,2, therefore

j3(K) = −6〈 + + + + + − , G〉 .

13.5. The Jones polynomial via Gauss diagrams

Apart from the Gauss diagram formulae as understood in this chapter, there
are many other ways to extract Vassiliev (and other) knot invariants from
Gauss diagrams. Here is just one example: a description of the Jones poly-
nomial (which is essentially a reformulation of the construction from a paper
[Zul] by L. Zulli.) The reader should compare it to the definition of soN -
weight system in Section 6.1.9.

Let G be a Gauss diagram representing a knot K. Denote by [G] the set
of arrows of G. The sign of an arrow c ∈ [G] can be considered as a value of
the function sign : [G]→ {−1,+1}. A state s for G is an arbitrary function
s : [G]→ {−1,+1}; in particular, for a Gauss diagram with n arrows there
are 2n states. The function sign(·) is one of them. With each state s we
associate an immersed plane curve in the following way. Double every chord
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c according to the rule:

c

, if s(c) = 1

, if s(c) = −1

Let |s| denote the number of connected components of the curve obtained
by doubling all the chords of G. Also, for a state s we define an integer

p(s) :=
∑
c∈[G]

s(c) · sign(c) .

The defining relations for the Kauffman bracket from Section 2.4 lead
to the following expression for the Jones polynomial.

Theorem.

J(K) = (−1)w(K)t3w(K)/4
∑
s

t−p(s)/4
(
−t−1/2 − t1/2

)|s|−1
,

where the sum is taken over all 2n states for G and w(K) =
∑
c∈[G]

sign(c) is

the writhe of K.

This formula can be used to extend the Jones polynomial to virtual
knots.

Example. For the left trefoil knot 31 we have the following Gauss diagram.

1

3 2 G =

1

1

2

2

3 3

−
− − w(G) = −3

There are eight states for such a diagram. Here are the corresponding curves
and numbers |s|, p(s).

|s|=2

p(s)=−3

|s|=1

p(s)=−1

|s|=1

p(s)=−1

|s|=1

p(s)=−1
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|s|=2

p(s)=1

|s|=2

p(s)=1

|s|=2

p(s)=1

|s|=3

p(s)=3

Therefore,

J(31) = −t−9/4
(
t3/4
(
−t−1/2 − t1/2

)
+ 3t1/4 + 3t−1/4

(
−t−1/2 − t1/2

)
+t−3/4

(
−t−1/2 − t1/2

)2)
= −t−9/4

(
−t1/4 − t5/4 − 3t−3/4 + t−3/4

(
t−1 + 2 + t

))
= t−1 + t−3 − t−4 ,

as we had before in Chapter 2.

Exercises

(1) Gauss diagrams and Gauss diagram formulae may be defined for links in
the same way as for knots. Prove that for a link L with two components
K1 and K2

lk(K1,K2) = 〈 , G(L)〉 .

(2) Find a sequence of Reidemeister moves that transforms the Gauss dia-
gram B from page 391 to the diagram

.

Show that this diagram is not realizable. Calculate the value of the
extension, according to 13.1.2, of the invariant c2 on it.

(3) Let ~A be the space of arrow (oriented chord) diagrams modulo the 6T

relations, see page 395. Show that the map A → ~A which sends a chord
diagram to the sum of all the arrow diagrams obtained by putting the
orientations on the chords is well-defined. In other words, show that the
6T relation implies the 4T relation.

(4)∗Construct analogues of the algebras of closed and open Jacobi diagrams
C and B consisting of diagrams with oriented edges. (It is known how
to do it in the case of closed diagrams with acyclic internal graph, see
[Po]. )





Chapter 14

Miscellany

14.1. The Melvin–Morton Conjecture

14.1.1. Formulation. Roughly speaking, the Melvin–Morton Conjecture
says that the Alexander-Conway polynomial can be read off the highest
order part of the coloured Jones polynomial.

According to Exercise 27 to Chapter 6 (see also [MeMo, BNG]) the
coefficient Jkn of the unframed coloured Jones polynomial Jk (Section 11.2.3)
is a polynomial in k, of degree at most n+ 1 and without constant term. So
we may write

Jkn
k

=
∑

06j6n

bn,jk
j and

Jk

k
=
∞∑
n=0

∑
06j6n

bn,jk
jhn ,

where bn,j are Vassiliev invariants of order 6 n. The highest order part of
the coloured Jones polynomial is a Vassiliev power series invariant

MM :=

∞∑
n=0

bn,nh
n .

The Melvin–Morton Conjecture. ([MeMo]) The highest order part
of the coloured Jones polynomial MM is inverse to the Alexander–Conway
power series A defined by equations (11.2.1-11.2.2). In other words,

MM(K) ·A(K) = 1

for any knot K.

407
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14.1.2. Historical remarks. In [Mo] H. Morton proved the conjecture
for torus knots. After this L. Rozansky [Roz1] proved the Melvin–Morton
Conjecture on the level of rigour of Witten’s path integral interpretation for
the Jones polynomial. The first complete proof was carried out by D. Bar-
Natan and S. Garoufalidis [BNG]. They invented a remarkable reduction
of the conjecture to a certain identity on the corresponding weight systems
via canonical invariants; we shall review this reduction in Section 14.1.3.
This identity was then verified by evaluating the weight systems on chord
diagrams. In fact, Bar-Natan and S. Garoufalidis proved a more general
theorem in [BNG] that relates the highest order part of an arbitrary quan-
tum invariant to the Alexander-Conway polynomial. Following [Ch2] we
shall present another proof of this generalized Melvin–Morton Conjecture
in Section 14.1.6. A. Kricker, B. Spence and I. Aitchison [KSA] proved
the Melvin–Morton Conjecture using the cabling operations. Their work
was further generalized in [Kri1] by A. Kricker. Yet another proof of the
Melvin–Morton conjectures appeared in the paper [Vai1] by A. Vaintrob.
He used calculations on chord diagrams and the Lie superalgebra gl(1|1)
which gives rise to the Alexander–Conway polynomial. The idea to use the
restriction of the aforementioned identity on weight systems to the primi-
tive space was explored in [Ch1, Vai2]. We shall follow [Ch1] in the direct
calculation of the Alexander–Conway weight system in Section 14.1.5.

B. I. Kurpita and K. Murasugi found a different proof of the Melvin–
Morton Conjecture which does not use Vassiliev invariants and weight sys-
tems [KuM].

Among other things, the works on the Melvin–Morton Conjecture in-
spired L. Rozansky to state his Rationality Conjecture that describes the
fine structure of the Kontsevich integral. This conjecture was proved by
A. Kricker, and is the subject of Section 11.5.)

14.1.3. Reduction to weight systems. Since both power series Vassiliev
invariants MM and A are canonical, so is their product (see Exercise 8 to
Chapter 11). The constant invariant which is identically equal to 1 on
all knots is also a canonical invariant. We see that the Melvin–Morton
Conjecture states that two canonical invariants are equal, and it is enough
to prove that their symbols coincide.

Introduce the notation

SMM := symb(MM) =

∞∑
n=0

symb(bn,n) ;

SA := symb(A) = symb(C) =
∞∑
n=0

symb(cn) .
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The Melvin–Morton Conjecture is equivalent to the relation

SMM · SA = I0 .

This is obvious in degrees 0 and 1. So, basically, we must prove that in
degree > 2 the product SMM ·SA equals zero. In order to show this we have
to establish that SMM · SA vanishes on any product p1 · . . . · pn of primitive
elements of degree > 1.

The weight system SMM is the highest part of the weight system ϕ′Vksl2
/k

from Exercise 27 to Chapter 6. The latter is multiplicative as we explained
in Section 6.1.5; hence, SMM is multiplicative too. Exercise 16 to Chapter 3
implies then that the weight system SA is also multiplicative. In other
words, both weight systems SMM and SA are group-like elements of the
Hopf algebra of weight systems W. A product of two group-like elements is
group-like which shows that the weight system SMM · SA is multiplicative.
Therefore, it is sufficient to prove that

SMM · SA
∣∣
P>1

= 0 .

By the definitions of the weight system product and of a primitive ele-
ment

SMM · SA(p) = (SMM ⊗ SA)(δ(p)) = SMM(p) + SA(p) .

Therefore, we have reduced the Melvin–Morton Conjecture to the equality

SMM

∣∣
P>1

+ SA
∣∣
P>1

= 0 .

Now we shall exploit the filtration

0 = P1
n ⊆ P2

n ⊆ P3
n ⊆ · · · ⊆ Pnn = Pn .

from Section 5.5.2. Recall that the wheel wn spans Pnn/Pn−1
n for even n and

belongs to Pn−1
n for odd n.

The Melvin–Morton Conjecture is a consequence of the following theo-
rem.

14.1.4. Theorem. The weight systems SMM and SA satisfy

(1) SMM

∣∣
Pn−1
n

= SA
∣∣
Pn−1
n

= 0;

(2) SMM(w2m) = 2, SA(w2m) = −2.

The proof is based on several exercises to Chapter 6.

First, let us consider the weight system SMM. Exercise 25 implies that
for any D ∈ Pn−1

n the weight system ϕsl2(D) is a polynomial in c of degree
less than or equal to [(n − 1)/2]. The weight system of the coloured Jones
polynomial is obtained from ϕsl2 by fixing the representation Vk of sl2 and
deframing. Choosing the representation Vk means that we have substitute

c = k2−1
2 ; the degree of the polynomial ϕVksl2(D)/k in k will be at most n− 1.
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Therefore, its nth degree term vanishes and SMM

∣∣
Pn−1
n

= 0. According to

Exercise 23, the highest degree term of the polynomial ϕsl2(w2m) is 2m+1cm.

Again, the substitution c = k2−1
2 (taking the trace of the corresponding

operator and dividing the result by k) gives that the highest degree term of

ϕVksl2(w2m)/k is 2m+1k2m

2m = 2k2m, and, hence SMM(w2m) = 2.

In order to treat the weight system SA we use Exercise 33, which contains
the equality SA(w2m) = −2 as a particular case. It remains to prove that
SA
∣∣
Pn−1
n

= 0.

14.1.5. Alexander–Conway weight system. Using the state sum for-
mula for SA from Exercise 33 to Chapter 6 we shall prove that SA(D) = 0
for any closed diagram D ∈ Pn−1

n .

First of all note that any such D ∈ Pn−1
n has an internal vertex which is

not connected to any leg by an edge. Indeed, each leg is connected with only
one internal vertex. The diagram p has at most n − 1 legs and 2n vertices
in total, so there must be at least n+ 1 internal vertices, and only n− 1 of
them can be connected with legs.

Pick such a vertex connected only with other internal vertices. There
are two possible cases: either all these other vertices are different or two of
them coincide.

Let us start with the second, easier, case. Here we have a “bubble”

.

After resolving the vertices of this fragment according to the state sum
formula and erasing the curves with more than one component we are left
with the linear combination of curves

−2 + 2

which cancel each other, so SA(D) = 0.

For the first case we formulate our claim as a lemma.

Lemma. SA

( )
= 0.

We shall utilize the state surfaces Σs(D) from Exercise 29 to Chapter 6.
For a given state, the neighbourhoods of “+”- and “−”-vertices look on the
surface like three meeting bands:

(14.1.1)
+

;
−

= = = .
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Switching a marking (value of the state) at a vertex means reglueing of
the three bands along two chords on the surface:

cut along chords interchange glue .

Proof. According to Exercise 33, the symbol of the Conway polynomial is
the coefficient of N in the polynomial ϕStglN . In terms of the state surfaces

this means that we only have to consider the surfaces with one boundary
component. We are going to divide the set of all those states s for which
the state surface Σs(D) has one boundary component into pairs in such a
way that the states s and s′ of the same pair differ by an odd number of
markings. The terms of the pairs will cancel each other and will contribute
zero to SA(D).

In fact, in order to do this we shall adjust only the markings of the
four vertices of the fragment pictured in the statement of the Lemma. The
markings ε1, . . . , εl and ε′1, . . . , ε′l in the states s and s′ will be the same
except for some markings of the four vertices of the fragment. Denote the
vertices by v, va, vb, vc and their markings in the state s by ε, εa, εb, εc,
respectively.

Assume that Σs(D) has one boundary component. Modifying the surface
as in (14.1.1) we can suppose that the neighbourhood of the fragment has
the form

v
vb

vc

va
a

b

c

b1

c2

a1

a2

b2

c1

Draw nine chords a, a1, a2, b, b1, b2, c, c1, c2 on our surface as shown on
the picture. The chords a, b, c are located near the vertex v; a, a1, a2 near
the vertex va; b, b1, b2 near vb and c, c1, c2 near vc.

Since the surface has only one boundary component, we can draw this
boundary as a plane circle and a, a1, a2, b, b1, b2, c, c1, c2 as chords inside
it. Let us consider the possible chord diagrams obtained in this way.

If two, say b and c, of three chords located near a vertex, say v, do
not intersect, then the surface Σ...,−ε,εa,εb,εc,...(D) obtained by switching the
marking ε to −ε also has only one boundary component. Indeed, the reglue-
ing effect along two non-intersecting chords can be seen on chord diagrams
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as follows:

cut along chords interchange glue .

Therefore, in this case, the state s = {. . . ,−ε, εa, εb, εc, . . . } should be paired
with s′ = {. . . , ε, εa, εb, εc, . . . }.

We see that switching a marking at a vertex we increase the number
of boundary components (so that such a marked diagram may give a non-
zero contribution to SA(D)) if and only if the three chords located near the
vertex intersect pairwise.

Now we can suppose that any two of the three chords in each triple
(a, b, c), (a, a1, a2), (b, b1, b2), (c, c1, c2) intersect. This leaves us with only
one possible chord diagram:

a1
abb1

a2

a1

c2

c

a

a2 c1 c2
b2

b

c

c1

b1

b2

The boundary curve of the surface connects the ends of our fragment as in
the left picture below.

Σ...,ε,εa,εb,εc,...(p)

a

a

bb

c
c

b1

b1

c2c2

a1
a1

a2
a2

b2

b2

c1

c1

Σ...,ε,−εa,−εb,−εc,...(p)

Switching markings at va, vb, vc gives a surface which also has one boundary
component as in the right picture above. Pairing the state

s = {. . . , ε, εa, εb, εc, . . . }

up with s′ = {. . . , ε,−εa,−εb,−εc, . . . } we get the desired result.

The Lemma, and thus the Melvin–Morton Conjecture, is proved. �
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14.1.6. Generalization of the Melvin–Morton Conjecture to other
quantum invariants. Let g be a semi-simple Lie algebra and let Vλ be
an irreducible representation of g of the highest weight λ. Denote by h
a Cartan subalgebra of g, by R the set of all roots and by R+ the set of
positive roots. Let 〈·, ·〉 be the scalar product on h∗ induced by the Killing

form. These data define the unframed quantum invariant θVλg which after

the substitution q = eh and the expansion into a power series in h can be
written as

θVλg =
∞∑
n=0

θλg,nh
n,

see Section 11.2.2.

Theorem ([BNG]).

(1) The invariant θλg,n/ dim(Vλ) is a polynomial in λ of degree at most n.

(2) Define the Bar-Natan–Garoufalidis function BNG as a power se-
ries in h whose coefficient of hn is the degree n part of the polynomial
θλg,n/dim(Vλ). Then for any knot K,

BNG(K) ·
∏
α∈R+

Aα(K) = 1 ,

where Aα is the following normalization of the Alexander–Conway polyno-
mial:

Aα

( )
− Aα

( )
= (e

〈λ,α〉h
2 − e−

〈λ,α〉h
2 )Aα

( )
;

Aα

( )
=

〈λ, α〉h

e
〈λ,α〉h

2 − e−
〈λ,α〉h

2

.

Proof. The symbol SBNG is the highest part (as a function of λ) of the

Lie algebra weight system ϕ′Vλg associated with the representation Vλ. Ac-
cording to Exercise 6 on page 344, the symbol of Aα in degree n equals
〈λ, α〉nsymb(cn).

The relation between the invariants can be reduced to the following
relation between their symbols:

SBNG
∣∣
Pn +

∑
α∈R+

〈λ, α〉nsymb(cn)
∣∣
Pn = 0 ,

for n > 1.
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As above, SBNG
∣∣
Pn−1
n

= symb(cn)
∣∣
Pn−1
n

= 0, and symb(cn)(w2m) = −2.

Thus it remains to prove that

SBNG(w2m) = 2
∑
α∈R+

〈λ, α〉2m .

To prove this equality we shall use the method of Section 6.2. First, we
take the Weyl basis of g and write the Lie bracket tensor J in this basis.

Fix the root space decomposition g = h⊕
(
⊕
α∈R

gα
)
. The Cartan subal-

gebra h is orthogonal to all the gα’s and gα is orthogonal to gβ for β 6= −α.
Choose the elements eα ∈ gα and hα = [eα, e−α] ∈ h for each α ∈ R in such
a way that 〈eα, e−α〉 = 2/〈α, α〉, and for any λ ∈ h∗, λ(hα) = 2〈λ, α〉/〈α, α〉.

The elements {hβ, eα}, where β belongs to a basis B(R) of R and α ∈ R,
form the Weyl basis of g. The Lie bracket [·, ·] as an element of g∗ ⊗ g∗ ⊗ g
can be written as follows:

[·, ·] =
∑

β∈B(R)

α∈R

(
h∗β ⊗ e∗α ⊗ α(hβ)eα − e∗α ⊗ h∗β ⊗ α(hβ)eα

)

+
∑
α∈R

e∗α ⊗ e∗−α ⊗ hα +
∑
α,γ∈R
α+γ∈R

e∗α ⊗ e∗γ ⊗Nα,γeα+γ ,

where the stars indicate elements of the dual basis. The second sum is
most important because the first and third sums give no contribution to the
Bar-Natan–Garoufalidis weight system SBNG.

After identification of g∗ and g via 〈·, ·〉 we get e∗α = (〈α, α〉/2)e−α. In
particular, the second sum of the tensor J is∑

α∈R

(
〈α, α〉/2

)2
e−α ⊗ eα ⊗ hα .

According to Section 6.2, in order to calculate SBNG(w2m) we must
assign a copy of the tensor −J to each internal vertex, perform all the con-
tractions corresponding to internal edges and, after that, take the product

ϕVλg (w2m) of the all operators in Vλ corresponding to the external vertices.

We have that ϕVλg (w2m) is a scalar operator of multiplication by some con-
stant. This constant is a polynomial in λ of degree at most 2m; its part of
degree 2m is SBNG(w2m).

We associate the tensor −J with an internal vertex in such a way that
the third tensor factor of −J corresponds to the edge connecting the vertex
with a leg. After that we take the product of operators corresponding to
these external vertices. This means that we take the product of operators
corresponding to the third tensor factor of −J . Of course, we are interested
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only in those operators which are linear in λ. One can show (see, for example,
[BNG, Lemma 5.1]) that it is possible to choose a basis in the space of the
representation Vλ in such a way that the Cartan operators hα and raising
operators eα (α ∈ R+) will be linear in λ while the lowering operators e−α
(α ∈ R+) will not depend on λ. So we have to take into account only those
summands of −J that have hα or eα (α ∈ R+) as the third tensor factor.
Further, to calculate the multiplication constant of our product it is sufficient
to act by the operator on any vector. Let us choose the highest weight vector
v0 for this. The Cartan operators hα multiply v0 by λ(hα) = 2〈λ, α〉/〈α, α〉.
So indeed they are linear in λ. But the raising operators eα (α ∈ R+) send v0

to zero. This means that we have to take into account only those summands
of −J whose third tensor factor is one of the hα’s. This is exactly the second
sum of J with the opposite sign:∑

α∈R

(
〈α, α〉/2

)2
eα ⊗ e−α ⊗ hα.

Now performing all the contractions corresponding to the edges connecting
the internal vertices of w2m we get the tensor∑

α∈R

(
〈α, α〉/2

)2m
hα ⊗ . . .⊗ hα︸ ︷︷ ︸

2m times

.

The corresponding element of U(g) acts on the highest weight vector v0 as
multiplication by

SBNG(w2m) =
∑
α∈R
〈λ, α〉2m = 2

∑
α∈R+

〈λ, α〉2m .

The theorem is proved. �

14.2. The Goussarov–Habiro theory revisited

The term Goussarov-Habiro theory refers to the study of n-equivalence classes
of knots (or, more generally, knotted graphs), as defined in Section 3.2.1, in
terms of local moves on knot diagrams. It was first developed by M. Gous-
sarov who announced the main results in September 1995 at a conference
in Oberwolfach, and, independently, by K. Habiro [Ha1, Ha2]. (As of-
ten happened with Goussarov’s results, his publication on the subject [G4]
appeared several years later.)

There are several different approaches to Goussarov-Habiro theory, which
produce roughly the same results. In Chapter 12 we have developed the
group-theoretic approach pioneered by T. Stanford [Sta4, Sta3] who de-
scribed n-equivalence in terms of the lower central series of the pure braid
groups. Habiro in [Ha1, Ha2] uses claspers to define local moves on knots
and string links. Here we shall briefly sketch Goussarov’s approach, neither
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giving complete proofs, nor striving for maximal generality. Other versions
of theorems of the same type can be found in [CT, TY]. A proof that the
definitions of Goussarov, Habiro and Stanford are equivalent can be found
in [Ha2].

14.2.1. Statement of the Goussarov–Habiro Theorem. In what fol-
lows we shall use the term tangle in the sense that is somewhat different
from the rest of this book. Here, by a tangle we shall mean an oriented
1-dimensional submanifold of a ball in R3, transversal to the boundary of
the ball in its boundary points. The isotopy of tangles is understood to fix
the boundary.

Theorem (Goussarov–Habiro). Let K1 and K2 be two knots. They are n-
equivalent, that is, v(K1) = v(K2) for any Z-valued Vassiliev invariant v of
order 6 n if and only if K1 and K2 are related by a finite sequence of moves
Mn:

︸ ︷︷ ︸
n+ 2 components

︸ ︷︷ ︸
n+ 2 components

Denote by Bn and Tn the tangles on the left and, respectively, on the
right-hand side of the moveMn. The tangle Bn is an example of a Brunnian
tangle characterized by the property that removing any of its components
makes the remaining tangle to be isotopic to the trivial tangle Tn−1 with
n+ 1 components.

The sequence of moves Mn starts with n = 0:

M0 : B0 = = T0.

In terms of knot diagrams M0 consists of a crossing change followed by a
second Reidemeister move.

The move M1 looks like

M1 : B1 = = T1

It is also known as the Borromean move
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Since there are no invariants of order 6 1 except constants (Proposition
3.3.2), the Goussarov–Habiro theorem implies that any knot can be trans-
formed to the unknot by a finite sequence of Borromean movesM1; in other
words, M1 is an unknotting operation.

Remark. The coincidence of all Vassiliev invariants of order 6 n implies
the coincidence of all Vassiliev invariants of order 6 n− 1. This means that
one can accomplish a move Mn by a sequence of moves Mn−1. Indeed, let
us draw the tangle Bn as shown below on the left:

Mn−1

(In order to see that the tangle on the left is indeed Bn, untangle the com-
ponents one by one, working from right to left). The tangle in the dashed
rectangle is Bn−1. To perform the moveMn−1 we must replace it with Tn−1.
This gives us the tangle on the right also containing Bn−1. Now performing
once more the move Mn−1 we obtain the trivial tangle Tn.

14.2.2. Reformulation of the Goussarov–Habiro Theorem. Recall
some notation from 1.6 and 3.2.1. We denote by K the set of all isotopy
classes of knots, ZK is the free Z-module (even an algebra) consisting of all
finite formal Z-linear combinations of knots and Kn stands for the nth term
of the singular knot filtration in ZK. Using the moves Mn, we can define
another filtration in the module ZK.

Let Hn be the Z-submodule of ZK spanned by the differences of two
knots obtained one from another by a single move Mn . For example, the
difference 31 − 63 belongs to H2. The Goussarov–Habiro Theorem can be
restated as follows.

Theorem. For all n the submodules Kn+1 and Hn coincide.

Proof of the equivalence of the two statements. As we have seen in
Section 3.2.1, the values of any Vassiliev invariant of order 6 n are the same
on the knots K and K ′ if and only if the difference K−K ′ belongs to Kn+1.
On the other hand, K can be obtained from K ′ by a sequence ofMn-moves
if and only if K −K ′ belongs to Hn. Indeed, if K −K ′ ∈ Hn, we can write

K −K ′ =
∑
i

ai(Ki −K ′i),

where ai are positive integers and each Ki differs from K ′i by a single Mn

move. Since all the knots in this sum apart from K and K ′ cancel each
other, we can rewrite it as

∑n
i=1(Li − Li−1) with Ln = K, L0 = K ′ and
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where each Li differs from Li−1 by a single Mn move. Then K is obtained
by from K ′ by a sequence ofMn moves that change consecutively Li−1 into
Li. �

Exercise. Prove that two knots are related by a sequence of Mn-moves if
and only if they are γn+1-equivalent (see page 372).

The Goussarov–Habiro Theorem is a corollary of this exercise and The-
orem 12.6.2 on page 373. Nevertheless, we shall verify one part of the
Goussarov–Habiro Theorem directly, in order to give the reader some feel of
the Goussarov–Habiro theory. Namely, let us show that Hn ⊆ Kn+1. (The
inclusion Kn+1 ⊆ Hn is rather more difficult to prove.)

14.2.3. Proof that Hn is contained in Kn+1. In order to prove that
Hn ⊆ Kn+1 it is sufficient to represent the difference Bn − Tn as a linear
combination of singular tangles with n+1 double points each. Let us choose
the orientations of the components of our tangles as shown. Using the
Vassiliev skein relation we shall gradually transform the difference Bn − Tn
into the required form.

Bn − Tn = −

= + −

But the difference of the last two tangles can be expressed as a singular
tangle:

= −

We got a presentation of Bn−Tn as a linear combination of two tangles
with one double point on the first two components. Now we add and subtract
isotopic singular tangles with one double point:

Bn − Tn =

 −



−

(
−

)
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Then using the Vassiliev skein relation we can see that the difference in the
first pair of parentheses is equal to

− + −

= − +

Similarly the difference in the second pair of parentheses would be equal to

− + −

= − +

Now we have represented Bn − Tn as a linear combination of four singular
tangles with two double points each; in each tangle one double point lies on
the first and on the second components and the other double point — on
the second and on the third components:

Bn − Tn = − +

+ −

Continuing in the same way we arrive to a linear combination of 2n

tangles with n + 1 double points each; one double point for every pair of
consecutive components. It is easy to see that if we change the orientations
of arbitrary k components of our tangles Bn and Tn, then the whole linear
combination will be multiplied by (−1)k.

Example.

B2−T2 = − − +

14.2.4. Example. There is only one (up to multiplication by a scalar and
adding a constant) nontrivial Vassiliev invariant of order 6 2, namely It is
the coefficient c2 of the Conway polynomial.
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Consider two knots

31 = , 63 = .

We choose the orientations as indicated. Their Conway polynomials

C(31) = 1 + t2 , C(63) = 1 + t2 + t4.

have equal coefficients of t2. Therefore for any Vassiliev invariant v of order
6 2 we have v(31) = v(63). In this case the Goussarov–Habiro Theorem
states that it is possible to obtain the knot 63 from the knot 31 by moves
M2 : B2 T2

M2 :

Let us show this. We start with the standard diagram of 31, and then
transform it in order to obtain B2 as a subtangle.

31 = ∼= ∼= ∼= ∼=

∼= ∼= ∼= ∼=

∼= ∼= ∼=

∼= ∼=

Now we have the tangle B2 in the dashed oval. Perform the move M2

replacing B2 with the trivial tangle T2:
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∼= ∼= ∼= ∼= = 63

14.2.5. Vassiliev invariants and local moves. The mod 2 reduction of
c2 is called the Arf invariant of a knot. A description of the Arf invariant
similar to the Goussarov–Habiro description of c2 was obtained by L. Kauff-
man.

Theorem (L.Kauffman [Ka1, Ka2]). K1 and K2 have the same Arf in-
variant if and only if K1 can be obtained from K2 by a finite number of so
called pass moves:

The orientations are important. Allowing pass moves with arbitrary
orientations we obtain an unknotting operation (see [Kaw2]).

Actually, one can develop the whole theory of Vassiliev invariants using
the pass move instead of the crossing change in the Vassiliev skein relation.
It turns out, however, that all primitive finite type invariants with respect
to the pass move of order n coincide with primitive Vassiliev invariants of
order n for all n > 1. The Arf invariant is the unique finite type invariant
of order 0 with respect to the pass move [CMS].

More generally, in the definition of the finite type invariants one can re-
place a crossing change with an arbitrary local move, that is, a modification
of a knot that replaces a subtangle of some fixed type with another subtan-
gle. For a wide class of moves one obtains theories of finite type invariants
for which the Goussarov–Habiro Theorem holds, see [TY, CMS].

One such move is the doubled-delta move:

S. Naik and T. Stanford [NaS] have shown that two knots can be trans-
formed into each other by doubled-delta moves if and only if they are S-
equivalent, that is, if they have a common Seifert matrix, see [Kaw2]. The
theory of finite type invariants based on the doubled-delta move appears
to be rather rich. In particular, for each n there is an infinite number of
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independent invariants of order 2n which are not of order 2n− 1. We refer
the reader to [CMS] for more details.

14.2.6. The Goussarov groups of knots. There are two main results in
the Goussarov-Habiro theory. One is what we called the Goussarov-Habiro
Theorem. The other result says that classes of knots (more generally, string
links) related byMn-moves form groups under the connected sum operation.

Modulo the exercise on page 418, we have proved this in Chapter 12, see
Theorem 12.5.2. There we were mostly interested in applying the technique
of braid closures and the theory of nilpotent groups. Here let us give some
concrete examples.

We shall denote by Gn the nth Goussarov group, that is, the set K/Γn+1K
of n-equivalence classes of knots with the connected sum operation. A j-
inverse for a knot K is a knot K ′ such that K#K ′ is j-trivial. An n-inverse
for K provides an inverse for the class of K in Gn.

Since there are no Vassiliev invariants of order 6 1 except constants, the
zeroth and the first Goussarov groups are trivial.

14.2.7. The second Goussarov group G2. Consider the coefficient c2

of the Conway polynomial C(K). According to Exercise 6 at the end of
Chapter 2, C(K) is a multiplicative invariant of the form C(K) = 1 +
c2(K)t2 + . . . . This implies that c2(K1#K2) = c2(K1)+c2(K2), and, hence,
c2 is a homomorphism of G2 into Z. Since c2 is the only nontrivial invariant of
order 6 2 and there are knots on which it takes value 1, the homomorphism
c2 : G2 → Z is, in fact, an isomorphism and G2

∼= Z. From the table in
Section 2.3.3 we can see that c2(31) = 1 and c2(41) = −1. This means that
the knot 31 represents a generator of G2, and 41 is 2-inverse of 31. The prime
knots with up to 8 crossings are distributed in the second Goussarov group
G2 as follows:

52 87

88 820

62 77 47 75

815

61 86

89

81 48

812

83 41

85 118 817, ,

31 63 76

813 816 188, ,

73 81982 51 72

810814 821

0 1 2 3 4 5 6−1−2−3−4

, , , , ,

,

, ,, , , , , , , , 710 , , , ,

,

c2

14.2.8. The third Goussarov group G3. In order 3 we have one more
Vassiliev invariant; namely, j3, the coefficient of h3 in the power series
expansion of the Jones polynomial with the substitution t = eh. The
Jones polynomial is multiplicative, J(K1#K2) = J(K1) · J(K2) (see Ex-
ercise 7 at the end of Chapter 2) and its expansion has the form J(K) =
1 + j2(K)h2 + j3(K)h3 + . . . (see Section 3.6). Thus we can write

J(K1#K2) = 1 + (j2(K1) + j2(K2))h2 + (j3(K1) + j3(K2))h3 + . . .
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In particular, j3(K1#K2) = j3(K1) + j3(K2). According to Exercise 6 at
the end of Chapter 3, j3 is divisible by 6. Then j3/6 is a homomorphism
from G3 to Z. The direct sum with c2 gives the isomorphism

G3
∼= Z⊕ Z = Z2; K 7→ (c2(K), j3(K)/6)

Let us identify G3 with the integral lattice on a plane. The distribution of
prime knots on this lattice is shown in Figure 14.3.1; recall that K is the
mirror reflection of K.

In particular, the 3-inverse of the trefoil 31 can be represented by 62,
or by 77. Also, we can see that 31#41 is 3-equivalent to 82. Therefore
31#41#82 is 3-equivalent to the unknot, and 41#82 also represents the 3-
inverse to 31. The knots 63 and 82 represent the standard generators of
G3.

Open problem. Is there any torsion in the group Gn?

14.3. Willerton’s fish and bounds for c2 and j3

Willerton’s fish is a graph where the Vassiliev invariant c2 is plotted against
the invariant j3 for all prime knots of a given crossing number [Wil2]. The
shape of this graph, at least for the small values of the crossing number
(6 14) where there is enough data to construct it, is reminiscent of a fish,
hence the name. (This shape is already discernible on Figure 14.3.1 which
shows all prime knots up to 8 crossings.)

A plausible explanation for the strange shape of these graphs could in-
volve some inequality on c2, j3 and the crossing number c. At the moment,
no such inequality is known. However, there are several results relating the
above knot invariants.

14.3.1. Theorem ([PV2]). For any knot K | c2(K) | 6
[
c(K)2

8

]
.

Proof. Recall the Gauss diagram formulae for c2 on pages 88 and 392 which
we can write as follows:

c2(K) =
〈

, D
〉

=
〈

, D
〉
,

where D is a based Gauss diagram with n arrows representing the knot K.
Let C+ be the set of arrows of D that point forward (this makes sense since
D is based) and let C− be the set of backwards-pointing arrows. If C+

consists of k elements, then C− has n− k elements.

Now, assume that the diagram



424 14. Miscellany

appears n1 times as a subdiagram of D and the diagram

appears n2 times. Each of these diagrams contains one arrow from C+ and
one from C−. Therefore, we have

| c2(K) | 6 min (n1, n2) 6
k(n− k)

2
6

[
n2

8

]
.

Now, the smallest possible n in this formula, that is, the minimal number
of arrows in a Gauss diagram representing K, is, by definition, nothing else
but the crossing number c(K). �

14.3.2. Invariants of higher degrees. Similar inequalities exist for all
Vassiliev invariants. Indeed, each invariant of order n can be represented by
a Gauss diagram formula (see Chapter 13). This means that its value on
a knot can be calculated by representing this knot by a Gauss diagram D
and counting subdiagrams of D of certain types, all with at most n arrows.
The number of such subdiagrams grows as (degD)n, so for each invariant of
degree n there is a bound by a polynomial of degree n in the crossing number.
In particular, S. Willerton found the following bound (unpublished):

| j3(K) | 6 3

2
· c(K)(c(K)− 1)(c(K)− 2).

14.3.3. Inequalities for torus knots. One particular family of knots for
which c2 and j3 are related by explicit inequalities are the torus knots [Wil2].
We have

24c2(K)3 + 12c2(K)2 6 j3(K)2 6 32c2(K)3 + 4c2(K)2

for any torus knot K. These bounds are obtained from the explicit expres-
sions for c2 and j3 for torus knots obtained in [AL].

14.4. Bialgebra of graphs

It turns out that the natural mapping that assigns to every chord diagram
its intersection graph, can be converted into a homomorphism of bialgebras
γ : A → L, where A is the algebra of chord diagrams and L is an alge-
bra generated by graphs modulo certain relations, introduced by S. Lando
[Lnd2]. Here is his construction.

Let G be the graded vector space spanned by all simple graphs (without
loops or multiple edges) as free generators:

G = G0 ⊕G1 ⊕G2 ⊕ . . . ,
It is graded by the order (the number of vertices) of a graph. This space is
easily turned into a bialgebra:
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Figure 14.3.1. Values of Vassiliev invariants c2 and j3 on prime knots
with up to 8 crossings. The mirror images of 814 and of 817, not shown,
have the same invariants as the original knots.

(1) The product is defined as the disjoint union of graphs, then extended
by linearity. The empty graph plays the role of the unit in this algebra.
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(2) The coproduct is defined similarly to the coproduct in the bialgebra
of chord diagrams. If G is a graph, let V = V (G) be the set of its vertices.
For any subset U ⊂ V denote by G(U) the graph with the set of vertices U
and those edges of the graph G whose both endpoints belong to G. We set

(14.4.1) δ(G) =
∑

U⊆V (G)

G(U)⊗G(V \ U),

and extend δ by linearity to the whole of G.

The sum in (14.4.1) is taken over all subsets U ⊂ V and contains as

many as 2#(V ) summands.

Example.

δ( s s s) = 1 ⊗ s s s+ 2 s ⊗ s s + s ⊗ s s
+ s s ⊗ s + 2 s s ⊗ s + s s s ⊗ 1

Exercise. Check the axioms of a Hopf algebra for G.

The mapping from chord diagrams to intersection graphs does not extend
to a linear operator A → G since the combinations of graphs that correspond
to 4-term relations for chord diagrams do not vanish in G. To obtain a linear
map, it is necessary to mod out the space G by the images of the 4 term
relations. Here is the appropriate definition.

Let G be an arbitrary graph and u, v an ordered pair of its vertices.
The pair u, v defines two transformations of the graph G: G 7→ G′uv and

G 7→ G̃uv. Both graphs G′uv and G̃uv have the same set of vertices as G.
They are obtained as follows.

If uv is an edge in G, then the graph G′uv is obtained from G by deleting
the edge uv; otherwise this edge should be added (thus, G 7→ G′uv toggles
the adjacency of u and v).

The graph G̃uv is obtained from G in a more tricky way. Consider all
vertices w ∈ V (G) \ {u, v} which are adjacent in G with v. Then in the

graph G̃uv vertices u and w are joined by an edge if and only if they are
not joined in G. For all other pairs of vertices their adjacency in G and in

G̃uv is the same. Note that the two operations applied at the same pair of
vertices, commute and, hence, the graph G′uv is well-defined.

Definition. A four-term relation for graphs is

(14.4.2) G−G′uv = G̃uv − G̃′uv
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Example.

u u uv v v vu

− = −

Exercises.

(1) Check that, passing to intersection graphs, the four-term relation for
chord diagram carries over exactly into this four-term relation for graphs.

(2) Find the four-term relation of chord diagrams which is the preimage
of the relation shown in the example above.

Definition. The graph bialgebra of Lando L is the quotient of the graph
algebra G by the ideal generated by all 4-term relations (14.4.2).

14.4.1. Theorem. The product and the coproduct defined above induce a
bialgebra structure in the quotient space L.

Proof. The only thing that needs checking is that both the product and the
coproduct respect the 4-term relation (14.4.2). For the product, which is the
disjoint union of graphs, this statement is obvious. In order to verify it for
the coproduct it is sufficient to consider two cases. Namely, let u, v ∈ V (G)
be two distinct vertices of a graph G. The right-hand side summands in
the formula (14.4.1) for the coproduct split into two groups: the summands
where both vertices u and v belong either to the subset U ⊂ V (G) or to
its complement V (G) \ U , and those where u and v belong to different
subsets. By cleverly grouping the terms of the first kind for the coproduct

δ(G − G′uv − G̃uv + G̃′uv) we can see that they all cancel out in pairs. The
terms of the second kind cancel out in pairs already within each of the two

summands δ(G−G′uv) and δ(G̃uv − G̃′uv). �

Relations (14.4.2) are homogeneous with respect to the number of ver-
tices, therefore L is a graded algebra. By Theorem A.2.11 (page 480), the
algebra L is polynomial with respect to its space of primitive elements.

Now we have a well-defined bialgebra homomorphism

γ : A → L

which extends the assignment of the intersection graph to a chord diagram.
It is defined by the linear mapping between the corresponding primitive
spaces P (A)→ P (L).

According to S. Lando [Lnd2], the dimensions of the homogeneous
components of P (L) are known up to degree 7. It turns out that the
homomorphism γ is an isomorphism in degrees up to 6, while the map
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γ : P7(A) → P7(L) has a 1-dimensional kernel. See [Lnd2] for further
details and open problems related to the algebra L.

14.5. Estimates for the number of Vassiliev knot invariants

Knowing the dimensions of the primitive subspaces Pi = PAi for i 6 n is
equivalent to knowing dimAi or dimVi for i 6 n. These numbers have been
calculated only for small values of n and, at present, their exact asymptotic
behaviour as n tends to infinity is not known. Below we give a summary of
all available results on these dimensions.

14.5.1. Historical remarks: exact results. The precise dimensions of
the spaces related to Vassiliev invariants are known up to n = 12, and are
listed in the table below. They were obtained by V. Vassiliev for n 6 4
in 1990 [Va2], then by D. Bar-Natan for n 6 9 in 1993 [BN1] and by
J. Kneissler, for n = 10, 11, 12, in 1997 [Kn0]. Vassiliev used manual cal-
culations. Bar-Natan wrote a computer program that implemented a direct
algorithm to solve the system of linear equations coming from one-term and
four-term relations. Kneissler obtained a lower bound using the marked sur-
faces [BN1] and an upper bound using the action of Vogel’s algebra Λ on
the primitive space P: miraculously, these two bounds coincided for n 6 12.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

dimPn 0 0 1 1 2 3 5 8 12 18 27 39 55

dimAn 1 0 1 1 3 4 9 14 27 44 80 132 232

dimVn 1 1 2 3 6 10 19 33 60 104 184 316 548

The splitting of the numbers dimPn for n 6 12 according to the second
grading in P is given in the table on page 139.

Exercise. Prove that dimAfrn = dimVn for all n.

14.5.2. Historical remarks: upper bounds. A priori it was obvious
that dimAn < (2n − 1)!! = 1 · 3 · · · (2n − 1), since this is the total number
of linear chord diagrams.

Then, there appeared five papers where this estimate was successively
improved:

(1) (1993) Chmutov and Duzhin [CD1] proved that dimAn < (n− 1)!

(2) (1995) K. Ng in [Ng] replaced (n− 1)! by (n− 2)!/2.

(3) (1996) A. Stoimenow [Sto1] proved that dimAn grows slower than
n!/an, where a = 1.1.

(4) (2000) B. Bollobás and O. Riordan [BR1] obtained the asymptot-
ical bound n!/(2 ln(2) + o(1))n (approximately n!/1.38n).
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(5) (2001) D. Zagier [Zag1] improved the last result to 6n
√
n·n!

π2n , which

is asymptotically smaller than n!/an for any constant a < π2/6 =
1.644...

For the proofs of these results, we refer the interested reader to the
original papers, and only mention here the methods used to get these esti-
mates. Chmutov and Duzhin proved that the space An is spanned by the
spine chord diagrams, that is, diagrams containing a chord that intersects
all other chords, and estimating the number of such diagrams. A.Stoimenow
[Sto1] did the same with regular linearized diagrams; D.Zagier [Zag1] gave
a better estimate for the number of such diagrams.

14.5.3. Historical remarks: lower bounds. In the story of lower bounds
for the number of Vassiliev knot invariants there is an amusing episode. The
first paper by Kontsevich about Vassiliev invariants ([Kon1], section 3) con-
tains the following passage:

“Using this construction1, one can obtain the estimate

dim(Vn) > ec
√
n, n→ +∞

for any positive constant c < π
√

2/3 (see [BN1a], Exercise 6.14).”

Here Vn is a slip of the pen, instead of Pn, because of the reference
to Exercise 6.14 where primitive elements are considered. Exercise 6.14
was present, however, only in the first edition of Bar-Natan’s preprint and
eliminated in the following editions as well as in the final published version
of his text [BN1]. In [BN1a] it reads as follows (page 43):

“Exercise 6.14. (Kontsevich, [24]) Let P>2(m) denote the number of
partitions of an integer m into a sum of integers bigger than or equal to 2.
Show that dimPm > P>2(m+ 1).

Hint 6.15. Use a correspondence like

4 3 2 2 -� 10 + 1 = 4 + 3 + 2 + 2,

and . . . ”

The reference [24] was to “M. Kontsevich. Private communication.”!
Thus, both authors referred to each other, and none of them gave any proof.
Later, however, Kontsevich explained what he had in mind (see item 5
below).

Arranged by the date, the history of world records in asymptotic lower
bounds for the dimension of the primitive space Pn looks as follows.

1Of Lie algebra weight systems.
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(1) (1994) dimPn > 1 (“forest elements” found by Chmutov, Duzhin
and Lando [CDL3]).

(2) (1995) dimPn > [n/2] (given by coloured Jones function — see
Melvin–Morton [MeMo] and Chmutov–Varchenko [ChV]).

(3) (1996) dimPn & n2/96 (see Duzhin [Du1]).

(4) (1997) dimPn & nlogb n for any b > 4, i. e. the growth is faster
than any polynomial (Chmutov–Duzhin [CD2]).

(5) (1997) dimPn > eπ
√
n/3 (Kontsevich [Kon2]).

(6) (1997) dimPn > ec
√
n for any constant c < π

√
2/3 (Dasbach

[Da3]).

Each lower bound for the dimensions of the primitive space pn = dimPn
implies a certain lower bound for the dimensions of the whole algebra an =
dimAn. For example, the bound pn > 1 implies the same lower bound on
an as the bound for pn given in item (6) above.

Proposition. The lower bound of Dasbach implies that an & en/ logb n for
any constant b < π2/6.

Sketch of the proof. Fix a basis in each Pk, suppose that n = km and
consider the elements of An which are products of m basis elements of Pk.
Finding the maximum of this number over k with fixed n, we get the desired
lower bound. �

Note that the best known upper and lower bounds on the dimensions
of An are very far apart. Indeed, using the relation between the generating
functions

∞∑
n=0

ant
n =

∞∏
k=1

(1− tk)−pk = exp
∞∑
n=1

(∑
k|n

pk
)
tn ,

one can easily prove (see [Sto3]) that any subexponential lower bound on
pn can only lead to a subexponential lower bound on an, while the existing
upper bound is essentially factorial, that is, much greater than exponential.

14.5.4. Proof of the lower bound. We will sketch the proof of the lower
bound for the number of Vassiliev knot invariants, following [CD2] and then
explain how O. Dasbach [Da3], using the same method, managed to improve
the estimate and establish the bound which is still (2011) the best.

The idea of the proof is simple: we construct a large family of open
diagrams whose linear independence in the algebra B follows from the lin-
ear independence of the values on these diagrams of a certain polynomial
invariant P , which is obtained by simplifying the universal glN invariant.
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As we know from Chapter 6, the glN invariant ρglN , evaluated on an
open diagram, is a polynomial in the generalized Casimir elements x0, x1,
..., xN . This polynomial is homogeneous in the sense of the grading defined
by setting deg xm = m. However, in general, it is not homogeneous if the
xm are considered as variables of degree 1.

Definition. The polynomial invariant P : B → Z[x0, ..., xN ] is the highest
degree part of ρglN if all the variables are taken with degree 1.

For example, if we had ρglN (C) = x2
0x2−x2

1, then we would have P (C) =

x2
0x2.

Now we introduce the family of primitive open diagrams whose linear
independence we shall prove.

Definition. The baguette diagram Bn1,...,nk is

Bn1,...,nk =

︸ ︷︷ ︸
n1 vertices

︸ ︷︷ ︸
n2 vertices

︸ ︷︷ ︸
nk−1 vertices

︸ ︷︷ ︸
nk vertices

. . . . . . . . . . . .

. . .

It has a total of 2(n1 + · · ·+ nk + k− 1) vertices, out of which n1 + · · ·+ nk
are univalent. It is a particular case of a caterpillar diagram, see Exercise
17 on page 166.

To write down the formula for the value P (Bn1,...,nk), we shall need the
following definitions.

Definition. Consider k pairs of points arranged in two rows like .
Choose one of the 2k−1 subsets of the set {1, . . . , k−1}. If a number s belongs
to the chosen subset, then we connect the lower points of sth and (s+ 1)th
pairs, otherwise we connect the upper points. The resulting combinatorial
object is called a two-line scheme of order k.

Example. Here is the scheme corresponding to k = 5 and the subset {2, 3}:

.

The number of connected components in a scheme of order k is k + 1.

Definition. Let σ be a scheme; i1, . . . , ik be non negative integers: 0 6
i1 6 n1, . . . , 0 6 ik 6 nk. We assign is to the lower vertex of the sth pair of
σ and js = ns − is — to the upper vertex. For example:

i1

j1

i2

j2

i3

j3

i4

j4

i5

j5

.
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Then the monomial corresponding to σ is xσ0xσ1 . . . xσk where σt is the sum
of integers assigned to the vertices of tth connected component of σ.

Example. For the above weighted scheme we get the monomial

xi1xj1+j2xi2+i3+i4xj3xj4+j5xi5 .

Now the formula for P can be stated as follows.

14.5.5. Proposition. If N > n1 + · · ·+ nk then

PglN (Bn1,...,nk) =
∑
i1,...,ik

(−1)j1+···+jk
(
n1

i1

)
. . .

(
nk
ik

)∑
σ

xσ0xσ1 . . . xσk ,

where the external sum ranges over all integers i1, . . . , ik such that 0 6 i1 6
n1, . . . , 0 6 ik 6 nk; the internal sum ranges over all the 2k−1 schemes,
js = ns − is, and xσ0xσ1 . . . xσk is the monomial associated with the scheme
σ and integers i1, . . . , ik.

Examples.

(1) For the baguette diagram B2 we have k = 1, n1 = 2. There is only

one scheme: qq . The corresponding monomial is xi1xj1 , and

PglN (B2) =
2∑

i1=0

(−1)j1
(

2

i1

)
xi1xj1

= x0x2 − 2x1x1 + x2x0 = 2(x0x2 − x2
1)

which agrees with the example given in Chapter 6 on page 195.

(2) For the diagram B1,1 we have k = 2, n1 = n2 = 1. There are two

schemes: q qq q
and q qq q

. The corresponding monomial are xi1xi2xj1+j2 and
xi1+i2xj1xj2 . We have

PglN (B1,1) =

1∑
i1=0

1∑
i2=0

(−1)j1+j2xi1xi2xj1+j2 +

1∑
i1=0

1∑
i2=0

(−1)j1+j2xi1+i2xj1xj2

= x0x0x2−x0x1x1−x1x0x1+x1x1x0+x0x1x1−x1x0x1−x1x1x0+x2x0x0

= 2(x2
0x2 − x0x

2
1)

Sketch of the proof of Proposition 14.5.5. The diagram Bn1,...,nk has
k parts separated by k − 1 walls. Each wall is an edge connecting trivalent
vertices to which we shall refer as wall vertices. The sth part has ns outgoing
legs. We shall refer to the corresponding trivalent vertices as leg vertices.

The proof consists of three steps.

Recall that in order to evaluate the universal glN weight system on a
diagram we can use the graphical procedure of “resolving” the trivalent ver-
tices of a diagram and associating a tensor to each of these resolutions, see
Sections 6.2.4 and 6.3.4. At the first step we study the effect of resolutions
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of the wall vertices. We prove that the monomial obtained by certain res-
olutions of these vertices has the maximal possible degree if and only if for
each wall both resolutions of its vertices have the same sign. These signs
are related to the above defined schemes in the following way. If we take the
positive resolutions at both endpoints of the wall number s, then we connect
the lower vertices of the sth and the (s+1)st pairs in the scheme. If we take
the negative resolutions, then we connect the upper vertices.

At the second step we study the effect of resolutions of leg vertices. We
show that the result depends only on the numbers of positive resolutions of
leg vertices in each part and does not depend on which vertices in a part
were resolved positively and which negatively. We denote by is the number
of positive resolutions in part s. This yields the binomial coefficients

(
ns
is

)
in

the formula of Proposition 14.5.5. The total number j1 + · · ·+ jk of negative
resolutions of leg vertices gives the sign (−1)j1+···+jk .

The first two steps allow us to consider only those cases where the resolu-
tions of the left is leg vertices in the part s are positive, the rest js resolutions
are negative and both resolutions at the ends of each wall have the same
sign. At the third step we prove that such resolutions of wall vertices lead
to monomials associated with corresponding schemes according to definition
14.5.4.

We will make some comments only about the first step, because it is
exactly at this step where Dasbach found an improvement of the original
argument of [CD2].

Let us fix certain resolutions of all trivalent vertices of Bn1,...,nk . We
denote the obtained diagram of n = n1 + · · · + nk pairs of points and n
arrows (see page 187) by T . After a suitable permutation of the pairs T will
look like a disjoint union of certain xm’s. Hence it defines a monomial in
xm’s which we denote by m(T ).

Let us close up all arrows in the diagram by connecting the two points
in every pair with an additional short line. We obtain a number of closed
curves, and we can draw them in such a way that they have 3 intersection
points in the vicinity of each negative resolution and do not have other
intersections. Each variable xm gives precisely one closed curve. Thus the
degree of m(T ) is equal to the number of these closed curves.

Consider an oriented surface S which has our family of curves as its
boundary (the Seifert surface):

= .
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The degree of m(T ) is equal to the number of boundary components b of S.
The whole surface S consists of an annulus corresponding to the big circle
in Bn1,...,nk and k− 1 bands corresponding to the walls. Here is an example:

where each of the two walls on the left has the same resolutions at its
endpoints, while the two walls on the right have different resolutions at
their endpoints. The resolutions of the leg vertices do not influence the
surface S.

The Euler characteristic χ of S can be easily computed. The surface
S is contractible to a circle with k − 1 chords, thus χ = −k + 1. On the
other hand χ = 2− 2g − b, where g and b are the genus and the number of
boundary components of S. Hence b = k + 1− 2g. Therefore, the degree of
m(T ), equal to b, attains its maximal value k + 1 if and only if the surface
S has genus 0.

We claim that if there exists a wall whose ends are resolved with the
opposite signs then the genus of S is not zero. Indeed, in this case we can
draw a closed curve in S which does not separate the surface (independently
of the remaining resolutions):

Hence the contribution to P (Bn1,...,nk) is given by only those monomials
which come from equal resolutions at the ends of each wall. �

Now, with Proposition 14.5.5 in hand, we can prove the following result.

14.5.6. Theorem. Let n = n1 + · · · + nk and d = n + k − 1. Baguette
diagrams Bn1,...,nk are linearly independent in B if n1, . . . , nk are all even
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and satisfy the following conditions:

n1 < n2

n1 + n2 < n3

n1 + n2 + n3 < n4

· · · · · · · · · · · · · · · · · · · · ·
n1 + n2 + · · ·+ nk−2 < nk−1

n1 + n2 + · · ·+ nk−2 + nk−1 < n/3.

The proof is based on the study of the supports of polynomials P (Bn1,...,nk)

— the subsets of Zk corresponding to non-zero terms of the polynomial.

Counting the number of elements described by the theorem, one arrives
at the lower bound nlog(n) for the dimension of the primitive subspace Pn of
B.

The main difficulty in the above proof is the necessity to consider the
2k resolutions for the wall vertices of a baguette diagram that correspond to
the zero genus Seifert surface. O. Dasbach in [Da3] avoided this difficulty
by considering a different family of open diagrams for which there are only
two ways of resolution of the wall vertices leading to the surface of minimum
genus. These are the Pont-Neuf diagrams:

PNa1,...,ak,b =

2b

a
1

a
k

a
2

(the numbers a1, ..., ak, 2b refer to the number of legs attached to the
corresponding edge of the inner diagram).

The reader may wish to check the above property of Pont-Neuf diagrams
by way of exercise. It is remarkable that Pont Neuf diagrams not only lead
to simpler considerations, but they are more numerous, too, and thus lead
to a much better asymptotic estimate for dimPn. The exact statement of
Dasbach’s theorem is as follows.

14.5.7. Theorem. For fixed n and k, the diagrams PNa1,...,ak,b with 0 6
a1 6 ... 6 ak 6 b, a1 + ...+ ak + 2b = 2n are linearly independent.

Counting the number of such partitions of 2n, we obtain precisely the
estimate announced by Kontsevich in [Kon1].
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Corollary. dimPn is asymptotically greater than ec
√
n for any constant c <

π
√

2/3.

Exercises

(1) Show that M1 is equivalent to the ∆
move in the sense that, modulo Reide-
meister moves, the M1 move can be

accomplished by ∆ moves and vise versa. The fact that ∆ is an unknot-
ting operation was proved in [Ma, MN].

(2) Prove that M1 is equivalent to the move

(3) Prove that M2 is equivalent to the so called clasp-pass move

(4) Prove that Mn is equivalent to the move Cn:

︸ ︷︷ ︸
n+ 2 components

︸ ︷︷ ︸
n+ 2 components

(5) Find the inverse element of the knot 31 in the group G4.

(6) (a)∗ (L. Kauffman) Find a set of moves relating the knots with the same
c2 modulo n, for n = 3, 4,. . . .

(b)∗Find a set of moves relating any two knots with the same Vassiliev
invariants modulo 2 (3, 4, ...) up to the order n.

(c)∗Find a set of moves relating any two knots with the same Conway
polynomial.

(7) (S. Lando). Let N be a formal variable. Prove that N corankA(G) defines
an algebra homomorphism L → Z[N ], where L is the graph algebra
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of Lando and A(G) stands for the adjacency matrix of the graph G
considered over the field F2 of two elements.

(8)∗Let λ : A→ L be the natural homomorphism from the algebra of chord
diagrams into the graph algebra of Lando.
• Find kerλ (unknown in degrees greater than 7).
• Find imλ (unknown in degrees greater than 7).
• Describe the primitive space P (L).
• L is the analog of the algebra of chord diagrams in the case of

intersection graphs. Are there any counterparts of the algebras C
and B?





Chapter 15

The space of all knots

Throughout this book we used the definition of finite type invariants based
on the Vassiliev skein relation. This definition is justified by the richness
of the theory based on it, but it may appear to be somewhat ad hoc. In
fact, in Vassiliev’s original approach the skein relation is a consequence of
a rather sophisticated construction, which we are going to review briefly in
this chapter.

One basic idea behind Vassiliev’s work is that knots, considered as
smooth embeddings R1 → R3, form a topological space K . An isotopy
of a knot can be thought of as a continuous path in this space. Knot invari-
ants are the locally constant functions on K ; therefore, the vector space of
R-valued invariants, where R is a ring, is the cohomology group H0(K ,R).
We see that the problem of describing all knot invariants can be generalized
to the following

Problem. Find the cohomology ring H∗(K ,R).

There are several approaches to this problem. Vassiliev replaces the
study of knots by the study of singular knots with the help of Alexander
duality and then uses simplicial resolutions for the spaces of singular knots.
This method produces a spectral sequence which can be explicitly described.
It is not clear how much information about the cohomology of the space of
knots is contained in it, but the zero-dimensional classes coming from this
spectral sequence are precisely the Vassiliev invariants.

The second approach is an attempt to build the space of knots out of the
configuration spaces of points in R3. We are not going to discuss it here; an
instructive explanation of this construction is given in [Sin2]. Both points of
view lead to a new description of the chord diagram algebra A. It turns out

439
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that A is a part of an algebraic object which, in a way, is more fundamental
than knots, namely, the Hochshild homology of the Poisson operad.

It is inevitable that the pre-requisites for this chapter include rather
advanced material such as spectral sequences; at the same time we delve
into less detail. Our goal here is to give a brief introduction into the subject
after which the reader is encouraged to consult the original sources.

15.1. The space of all knots

First of all, let us give precise definitions.

Definition. A long curve is a smooth curve f : R → R3 which at infinity
tends to the diagonal embedding of R into R3 :

lim
t→±∞

| f(t)− (t, t, t) | = lim
t→±∞

| f ′(t)− (1, 1, 1) | = 0.

Here, of course, we could have chosen any fixed linear embedding of R
into R3 instead of the diagonal.

There are many ways to organize long curves into a topological space.
For example, one can introduce the C1-metric on the set V of all long curves
with the distance between f and g defined as

d(f, g) = max
t∈R
| f(t)− g(t) |+ max

t∈R
| f ′(t)− g′(t) |.

Alternatively, let Vn be the set of long curves of the form

f(t) =
(Px(t), Py(t), Pz(t))

(1 + t2)n
,

where Px, Py and Pz are polynomials of the form

t2n+1 + a2n−1t
2n−1 + a2n−2t

2n−2 + . . .+ a1t+ a0

and n > 0. (Note the absence of the term of degree 2n.) We can consider Vn
as a Euclidean space with the coefficients of the polynomials as coordinates.
The space Vn can be identified with the subspace of Vn+1 corresponding to
the triples of polynomials divisible by 1 + t2. Write

V∞ =

∞⋃
n=1

Vn

with the topology of the union (weak topology). We can think of V∞ as of
the space of all polynomial curves.

Exercise.

(1) Show that any long curve can be uniformly approximated by poly-
nomial curves.
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(2) Is the weak topology on V∞ equivalent to the topology given by
the C1-metric?

Definition. The space of knots K is the subset of V consisting of non-
singular curves (smooth embeddings). Similarly, the space Kn, for n 6 ∞
is the subspace of smooth embeddings in Vn.

Cearly, K and K∞ are just two of the possible definitions of the space
of all knots.

Exercise. Show that the natural map from K∞ to K is a weak homotopy
equivalence. In other words, prove that this map induces a bijection on the
set of connected components and an isomorphism in homotopy groups for
each component. Note that this implies that the cohomology rings of K∞
and K are the same for all coefficients.

We shall refer to K as the space of long knots. In the first chapter we
defined long knots as string links on one string. It is not hard to see that any
reasonable definition of a topology on the space of such string links produces
a space that is weakly homotopy equivalent to K .

15.1.1. A remark on the definition of the knot space. One essential
choice that we have made in the definition of the knot spaces is to consider
long curves. As we know, the invariants of knots in R3 are the same as those
of knots in S3, or those of long knots. This, however, is no longer true for
the higher invariants of the knot spaces. For example, the component of the
trivial knot in K is contractible, while in the space of usual knots S1 → R3

it is not simply-connected, see [Hat1].

The space of long knots K has many advantages over the other types
of knot spaces. An important feature of K is a natural product

K ×K → K

given by the connected sum of long knots. Indeed, the sum of long knots
is defined simply as concatenation, and is well-defined not just for isotopy
classes but for knots as geometric objects1. The connected sum of usual
knots, on the contrary, depends on many choices and is only well-defined as
an isotopy class.

Exercise. Show that the product on K just described is commutative up
to homotopy. Show that the trivial knot is a unit for this product, up to
homotopy. (Note: this assertion is non-trivial, see [Bud] for a proof.)

1Well, almost. To make this precise, apply the mapping (x, y, z) 7→ (−e(−x),−e(−y),−e(−
z)) to the first knot, the mapping (x, y, z) 7→ (ex, ey , ez) to the second, and then glue them

together.
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The existence of a homotopy commutative product on K has deep con-
sequences for its topology. In fact, it can be shown that K is a two-fold
loop space.2

15.2. Complements of discriminants

In this section we shall describe the technical tools necessary for the con-
struction of the Vassiliev spectral sequence for the space of knots. This
machinery is very general and can be applied in many situations that are
not related to knots in any way; we refer the reader to Vassiliev’s book [Va3]
(or its more complete Russian version [Va7]) for details.

The space K , whose cohomology we are after, is the complement in the
space of all long curves of the closed set whose points correspond to long
curves that fail to be embeddings. In other words, K is a complement of a
discriminant in the space of curves.

The term “discriminant” usually denotes the subspace of singular maps
in the space of all maps between two geometric objects, say, manifolds. For
the discussion that follows the word “discriminant” will simply mean “a
closed (possibly singular) subvariety in an affine space”.

Vassiliev’s construction involves three general technical tools: Alexander
duality, simplicial resolutions and stabilization. Let us describe them in this
order.

15.2.1. Alexander duality and the spectral sequence. If Σ is a dis-
criminant, that is, a closed subvariety of an N -dimensional real vector space
V , the Alexander Duality Theorem states that

H̃q(V − Σ,Z) ' H̃N−q−1(Σ•),

where 0 6 q < N , the tilde indicates reduced (co)homology and Σ• is the
one-point compactification of Σ. The geometric meaning of this isomorphism
is as follows: given a cycle c of dimension N − q − 1 in Σ• we assign to
each q-dimensional cycle in V − Σ its linking number with c in the sphere
SN := V ∪{∞}. This is a q-dimensional cocyle representing the cohomology
class dual to the class of c. (Here the integer coefficients can be replaced by
coefficients in any abelian group.)

Now, suppose that the discriminant Σ is filtered by closed subspaces

Σ1 ⊆ Σ2 ⊆ . . . ⊆ Σk = Σ.

2In fact, this assertion is not exactly true. The correct fact is that there is an action of the

operad of small cubes on K , see [Bud] for details.
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Taking one-point compactifications of all terms we get the following filtra-
tion:

Σ•−1 ⊆ Σ•0 ⊆ Σ•1 ⊆ Σ•2 ⊆ . . . ⊆ Σ•k = Σ•,

with Σ•−1 = ∅ and Σ•0 = {∞} being the added point. Then the homology
of Σ• can be studied using the spectral sequence arising from this filtration.
(We refer the reader to [Hat2] or [Wei] for basics on spectral sequences.)
The term E1

p,q of this spectral sequence is isomorphic to Hp+q(Σ
•
p,Σ

•
p−1) and

the E∞ term

E∞m =
⊕

p+q=m

E∞p,q

is associated with H̃m(Σ•) in the following sense: let (i)H̃m(Σ•) be the image

of H̃m(Σ•i ) in H̃m(Σ•). Then

E∞i,m−i = (i)H̃m(Σ•)/(i−1)H̃m(Σ•).

Let us define the cohomological spectral sequence Ep,qr by setting

Ep,qr = Er−p,N−q−1

and defining the differentials correspondingly, by renaming the differentials
in the homological spectral sequence. According to Alexander duality, the
term E∞ of this sequence is associated with the cohomology of V − Σ. All
non-zero entries of this sequence lie in the region p < 0, p+ q > 0.

The functions on the connected components of V − Σ can be identified
with the elements of H0(V − Σ,Z). The information about this group is

contained in the anti-diagonal entries E−i,i∞ with positive i. Namely, let

(i)H
0(V − Σ,Z) be the subgroup of H0 consisting of the functions that are

obtained as linking numbers with cycles of maximal dimension contained in
the one-point compactification of Σi; as we shall soon see, these classes can
be thought of as Vassiliev invariants of order i.

Remark. The spectral sequence that we just described was first defined by
V. Arnold [Ar1a] who studied with its help the cohomology of the braid
groups. A similar method was later used by G. Segal in [Seg] to describe
the topology of the spaces of rational functions.

15.2.2. Simplicial resolutions. Assume that f : X → Y is a finite-to-one
proper surjective map of topological spaces. Then Y is obtained from X by
identifying the preimages of each point y ∈ Y . Assume (for simplicity) that
there exists a constant R such that for any point y ∈ Y the preimage f−1(y)
consists of at most R points, and that X is embedded in some Euclidean
space V in such a way that any k + 1 distinct points of X span a non-

degenerate k-simplex for all k < R. Then we can form the space Ỹ as the
union, over all points y ∈ Y , of the convex hulls of the sets {f−1(y)} in V
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(in fact, to avoid the case when these simplices may have common interior
points, it is more safe to consider the subset of V × Y which is the union of
(f−1(y), y) over all y ∈ Y ).

We have a map f̃ : Ỹ → Y which assigns to a point in the convex hull
of the set {f−1(y)} the point y ∈ Y . This map is proper and its fibres are
simplices, possibly, of different dimensions. It can be deduced that under
mild assumptions on Y the map f̃ is a homotopy equivalence; it is called a

simplicial resolution of Y associated with f . We shall refer to the space Ỹ
as the space of the simplicial resolution f̃ , or, abusing the terminology, as
the simplicial resolution of Y .

Example. The map of a circle onto the figure eight which identifies two
points has the following simplicial resolution:

Here the space of the resolution is shown on the right.

Exercise. Describe the simplicial resolution associated with the double
cover of a circle by itself.

Since we are interested only in calculating the homology groups, we lose
nothing by replacing a space by the space of its simplicial resolution. On
the other hand, simplicial resolutions often have interesting filtrations on

them. For instance, since the space Ỹ is a union of simplices, it is natural

to consider the subspaces Ỹi of Ỹ which are the unions of the i−1-skeleta of
these simplices. In the case of the discriminant in the space of long curves
we shall consider another geometrically natural filtration, see Section 15.3.3.

Exercise. Adapt the results of the preceding section so that instead of a fil-
tration on a discriminant one can use a filtration on its simplicial resolution.

Simplicial resolutions are especially useful for studying spaces of func-
tions with singularities of some kind. In such a situation Y is taken to be
the space of functions with singularities and X is the space of all pairs (φ, x)
where φ ∈ Y is a function and x is a point in the domain of φ where φ
is singular; the map X → Y simply forgets the second element of the pair
(that is, the singular point). Various examples of this kind are described in
Vassiliev’s book [Va3, Va7]. While many of the ingredients of Vassiliev’s
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approach to knot spaces were well-known before Vassiliev, the simplicial
resolutions are the main innovation of his work.

15.2.3. Stabilization. Strictly speaking, Alexander duality and, as a con-
sequence, all the foregoing constructions, only makes sense in finite-dimensional
spaces. However, in the case of knots the space V is infinite-dimensional.
This problem can be circumvented by using finite-dimensional approxima-
tions to the space of long curves. For this we have to understand first how
complements of discriminants behave with respect to inclusions.

Consider two discriminants Σ1 and Σ2 inside the Euclidean spaces V1

and V2 respectively. If V1 ⊂ V2 and Σ1 = V1 ∩ Σ2 we see that V1 − Σ1

is a subspace of V2 − Σ2. We would like to describe the induced map in
cohomology

(15.2.1) H i(V2 − Σ2,Z)→ H i(V1 − Σ1,Z).

Assume that V1 intersects Σ2 transversally, so that there exists an ε-
neighbourhood Vε of V1 such that

Vε ∩ Σ2 = Σ1 × Rs,

where s = dimV2−dimV1. There is a homomorphism of reduced homology
groups

H̃i(Σ2
•)→ H̃i−s(Σ1

•)

where X•, as before, denotes the one-point compactification of X. This ho-
momorphism is known as the Pontrjagin-Thom homomorphism and is con-
structed in two steps. First, we collapse the part of Σ2

• which lies outside of
Σ2∩Vε to one point and take the induced homomorphism in homology. Then
notice that the quotient space with respect to this collapsing map is precisely
the s-fold suspension of Σ1

•, so we can apply the suspension isomorphism
which decreases the degree by s and lands in the reduced homology of Σ1

•.

Since Alexander duality is defined by taking linking numbers, it follows
from this construction that the cohomology map (15.2.1) is dual to the
Pontrjagin-Thom homomorphism.

Now, let us consider the situation when both discriminants Σ1 and Σ2

are filtered, the inclusion V1 ⊂ V2 is transversal to the filtration and Vε ∩
(Σ2)j = (Σ1)j × Rs for all j. Then we have relative Pontrjagin-Thom maps
Hi((Σ2

•)j , (Σ2
•)j−1)→ Hi−s((Σ1

•)j , (Σ1
•)j−1).

Proposition. If, in the above notation and under the above assumptions,
the relative Pontrjagin-Thom maps are isomorphisms for all j 6 P and
i > dimV −Q+j, for some positive P and Q, the terms Ep,q1 of the Vassiliev
spectral sequences for the cohomology of V1−Σ1 and V2−Σ2 coincide in the
region −P 6 p and q 6 Q.
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The proof consists in combining Alexander duality with the definition
of the spectral sequence.

The above proposition will allow us to work in infinite-dimensional Eu-
clidean spaces as if they had finite dimension, see Section 15.3.3.

15.2.4. Vassiliev invariants. Suppose that we want to enumerate the
connected components of the complement of a discriminant Σ in a vector
space V ; in other words, we would like to calculate H0(V −Σ,R), the space
of R-valued functions on the set of connected components of V − Σ. If Σ
is filtered by closed subspaces Σi, we can define Vassiliev invariants for the
connected components of V − Σ as follows.

Definition. A Vassiliev invariant of degree i is an element of H0(V −Σ,R)
defined as the linking number with a cycle in HdimV−1(Σi

•,R).

This definition also makes sense when we only have the filtration on the
homology of Σ, rather than on the space Σ itself. Such a situation arises
when we consider a filtration on a simplicial resolution of Σ. Let us consider
the following rather special situation where the Vassiliev invariants have a
transparent geometric interpretation.

Let Σ be the image of a smooth manifold X immersed in a finite-
dimensional vector space V , and assume that each point in V , where Σ
has a singularity, is a point of transversal k-fold self-intersection3 for some
k. Without loss of generality we can suppose that Σ is of codimension 1,
since its complement would be connected otherwise. Locally, Σ looks like
T k ×RdimV−k where T k the union of all coordinate hyperplanes in Rk. We
shall also assume that Σ is co-oriented, that is, that there is a continuous
field of unit normal vectors (co-orientation) at the smooth points of Σ which
extends to the self-intersection points as a multivalued vector field.

Consider the simplicial resolution σ → Σ associated with the map X →
Σ, and the filtration σi on σ by the i−1-skeleta of the inverse images of points
of Σ. Then we have the following criterion for an element f ∈ H0(V −Σ,R)
to be a Vassiliev invariant of order n.

Grouping together the points of the discriminant Σ according to the
multiplicity of self-intersection at each point, we get a decomposition of
Σ into a union of open strata Σ(i), with Σ(i) consisting of points of i-fold
intersection and having codimension i in Σ. The function f can be extended
from V − Σ to a locally constant function on each stratum of Σ. If x is a
point on the maximal stratum Σ(0) which consists of the points where Σ is
smooth, let x+ and x− be two points in V − Σ obtained by shifting x by
±ε in the direction of the co-orientation, where ε is small. Then, we set

3that is, of k + 1 sheets of X
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f(x) = f(x+)−f(x−). For x ∈ Σ(1) we take four points x++, x+−, x−+ and
x−− obtained from x by shifting it to each of the four quadrants in V − Σ,
see Figure 15.2.4.

Σ

Σ

x

x++ x−+

x+− x−−

Figure 15.2.1. The neighbourhood of a generic self-intersection point
of the discriminant Σ.

For such x we set f(x) = f(x++)−f(x+−)−f(x−+)+f(x−−). It is clear
how to continue: at a point x ∈ Σ(k) the value of f is the alternating sum

of its values at the 2k+1 points obtained by shifting x to the 2k+1 adjacent
quadrants of V − Σ.

Proposition. An element f ∈ H0(V −Σ,R) is a Vassiliev invariant of or-
der n if and only if its extension to the stratum Σ(n) of n-fold self-intersection
points of Σ is identically equal to zero.

This second characterization of the Vassiliev invariants in terms of their
extensions to the strata of the discriminant is the definition that we used
throughout the book. Indeed, a generic point of the discriminant in the
space of long curves is a singular knot with one simple double point. Knots
with two simple double points correspond to transversal self-intersections of
the discriminant, et cetera. Note, however, that this proposition, as stated,
does not apply directly to the space of knots, since the discriminant in this
case has singularities more complicated than transversal self-intersections.
It turns out that these singularities have no influence on the homology of
the discriminant in the relevant dimensions, and can be omitted from con-
sideration.

Exercise. Let Σ be the union of the coordinate hyperplanes in V = Rn,
X be the disjoint union of these hyperplanes and X → Σ be the natural
projection. Describe the cycles that represent classes in Hn−1(σi

•) and the
space of Vassiliev invariants of degree i. Show that the Vassiliev invariants
distinguish the connected components of V − Σ.
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Sketch of the proof. We are interested in the cycles of top dimension on
Σ•, and these are linear combinations of the (closures of) connected com-
ponents of Σ(1), that is, the top-dimensional stratum consisting of smooth
points.

By construction of the simplicial resolution, any cycle that locally is
diffeomorphic to the boundary of the “k − 1-corner”

{(x1, . . . , xn) |x1 > 0, . . . , xk > 0}

in Rn defines a homology class in Hn−1(σi
•,R), where i > k. Conversely,

any cycle in Hn−1(σi
•,R) after projection to Σ• locally looks like a linear

combination of k − 1-corners with k 6 i.

Now it remains to observe that, locally, the linking number with the
boundary of a (k− 1)-corner vanishes on the strata of dimension k+ 1 and,
moreover, this property defines linear combinations of cycles that locally
look like j-corners with j < k. �

15.3. The space of singular knots and Vassiliev invariants

We want to relate the topology of the space of knots to the structure of
the discriminant in the space of long curves. In order to use one of our
main tools, namely, Alexander duality, we need to use finite-dimensional
approximations to the space of long curves. Spaces Vn of polynomial curves
of bounded degree (see p. 440) provide such an approximation; however, it
cannot be used directly for the following reason:

Exercise. Denote by Σ(Vn) the discriminant in the space Vn consisting of
non-embeddings. Then the intersection of Vn−1 with Σ(Vn) inside Vn is not
transversal.

As a consequence, we cannot apply the stabilization procedure described
in Section 15.2.3, since it requires transversality in an essential way. Never-
theless, this is only a minor technical problem.

15.3.1. Good approximations to the space of long curves. Let

U1 ⊂ U2 ⊂ . . . ⊂ Un ⊂ . . . ⊂ V∞
be a sequence of finite-dimensional affine subspaces in the space of all poly-
nomial long curves. Note that each Uj is contained in a subspace Vk for
some finite k that depends on j. We say that the sequence (Uj) is a good
approximation to the space of long curves if

• each finite-dimensional compact family of long curves can be uni-
formly approximated by a continuous family of curves from (Uj)
for some j;
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• for each Uj and each Vn that contains Uj the intersection of Uj with
Σ(Vn) is transversal inside Vn, where Σ(Vn) is the subspace in Vn
consisting of non-embeddings.

Write K ′
j for the (topological) subspace of Uj that consists of knots. The

first of the two listed conditions guarantees that the union of all the spaces
K ′
j has the same homotopy, and, hence, cohomology groups as the space of

all knots K . Indeed, it allows us to approximate homotopy classes of maps
Sn → K and homotopies among them by maps and homotopies whose
images are contained in the K ′

j . The second condition is to ensure that we
can use the stability criterion from Section 15.2.3.

A general position argument gives the following

Proposition (Vassiliev [Va3, Va7]). Good approximations to the space of
long curves exist.

The precise form of a good approximation will be unimportant for us.
One crucial property of good approximations is the following:

Exercise. Show that good approximations only contain long curves with a
finite number of singular points (that is, points where the tangent vector to
the curve vanishes) and self-intersections.

Hint: Show that long curves with an infinite number of self-intersections
and singular points form a subset of infinite codimension in V∞.

In what follows by the “space of long curves” we shall mean the union
U∞ of all the Uj from a good approximation to the space of long curves
and by the “space of knots” we shall understand the space K ′

∞ = ∪jK ′
j

constructed with the help of this approximation.

15.3.2. Degenerate chord diagrams. The discriminant in the space of
long curves consists of various parts (strata) that correspond to various types
of singular knots, that is, long curves with self-intersections and singular
points.

In our definition of Vassiliev invariants in Chapter 3, we associated a
chord diagram with n chords to a knot with n double points. In fact, we
saw that chord diagrams are precisely the equivalence classes of knots with
double points modulo isotopies and crossing changes. If we consider knots
with more complicated self-intersections and with singular points we must
generalize the notion of chord diagram.

A degenerate chord diagram is a set of distinct pairs (xk, yk) of real
numbers (called vertices) with xk 6 yk. These pairs can be thought of as
chords on R, with xk and yk being the left and right endpoints of the chords



450 15. The space of all knots

respectively. If all the xk and yk are distinct, we have a usual linear chord
diagram.

The “degeneracy” of a degenerate chord diagram can be of two kinds:
one chord can degenerate into a singular point (xk = yk) or two chords
can glue together and share an endpoint. Two degenerate chord diagrams
are combinatorially equivalent if there is an self-homeomorphism of R that
preserves the orientation and sends one diagram to the other.

The vertices of a degenerate chord diagram are of two types: the singu-
larity vertices which participate in chords with xk = yk, and self-intersection
vertices which participate in chords with xk < yk. The same vertex can be
a singularity vertex and a self-intersection vertex at the same time; in this
case we shall count it twice and say that a singularity vertex coincides with a
self-intersection vertex. As with usual chord diagrams, one can speak of the
internal graph of a degenerate diagram: this is the abstract graph formed by
the chords whose ends are distinct. The self-intersection vertices are divided
into groups: two vertices belong to the same group if and only if they belong
to the same connected component of the internal graph. Here is an example
of a degenerate chord diagram with two groups of self-intersection vertices;
the singularity vertices are indicated by hollow dots:

Let us say that two degenerate chord diagrams D1 and D2 are equivalent
if D1 is combinatorially equivalent to a diagram that has the same set of
singularity vertices and the same groups of self-intersection vertices as D2.
For instance, the following diagrams are equivalent:

In Vassiliev’s terminology, equivalence classes of degenerate chord diagrams
are called (A, b)-configurations.

Define the complexity of a degenerate chord diagram as the total number
of its vertices minus the number of groups of its self-intersection vertices.
This number only depends on the equivalence class of the diagram. The
complexity of a usual chord diagram is, clearly, equal to its degree.

Remark. Note that the number of chords of a degenerate chord diagram is
not mentioned in the definitions of equivalence and complexity. This is only
natural, of course, since equivalent diagrams can have different numbers of
chords.

An arbitrary singular knot with a finite number of singular points and
self-intersections defines an equivalence class of degenerate chord diagrams:
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each group of self-intersection vertices is a preimage of a self-intersection
and the singularity vertices are the preimages of the singularities. We shall
say that a singular knot f : R→ R3 respects a degenerate chord diagram D
if it glues together all points within each group of self-intersection vertices
of D and its tangent vector is zero at each singularity vertex of D.

Exercise. Show that equivalence classes of degenerate chord diagrams co-
incide with the equivalence classes of singular knots with a finite number of
singular points and self-intersections under isotopies and crossing changes.

15.3.3. The discriminant. The discriminant in the space of long curves
U∞ is a complicated set. Its strata can be enumerated: they correspond to
equivalence classes of degenerate chord diagrams. However, the structure
of these strata is not easy to describe, since they can (and do) have self-
intersections. The most convenient tool for studying the discriminant are
the simplicial resolutions described in Section 15.2.2.

In order to tame the multitude of indices, let us write simply U for the
approximating space Uj , N = Nj for its dimension and Σ = Σ(Uj) for the
discriminant. Write Sym2(R) for the space of all unordered pairs of points in
R; this space can be thought of as the subset of R2 defined by the inequality
x 6 y.

In the product space Σ × Sym2(R) consider the subspace Σ̃ consisting
of pairs (f, (x, y)) such that either x 6= y and f(x) = f(y) or x = y and

f ′(x) = 0. Forgetting the pair (x, y) gives a map Σ̃ → Σ which is finite-to-
one and proper, so we can associate a simplicial resolution with it. (Strictly

speaking, in order to define a simplicial resolution, we must embed Σ̃ in a
Euclidean space in a particular way, but let us sweep this issue under the
carpet and refer to [Va3].)

Denote the space of this simplicial resolution by σ. A point in σ is
uniquely described by a collection(

f, (x0, y0), . . . , (xk, yk), τ
)
,

where f is a singular knot with f(xj) = f(yj) whenever xj 6= yj and f ′(xj) =
0 when xj = yj , all pairs (xj , yj) are distinct and τ is a point in the interior
of a k-simplex with vertices labelled by the points (xj , yj). In other words,
a point in σ is a triple consisting of a singular knot f , a degenerate chord
diagram D which f respects, and a point τ in a simplex whose vertices are
labelled by the chords of D. Here k can be arbitrary.

Let σi be the closed subspace of σ consisting of triples (f,D, τ) with D
of complexity at most i. The cohomological Vassiliev spectral sequence for
the space of knots is the spectral sequence that comes from the filtration of
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σ by the σi (see page 443). We have

Ep,q1 = E1
−p,N−q−1 = HN−(p+q+1)(σ

•
p, σ
•
p−1) = H̃N−(p+q+1)(σ

•
p/σ

•
p−1).

Note that σ•p/σ
•
p−1 is homeomorphic to the one-point compactification of

σp − σp−1, and this space can be described rather explicitly, at least when
the dimension of U is sufficiently large.

Indeed, the condition that a singular knot f ∈ U ⊂ Vd respects a degen-
erate chord diagram D produces several linear constraints on the coefficients
of the polynomials P1, P2 and P3 which determine f . Namely, if (xj , yj) is
a chord of D, the polynomials satisfy the conditions

Pα(xj)

(1 + x2
j )
d

=
Pα(yj)

(1 + y2
j )
d

when xj < yj , and (
Pα(xj)

(1 + x2
j )
d

)′
= 0

if xj = yj . Each of these conditions with xj and yj fixed gives one linear
equation on the coefficients of each of the polynomials P1, P2 and P3.

In general, these linear equations may be linearly dependent. However,
the rank of this system of equations can be explicitly calculated when the
dimension of U is large.

Exercise. Show that for a given degenerate chord diagram of complexity
p there exists N0 such that for N > N0 the number of linearly independent
conditions on the coefficients of the Pα is equal to exactly 3p.

Hint. For any set of distinct real numbers x1, . . . , xk there exists d such that
the vectors (1, xi, x

2
i , . . . , x

d
i ) are linearly independent.

This exercise shows that, for N sufficiently big, the forgetful map that
sends a triple (f,D, τ) ∈ σp − σp−1 to the pair (D, τ) is an affine bundle
with the fibre of dimension N − 3p over a base Wp which only depends on
p. In particular, we have the Thom isomorphism

H̃N−s((σp − σp−1)•) = H3p−s(Wp
•).

As a consequence, when p > 0 and q > p, the first term of the Vassiliev
spectral sequence has the entries

E−p,q1 = E1
p,N−q−1 = H̃N+p−q−1((σp − σp−1)•) = H4p−q−1(Wp

•),

and for all other values of p and q the corresponding entry is zero. The space
Wp
• whose homology is, therefore, so important for the theory of Vassiliev

invariants, will be called here the diagram complex.
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15.4. Topology of the diagram complex

The diagram complexes Wp
• are constructed out of simplices and spaces of

degenerate chord diagrams of complexity p.

15.4.1. A cell decomposition for the diagram complex. The space
Wp
• has a cell decomposition with cells indexed by degenerate chord dia-

grams (more precisely, combinatorial equivalence classes of such diagrams)
of complexity p. The cell [D] is a product of an open simplex ∆D whose
vertices are indexed by the chords of D, and the space ED of all diagrams
combinatorially equivalent to D. This latter space is also an open simplex,
of dimension k, where k is the number of geometrically distinct vertices of
D. Indeed, it is homeomorphic to the configuration space of k distinct points
in an open interval.

The boundaries in these cell complexes can also be explicitly described.
Since

[D] = ∆D × ED
is a product, its boundary consists of two parts. The first part consists of
the cells that come from ∂∆D×ED. These are of the form [D′], where D′ is
obtained form D by removing a number of chords. The second part comes
from ∆D×∂ED. The diagram D′ of a cell [D′] of this kind is obtained from
D by collapsing to zero the distance between two adjacent vertices. Note
that by removing chords or glueing together two adjacent vertices we can
decrease the complexity of a diagram; in this case the corresponding part of
∂[D] is glued to the base point in Wp

•.

If we are interested in the homology of Wp
•, we need to describe the

boundaries in the corresponding cellular chain complex and this involves
only those cells [D′] ⊂ ∂[D] with dim [D′] = dim [D]− 1. For the dimension
of [D] we have the formula

dim [D] = no. of geometrically distinct vertices + no. of chords− 1

and the complexity c(D) is given by the expression

c(D) = total no. of vertices− no. of groups of self-intersection vertices.

These formulae show that if by removing chords of D we obtain a diagram
D′ with c(D′) = c(D) and dim [D′] = dim [D]− 1, then D′ is obtained from
D by removing one chord, and the endpoints of the removed chord belong
to the same group of self-intersection vertices in D′.

Now, suppose that by collapsing two adjacent vertices of D we obtain
a diagram D′ with c(D′) = c(D) and dim [D′] = dim [D] − 1. There are
several possibilities for this:
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(1) both vertices are self-intersection vertices and belong to different
groups, and at most one of the two vertices is also a singularity
vertex:

or

(2) both vertices are endpoints of the same chord and of no other chord:

(3) one vertex is a self-intersection vertex only and the other is a sin-
gularity vertex only:

Each of the cells [D′] in the above list appears in the boundary of [D] exactly
once. This describes the cellular chain complex for Wp

• up to signs. This is
sufficient if we work modulo 2. In order to calculate the integral homology,
we need to fix the orientations for each [D] and work out the signs.

Recall that the cell [D] is a product of two simplices; therefore, its ori-
entation can be specified by ordering the vertices of the factors. ED is the
configuration space of k points in an interval and its vertices are naturally
ordered: the ith vertex is a configuration with k − i points in the left end
of the interval and i points in the right end. (Note that the vertices belong
to closure of ED, but not to ED itself, and the corresponding configura-
tions may have coinciding points.) The vertices of ∆D are the chords of
D. In order to order them, we first order the chords within each group of
self-intersection vertices: a chord is smaller than another chord if its left
endpoint if smaller; if both chords have the same left endpoint, the one with
the smaller right endpoint is smaller. Next, we order the groups: a group
is smaller if its leftmost vertex is smaller. It is convenient to consider in
this context each singularity vertex which does not coincide with any self-
intersection vertex as a separate group consisting of one “degenerate” chord;
the leftmost vertex of such a group is of course, the singularity vertex itself.
Finally, we list the chords lexicographically: first, all the chords from the
first group, then the chords from the second group, and so on.

Now, it is clear how to assign the signs in the boundaries.

Example. In the cellular chain complex for W2
• we have

d

( )
= − + ,

d
( )

= − + − ,



15.4. Topology of the diagram complex 455

and

d
( )

= − + − .

Note that our convention for the orientations of the cells is different from
that of [Va3, Va7].

Exercise. Formulate the general rule for the signs in the boundary of a cell
[D] for an arbitrary D.

15.4.2. The filtration on Wp
• by the number of vertices. In princi-

ple, the homology of Wp
• can be calculated directly from the cellular chain

complex that we have just described. There is, however, a better way to
calculate this homology.

Let Wp
•(k) be the subspace of Wp

• consisting of all the cells [D] where
D has at most k geometrically distinct vertices, together with the added
basepoint. The smallest k for which Wp

•(k) is non-trivial is equal to [p/2]+1
where [·] denotes the integer part; this corresponds to the diagrams all of
whose singularity vertices are combined with self-intersection vertices and
the latter are joined into only one group. The maximal number of distinct
vertices is k = 2p; it is achieved for chord diagrams of degree p. We get the
increasing filtration

∗ = Wp
•([p/2]) ⊂Wp

•([p/2] + 1) ⊂ . . . ⊂Wp
•(2p) = Wp

•

by the number of vertices; in [Va3, Va7] it is called the auxiliary filtration.

The successive quotients in this filtration are bouquets of certain spaces
indexed by equivalence classes of degenerate diagrams:

Wp
•(k)/Wp

•(k − 1) =
∨
D

[D],

where D runs over all equivalence classes of diagrams with k distinct vertices
and [D] is the union of all the cells [D] such that the equivalence class of D
is D (the basepoint counted as one of such cells). In turn, each [D] can be
constructed out of several standard pieces.

For a positive integer a define the complex of connected graphs ∆1(a)
as follows. Given a set A of a points, consider the simplex of dimension
a(a − 1)/2 − 1 whose vertices are indexed by chords connecting pairs of
points of A. Each face of this simplex corresponds to a graph whose set
of vertices is A. Collapsing the union of all those faces that correspond to
non-connected graphs to a point, we get the complex of connected graphs
∆1(a).

The proof of the following statement can be found in [Va3, Va7]:

Lemma. Hi(∆
1(a)) = 0 unless i = 0, a− 2, and Ha−2(∆1(a)) = Z(a−1)!.
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The spaces [D] can now be described as follows:

Lemma. Let D be an equivalence class of diagrams with m groups of self-
intersection vertices consisting of a1, . . . , am vertices respectively, b singu-
larity vertices, and k geometrically distinct vertices in total. Then

[D] = ∆1(a1) ∧ . . . ∧∆1(am) ∧ Sk+m+b−1,

where the wedge stands for the reduced product of topological spaces.

Proof. It is instructive to verify first the case when the diagrams in D have
k self-intersection vertices only, all in one group. The space of all possible
sets of vertices for such diagrams is an open k-dimensional simplex. Over
each point of this space we have the k(k + 1)/2 − 1-dimensional simplex
without the faces corresponding to non-connected graphs, that is, ∆1(k)
minus the basepoint. [D] is the one-point compactification of this product:

[D] = Sk ∧∆1(k)

and in this case m = 1 and k = a1.

In the general case the space of all possible sets of vertices of a diagram
is still a k-dimensional simplex. Now, over each set of vertices we have
the interior of the join of all ∆1(ai), taken without their basepoints, and b
singularity points. This is nothing but the product

(∆1(a1)− ∗)× . . .× (∆1(am)− ∗)× Rm+b−1.

Taking one-point compactification we get the statement of the lemma. �

The two above lemmas imply that the homology of [D] vanishes in all
dimensions apart from 0 and p + k − 1. Now, using the homology exact
sequences, or, which is the same, the spectral sequence associated with the
filtration Wp

•(k), we arrive to the following

15.4.3. Lemma.

H3p−1(Wp
•) = H3p−1(Wp

•/Wp
•(2p− 2)).

15.4.4. Chord diagrams and 4T relations. Cohomology classes of di-
mension zero, that is, knot invariants, produced by the Vassiliev spectral
sequence correspond to elements of the groups E−p,p∞ obtained from E−p,p1

as quotients.

A consequence of Lemma 15.4.3 is the following description of the group
E−p,p1 = H3p−1(Wp

•):

Proposition ([Va3, Va7]). For any ring R of coefficients, E−p,p1 is iso-
morphic to the group Wp of R-valued weight systems, that is, functions on
chord diagrams that vanish on the 1T and 4T relations.
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Note that, according to the Fundamental Theorem 4.2.1, over the ra-
tional numbers the group Wp is isomorphic to the space E−p,p∞ of Vassiliev
invariants of order 6 p, modulo those of order 6 p− 1.

Proof. The proof uses the cell decomposition of H3p−1(Wp
•). The 3p − 1-

dimensional cells that are not contained in Wp
•(2p− 2) are of the form [D]

where D is either

• a non-degenerate chord diagram of order p;

• a degenerate chord diagram with 2p − 1 self-intersection vertices
and p− 1 groups, of which p− 2 are pairs and one is a group with
3 vertices connected by 3 chords.

None of these cells is contained in the boundary of a 3p-dimensional cell.

The 3p− 2-dimensional cells that are not contained in Wp
•(2p− 2) are

of the form [D] where D is either

(1T) a diagram with 2p−1 distinct vertices one of which is a singularity
vertex and the rest are self-intersection vertices grouped into pairs;

(4T) a degenerate chord diagram with 2p − 1 self-intersection vertices
and p− 1 groups, of which p− 2 are pairs and one is a group with
3 vertices connected by 2 chords.

The cellular chain complex consists of free modules, so the kernel of the
boundary on the 3p − 1-cells, is isomorphic to the dual of the cokernel for
the coboundary on the 3p− 2-cells. Unlike the boundary, the coboundary is
easy to calculate.

To be precise, let d3p−1 : C3p−1 → C3p−2 be the boundary in the chain
complex for Wp

•/Wp
•(2p−2). The dual modules Hom(Ci,R) can be identi-

fied with Ci; in particular, they are generated by the same degenerate chord
diagrams. The dual homomorphism d∗3p−1 : C3p−2 → C3p−1 sends a diagram

of the type (1T) to a diagram which has a chord with adjacent vertices;
moreover, every diagram with such a chord is in the image of d∗3p−1.

At this point it will be convenient to modify our convention on the
orientation of the cells. Let us change the orientation of the cells that
correspond to non-degenerate chord diagrams by multiplying it by (−1)r,
where r is the number of intersections among the chords of the diagram, or,
in a slightly fancier language, the number of edges of its intersection graph.
Diagrams of the type (4T) are sent by d∗3p−1 to linear combinations of 3
diagrams:

d∗3p−1

( )
= +(−1)s −(−1)s ,
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d∗3p−1

( )
= − −(−1)s +(−1)s ,

and

d∗3p−1

( )
= +(−1)s −(−1)s ,

where s is the same number in all cases.

Exercise. Find an expression for s and verify the above formulae.

It follows that each 4T relation is in the image of d∗3p−1.

Now, let C ′3p−1 be the subspace of C3p−1 spanned by non-degenerate

chord diagrams. Each functional f on C3p−1/d
∗
3p−1C3p−2 can be uniquely

reconstructed from its value on C ′3p−1/〈1T, 4T〉 since

f

( )
= −(−1)sf

( )
+ (−1)sf

( )
where s is as above, and, hence, we see that H3p−1(Wp

•/Wp
•(2p−2)) consists

precisely of the R-valued weight systems. �

The reader who has survived to this point may note that in Vassiliev’s
original approach the road to the combinatorial description of the weight
systems has been long and winding, especially if compared to the method
presented in first chapters of this book.4 We stress, however, that while
Vassiliev’s approach to the 0-dimensional cohomology classes can be dra-
matically simplified, there are no low-tech solutions for classes of higher
dimensions.

15.5. Homology of the space of knots and Poisson algebras

The same methods that we have used in this chapter to study the cohomol-
ogy of the space of knots can be employed in order to attempt to describe its
homology. In particular, we get a homological spectral sequence whose first
term consists of the cohomology groups of the diagram complexes W •p and
can be described completely in terms of degenerate chord diagrams. The
bialgebra of chord diagrams A forms a part of this spectral sequence; namely

Ap is isomorphic over a ringR to the diagonal entry E1
−p,p = H̃3p−1(Wp

•,R).

It is very interesting to note that the first term of this spectral sequence
has another interpretation, which, at first, seems to be completely unrelated
to knots. Namely, as discovered by V. Turchin [Tu1] it is closely related to
the Hochschild homology of the Poisson algebras operad.

4Note, however, that chord diagrams were explicitly present already in the first Vassiliev’s

publications on the subject [Va1, Va2].
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The details of Turchin’s work are outside the scope of this book. Let
us just give a rough explanation of how Poisson algebras appear in the
homological Vassiliev spectral sequence.

Recall that a Poisson algebra has two bilinear operations: a commutative
and associative product, and an antisymmetric bracket satisfying the Jacobi
identity. The two operations are related by the Leibniz rule

[ab, c] = a[b, c] + b[a, c].

Using the Leibniz rule, one can re-write any composition of products and
brackets as a linear combination of products of iterated brackets, which we
call Poisson monomials.

In order to describe the cohomology of the diagram complex Wp
• one

can use the auxiliary filtration on it by the number of vertices of a diagram,
see page 455. The successive quotients in this filtration are built out of cer-
tain standard pieces indexed by equivalence classes of degenerate diagrams.
As pointed out in in [Tu1], these equivalence classes give rise to Poisson
monomials in the following fashion.

Let us restrict our attention to degenerate chord diagrams without sin-
gularity vertices. Label the vertices of such a diagram by numbers from
1 to n according to their natural order on the real line. The equivalence
class of the diagram is then determined by a partition of the set 1, . . . , n
into several subsets with at least two elements each. For every such subset
i1, . . . , ik form an iterated bracket [. . . [[xi1 , xi2 ] . . . , xik ] and take the prod-
uct of these brackets over all the subsets. For instance, the equivalence class
of the diagram

gives rise to the monomial [x1, x3][[x2, x4], x5]. A chord diagram of degree p
gives a product of p simple brackets.

Poisson monomials of this type appear in the Hochschild complex for
the Poisson algebra operad. V. Turchin proves the following result:

15.5.1. Theorem. The first term of the Vassiliev spectral sequence for the
homology of the space of knots coincides with the Hochschild homology bial-
gebra for the operad of Poisson algebras with the Poisson bracket of degree
3, taken modulo two explicit relations.

We refer to [Tu1] for the basics on operads and their Hochschild homol-
ogy, and the precise form of this statement. A further reference is the paper
[Sin1] by D. Sinha where the relationship between the Vassiliev spectral
sequence and the Hochschild complex is explained “on the level of spaces”.
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Another important recent result is the degeneration of the Vassiliev spectral
sequence over Q in the first term for knots in Rn, n > 4, see [LTV].



Appendix

A.1. Lie algebras and their representations

A.1.1. Lie algebras. A Lie algebra g over a field F of characteristic zero is
a vector space equipped with a bilinear operation (Lie bracket) (x, y) 7→ [x, y]
subject to the identities

[x, y] = −[y, x] ,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

In this section we shall only consider finite-dimensional Lie algebras over C.

An abelian Lie algebra is a vector space with the bracket which is iden-
tically 0: [x, y] = 0 for all x, y ∈ g. Any vector space with the zero bracket
is an abelian Lie algebra.

Considering the Lie bracket as a product, one may speak about homo-
morphisms of Lie algebras, Lie subalgebras, and so on. In particular, an
ideal in a Lie algebra is a vector subspace stable under taking the bracket
with an arbitrary element of the whole algebra. A Lie algebra is called sim-
ple if it is not abelian and does not contain any proper ideal. Simple Lie
algebras are classified (see, for example, [FH, Hum]). Over the field of
complex numbers C there are four families of classical algebras:

Type g dim g description

An sln+1 n2 + 2n (n+ 1)× (n+ 1) matrices with zero trace, (n > 1)

Bn so2n+1 2n2 + n skew-symmetric (2n+ 1)× (2n+ 1) matrices, (n > 2)

Cn sp2n 2n2 + n

2n×2nmatricesX satisfying the relationXt·M+M ·X = 0,

where M is the standard 2n × 2n skew-symmetric matrix

M =

(
O Idn
−Idn 0

)
, (n > 3)

Dn so2n 2n2 − n skew-symmetric 2n× 2n matrices, (n > 4)

461
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and five exceptional algebras:

Type E6 E7 E8 F4 G2

dim g 78 133 248 52 14

The Lie bracket in the matrix Lie algebras above is the commutator of
matrices.

Apart from the low-dimensional isomorphisms

sp2
∼= so3

∼= sl2; sp4
∼= so5; so4

∼= sl2 ⊕ sl2; so6
∼= sl4,

all the Lie algebras in the list above are different. The Lie algebra glN of
all N ×N matrices is isomorphic to the direct sum of slN and the abelian
one-dimensional Lie algebra C.

A.1.2. Metrized Lie algebras. For x ∈ g write adx for the linear map
g→ g given by adx(y) = [x, y].

The Killing form on a Lie algebra g is defined by the equality

〈x, y〉K = Tr(adxady).

Cartan’s criterion says that this bilinear form is non-degenerate if and only
if the algebra is semi-simple, that is, isomorphic to a direct sum of simple
Lie algebras.

Exercise. Prove that the Killing form is ad-invariant in the sense of the
following definition.

Definition. A bilinear form 〈·, ·〉 : g⊗ g→ C is said to be ad-invariant if it
satisfies the identity

〈adz(x), y〉+ 〈x, adz(y)〉 = 0,

or, equivalently,

(A.1.1) 〈[x, z], y〉 = 〈x, [z, y]〉.

for all x, y, z ∈ g.

This definition is justified by the fact described in the following exercise.

Exercise. Let G be the connected Lie group corresponding to the Lie al-
gebra g and let Adg : g→ g be its adjoint representation (see, for instance,
[AdJ]). Then the ad-invariance of a bilinear form is equivalent to its Ad-
invariance defined by the natural rule

〈Adg(x),Adg(y)〉 = 〈x, y〉

for all x, y ∈ g and g ∈ G.
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A Lie algebra is said to be metrized, if it is equipped with an ad-invariant
symmetric non-degenerate bilinear form 〈·, ·〉 : g ⊗ g → C. The class of
metrized algebras contains simple Lie algebras with (a multiple of) the
Killing form, abelian Lie algebras with an arbitrary non-degenerate bilin-
ear form and their direct sums. If a Lie algebra is simple, all ad-invariant
symmetric non-degenerate bilinear forms are multiples of each other.

For the classical simple Lie algebras which consist of matrices it is often
more convenient to use, instead of the Killing form, a different bilinear form
〈x, y〉 = Tr(xy), which is proportional to the Killing form with the coefficient

1
2N for slN , 1

N−2 for soN , and 1
N+2 for spN .

Exercise. Prove that for the Lie algebra glN the Killing form 〈x, y〉K =
Tr(adx · ady) is degenerate with defect 1 and can be expressed as follows:

〈x, y〉K = 2NTr(xy)− 2Tr(x)Tr(y) .

Exercise. Prove that the form Tr(xy) on glN is non-degenerate and ad-
invariant.

The bilinear form 〈·, ·〉 is an element of g∗ ⊗ g∗. It identifies g with g∗

and, hence, can be considered as an element c ∈ g⊗ g, called the quadratic
Casimir tensor. If {ei} is a basis for g and {e∗i } is the dual basis, the Casimir
tensor can be written as

c =
∑
i

ei ⊗ e∗i .

The quadratic Casimir tensor is ad-invariant in the sense that for any x ∈ g
we have

adxc :=
∑
i

adxei ⊗ e∗i +
∑
i

ei ⊗ adxe
∗
i = 0.

A.1.3. Structure constants. Given a basis {ei} for the Lie algebra g of
dimension d, the Lie brackets of the basis elements can be written as

[ei, ej ] =
d∑

k=1

cijkek.

The numbers cijk are called the structure constants of g with respect to {ei}.
Lemma. Let cijk be the structure constants of a metrized Lie algebra in a
basis {ei}, orthonormal with respect to an ad-invariant bilinear form. Then
the constants cijk are antisymmetric with respect to the permutations of the
indices i, j and k.

Proof. The equality cijk = −cjik is the coordinate expression of the fact
that the commutator is antisymmetric: [x, y] = −[y, x]. It remains to prove
that cijk = cjki. This follows immediately from equation (A.1.1), simply by
setting x = ei, y = ek, z = ej . �
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The Lie bracket, being a bilinear map g ⊗ g → g, can be considered
as an element of g∗ ⊗ g∗ ⊗ g. The metric defines an isomorphism g ' g∗

and, hence, the Lie bracket of a metrized Lie algebra produces an element
in J ∈ g⊗3 called the structure tensor of g.

Corollary. The structure tensor J of a metrized Lie algebra g is totally
antisymmetric: J ∈ ∧3g.

A.1.4. Representations of Lie algebras. A representation of a Lie al-
gebra g in a vector space V is a Lie algebra homomorphism of g into the Lie
algebra gl(V ) of linear operators in V , that is, a map ρ : g → gl(V ) such
that

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x).

It is also said that V is a g-module and that g acts on V by ρ. When ρ is
understood from the context, the element ρ(x)(v) can be written as x(v).
The invariants of an action of g on V are the elements of V that lie in the
kernel of ρ(x) for all x ∈ g. The space of all invariants in V is denoted by
V g.

The standard representation St of a matrix Lie algebra, such as glN or
slN , is the representation in CN given by the identity map.

The adjoint representation is the action ad of g on itself according to
the rule

x 7→ adx ∈ Hom(g, g) , adx(y) = [x, y] .

It is indeed a representation, since ad[x,y] = adx ·ady−ady ·adx = [adx, ady].

A representation ρ : g→ gl(V ) is reducible if there exist ρ1 : g→ gl(V1)
and ρ2 : g→ gl(V2) with Vi 6= 0 and V = V1 ⊕ V2, such that ρ = ρ1 ⊕ ρ2. A
representation that is not reducible is irreducible.

Example. The algebra sl2 of 2 × 2-matrices with zero trace has precisely
one irreducible representation of dimension n+1 for each positive n. Denote
this representation by Vn. There exist a basis e0, . . . , en for Vn in which the
matrices

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
that span sl2 act as follows:

H(ei) = (n− 2i)ei, E(ei) = (n− i+ 1)ei−1, F (ei) = (i+ 1)ei+1,

where it is assumed that e−1 = en+1 = 0.

The Casimir element of a representation ρ of a metrized Lie algebra is
the matrix

c(ρ) =
∑
i

ρeiρe
∗
i
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for some basis {ei} of g. If ρ is finite-dimensional, the trace of the Casimir
element of ρ is well-defined; it is called the Casimir number of ρ.

Exercise. Show that c(ρ) is well-defined and commutes with the image of
ρ.

A.1.5. Tensor algebras. Let V be a vector space over a field of charac-
teristic zero. A tensor is an element of a tensor product of several copies of
V and its dual space V ∗. The number of factors in this product is called
the rank of the tensor. The canonical map V ⊗ V ∗ → C induces maps

V ⊗p ⊗ (V ∗)⊗q → V ⊗p−1 ⊗ (V ∗)⊗q−1

called contractions, defined for any pair of factors V and V ∗ in the tensor
product.

Denote by

T (V ) =
⊕
nV e0

V ⊗n

the tensor algebra of the vector space V , whose multiplication is given by
the tensor product. In particular, V ⊂ T (V ) is the subspace spanned by the
generators of T (V ).

The symmetric algebra of V , denoted by S(V ), is the quotient of T (V )
by the two-sided ideal generated by all the elements x ⊗ y − y ⊗ x. The
symmetric algebra decomposes as

S(V ) =
⊕
nV e0

Sn(V ),

where the nth symmetric power Sn(V ) is the images of V ⊗n.

Let {ei} be a basis of V . Then T (V ) can be identified with the free
algebra on the generators ei, and S(V ) with the free commutative algebra
on the ei. In particular, elements of S(ei) can be thought of as polynomials
in the ei and products ej1ej2 . . . ejm such that mV e0 and j1 6 j2 6 . . . 6 jm
form an additive basis for S(V ).

The symmetric algebra is a quotient, rather than a subalgebra, of the
tensor algebra. However, it can be identified with the subspace of symmetric
tensors in T (V ). Namely, the image of the linear map Sn(V )→ V ⊗n given
by

ej1ej2 . . . ejm →
1

m!

∑
σ∈Sm

eσ(j1) ⊗ eσ(j2) ⊗ . . .⊗ eσ(jm)

consists of the tensors invariant under all permutations of the factors in
V ⊗m.
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A.1.6. Universal enveloping and symmetric algebras. Any associa-
tive algebra can be considered as a Lie algebra whose Lie bracket is the
commutator

[a, b] = ab− ba.
While not every Lie algebra is of this form, each Lie algebra is contained in
an associative algebra as a subspace closed under the commutator.

The universal enveloping algebra of g, denoted by U(g), is the quotient
of T (g) by the two-sided ideal generated by all the elements

x⊗ y − y ⊗ x− [x, y],

x, y ∈ g. In other words, we force the commutator of two elements of
g ⊂ T (g) to be equal to their Lie bracket in g. An example of a universal
enveloping algebra is the symmetric algebra S(V ): one can think of it as
the universal enveloping algebra of the abelian Lie algebra obtained from V
by endowing it with the zero bracket.

The universal enveloping algebra of g is always infinite-dimensional. A
basis of g gives rise to an explicit additive basis of U(g):

Theorem (Poincaré-Birkhoff-Witt). Let {ei} be a basis of the Lie algebra g.
Then all the products ej1ej2 . . . ejm such that m > 0 and j1 6 j2 6 . . . 6 jm
form an additive basis for U(g).

Corollary. The map g→ T (g)→ U(g) is an inclusion; the restriction to g
of the commutator on U(g) coincides with the Lie bracket.

Exercise. Show that U(g) has the following universal property: for each
homomorphism f of g into a commutator algebra of an associative algebra
A there exists the unique homomorphism of associative algebras U(g)→ A
whose restriction to g is f .

The basis given by the Poincaré-Birkhoff-Witt Theorem does not depend
on the Lie bracket of g. In particular, we see that

U(g) ' S(g)

as vector spaces.

Further, both S(g) and U(g) are g-modules: the adjoint representation of
g can be extended to S(g) or U(g) by the condition that g acts by derivations:

adx(yz) = adx(y)z + yadx(z)

for all y, z in S(g) or U(g). Note that in the case of U(g) the element x
simply acts by taking the commutator with x. In particular, the Casimir
element for this action is simply the image of the Casimir tensor under the
map T (g)→ U(g).
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The Poincaré-Birkhoff-Witt isomorphism is the map S(g) → U(g) de-
fined by

ej1ej2 . . . ejm →
1

m!

∑
σ∈Sm

eσ(j1)eσ(j2) . . . eσ(jm).

Exercise. Show that this is indeed a vector space isomorphism.

It follows from the definition that the Poincaré-Birkhoff-Witt isomor-
phism is an isomorphism of g-modules, that is, it commutes with the action
of g. In fact, it is also an isomorphism of coalgebras, see page 472. (Clearly,
it is not an algebra isomorphism, since S(g) is commutative and U(g) is not,
unless g is abelian.)

A.1.7. Duflo isomorphism. Since the universal enveloping algebra and
the symmetric algebra of a Lie algebra g are isomorphic as g-modules, we
have an isomorphism of vector spaces

S(g)g ' U(g)g = Z(U(g))

between the subalgebra of invariants in the symmetric algebra and the cen-
tre of the universal enveloping algebra. This map does not respect the
product, but it turns out that S(g)g and Z(U(g)) are actually isomorphic
as commutative algebras. The isomorphism between them is given by the
Duflo-Kirillov map, defined as follows.

A differential operator S(g)→ S(g) is just an element of the symmetric
algebra S(g∗). The action of S(g∗) on S(g) is obtained by extending the
pairing of g∗ and g: we postulate that

x(ab) = x(a) · b+ a · x(b)

for any x ∈ g∗ and a, b ∈ S(g), and that

(xy)(a) = x(y(a))

for x, y ∈ S(g∗) and a ∈ S(g). An element of Sk(g∗) is a differential operator
of order k: it sends Sm(g) to Sm−k(g). We can also speak of differential
operators of infinite order; these are elements of the graded completion of
S(g∗).

If g is a metrized Lie algebra, its bilinear form gives an isomorphism
between S(g) and S(g∗), which sends elements of S(g) to differential op-
erators. Explicitly, if we think of elements of S(g) as symmetric tensors,
for a ∈ S(g) the operator ∂a ∈ S(g∗) is obtained by taking the sum of all
possible contractions with a.

Let j(x) be a formal power series with x ∈ g given by

j(x) = det

(
sinh 1

2adx
1
2adx

)
.
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This power series starts with the identity, so we can take the square root
√
j.

It is an element of the graded completion of S(g∗) so it can be considered
as a differential operator of infinite order, called the Duflo-Kirillov map:√

j : S(g)→ S(g).

Theorem ([Duf], see also [AT, BLT, Kon3]). The composition of the
Duflo-Kirillov map with the Poincaré-Birkhoff-Witt isomorphism defines an
isomorphism of commutative algebras S(g)g → Z(U(g)).

This isomorphism is known as the Duflo isomorphism.

A.1.8. Lie superalgebras. A super vector space, or a Z2-graded vector
space is a vector space decomposed as a direct sum

V = V0 ⊕ V1.

The indices (or degrees) 0 and 1 are thought of as elements of Z2; V0 is
called the even part of V and V1 is the odd part of V . An element x ∈ V is
homogeneous if it belongs to either V0 or V1. For x homogeneous we write |x|
for the degree of x. The (super) dimension of V is the pair (dimV0 | dimV1)
also written as dimV0 + dimV1.

An endomorphism f of a super vector space V is a sum of four linear
maps fij : Vi → Vj . If V is finite-dimensional, then the supertrace of f is
defined as

sTrf = Tr f00 − Tr f11.

A superalgebra is a super vector space A together with a bilinear product
which respects the degree:

|xy| = |x|+ |y|

for all homogeneous x and y in A. The supercommutator in a superalgebra
A is a bilinear operation defined on homogeneous x, y ∈ A by

[x, y] = xy − (−1)|x| |y|yx.

The elements of A whose supercommutator with the whole of A is zero form
the super center of A.

The supercommutator satisfies the following identities:

|[x, y]| = |x|+ |y|,

[x, y] = −(−1)|x| |y|[y, x]

and

(−1)|z| |x|[x, [y, z]] + (−1)|y| |z|[z, [x, y]] + (−1)|x| |y|[y, [z, x]] = 0,

where x, y, z are homogeneous. A super vector space with a bilinear bracket
satisfying these identities is called a Lie superalgebra.
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Each Lie superalgebra g can be thought of as a subspace of its universal
enveloping superalgebra U(g) defined as the quotient of the tensor algebra
on g by the ideal generated by

x⊗ y − (−1)|x| |y|y ⊗ x− [x, y],

where x and y are arbitrary homogeneous elements of g; the supercommu-
tator in U(g) induces the bracket of g.

The theory of Lie superalgebras was developed by V. Kac [Kac1, Kac2];
it closely parallels the usual Lie theory.

Example ([FKV]). The Lie superalgebra gl(1|1) consists of the endomor-
phisms of the super vector space of dimension 1+1 with the bracket being
the supercommutator of endomorphisms. The supertrace gives a bilinear
form on gl(1|1)

〈x, y〉 = sTr(xy),

which is non-degenerate and ad-invariant in the same sense as for Lie alge-
bras:

〈[x, z], y〉 = 〈x, [z, y]〉.
Take a basis in the 1+1 - dimensional space whose first vector is even and
the second vector is odd. Then the even part of gl(1|1) is spanned by the
matrices

H =

(
1 0
0 1

)
, G =

(
0 0
0 1

)
,

and the odd part by

Q+ =

(
0 0
1 0

)
, Q− =

(
0 1
0 0

)
.

The Lie bracket of H with any element vanishes and we have

[G,Q±] = ±Q± and [Q+, Q−] = H.

The quadratic Casimir tensor for gl(1|1) is

H ⊗G+G⊗H −Q+Q− +Q−Q+.

Its image c in the universal enveloping algebra U(gl(1|1)) together with the
image of H under the inclusion of gl(1|1), which we denote by h, generate a
polynomial subalgebra of U(gl(1|1)) which coincides with the super center
of U(gl(1|1)).

A.2. Bialgebras and Hopf algebras

Here we give a brief summary of necessary information about bialgebras and
Hopf algebras. More details can be found in [Abe, Car3, MiMo].
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A.2.1. Coalgebras and bialgebras. In what follows, all vector spaces
and algebras will be considered over a field F of characteristic zero. First,
let us recall the definition of an algebra in the language of commutative
diagrams.

Definition. A product, or a multiplication, on a vector space A is a linear
map µ : A⊗A→ A. The product µ on A is associative if the diagram

A⊗A⊗A µ⊗id−−−−→ A⊗A

id⊗µ
y yµ

A⊗A −−−−→
µ

A

commutes. A unit for µ is a linear map ι : F→ A (uniquely defined by the
element ι(1) ∈ A) that makes commutative the diagram

F⊗A ι⊗id−−−−→ A⊗Ax yµ
A A

where the upward arrow is the natural isomorphism. A vector space with
an associative product is called an (associative) algebra.

The unit in an algebra, if exists, is always unique. We shall only consider
associative algebras with a unit.

Reversing the arrows in the above definition we arrive to the notion of
a coalgebra.

Definition. A coalgebra is a vector space A equipped with a linear map
δ : A → A ⊗ A, referred to as comultiplication, or coproduct, and a linear
map ε : A → F, called the counit, such that the following two diagrams
commute:

A⊗A⊗A δ⊗id←−−−− A⊗A

id⊗δ
x xδ

A⊗A δ←−−−− A

F⊗A ε⊗id←−−−− A⊗Ay xδ
A A

Algebras (coalgebras) may possess an additional property of commuta-
tivity (respectively, cocommutativity), defined via the following commuta-
tive diagrams:

A⊗A µ−−−−→ A

τ

x ∥∥∥
A⊗A µ−−−−→ A

A⊗A δ←−−−− A

τ

y ∥∥∥
A⊗A δ←−−−− A
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where τ : A⊗A→ A⊗A is the permutation of the tensor factors:

τ(a⊗ b) = b⊗ a.

Definition. A bialgebra is a vector space A with the structure of an algebra
given by µ, ι and the structure of a coalgebra given by δ, ε which agree in
the sense that the following identities hold:

(1) ε(1) = 1;

(2) δ(1) = 1⊗ 1;

(3) ε(ab) = ε(a)ε(b);

(4) δ(ab) = δ(a)δ(b).

Here µ is written as a usual product and in the last equation δ(a)δ(b) denotes
the component-wise product in A⊗A induced by the product µ in A.

Note that these conditions, taken in pairs, have the following meaning:

• (1,3) ⇔ ε is a homomorphism of unital algebras.

• (2,4) ⇔ δ is a homomorphism of unital algebras.

• (1,2) ⇔ ι is a homomorphism of coalgebras.

• (3,4) ⇔ µ is a homomorphism of coalgebras.

The coherence of the two structures in the definition of a bialgebra can
thus be stated in either of the two equivalent ways:

• ε and δ are algebra homomorphisms,

• µ and i are coalgebra homomorphisms.

Example. The group algebra FG of a group G over the field F consists of
finite formal linear combinations

∑
x∈G λxx where λx ∈ F with the product

defined on the basis elements by the group multiplication in G. The coprod-
uct is defined as δ(x) = x ⊗ x for x ∈ G and then extended by linearity.
Instead of a group G, in this example one can, actually, take a monoid, that
is, a semigroup with a unit.

Example. The algebra FG of F-valued functions on a finite group G with
pointwise multiplication

(fg)(x) = f(x)g(x)

and the comultiplication defined by

δ(f)(x, y) = f(xy)

where the element δ(f) ∈ FG⊗FG is understood as a function on G×G via
the natural isomorphism FG ⊗ FG ∼= FG×G.
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Example. The symmetric algebra S(V ) of a vector space V is a bialgebra
with the coproduct defined on the elements x ∈ V = S1(V ) by setting
δ(x) = 1⊗x+x⊗ 1 and then extended as an algebra homomorphism to the
entire S(V ).

Example. The completed symmetric algebra

Ŝ(g) =
∏
n>0

Sn(g),

of a vector space V , whose elements are formal power series in the coordi-
nates of V , is a bialgebra whose coproduct extends that of the symmetric
algebra.

Example. Let U(g) be the universal enveloping algebra of a Lie algebra g
(see page 466). Define δ(g) = 1⊗ g + g ⊗ 1 for g ∈ g and extend it to all of
A by the axioms of bialgebra. If g is abelian, this example reduces to that
of the symmetric algebra.

Exercise. Define the appropriate unit and counit in each of the above ex-
amples.

Exercise. Show that the Poincaré-Birkhoff-Witt isomorphism is an isomor-
phism of coalgebras (that is, commutes with the counit and the comultipli-
cation).

A.2.2. Primitive and group-like elements. In bialgebras there are two
remarkable classes of elements: primitive elements and group-like elements.

Definition. An element a ∈ A of a bialgebra A is said to be primitive if

δ(a) = 1⊗ a+ a⊗ 1.

The set of all primitive elements forms a vector subspace P(A) called
the primitive subspace of the bialgebra A. The primitive subspace is closed
under the commutator [a, b] = ab − ba, and, hence, forms a Lie algebra
(which is abelian, if A is commutative). Indeed, since δ is a homomorphism,
the fact that a and b are primitive implies

δ(ab) = δ(a)δ(b) = 1⊗ ab+ a⊗ b+ b⊗ a+ ab⊗ 1,

δ(ba) = δ(b)δ(a) = 1⊗ ba+ b⊗ a+ a⊗ b+ ba⊗ 1

and, therefore,

δ([a, b]) = 1⊗ [a, b] + [a, b]⊗ 1.

Definition. An element a ∈ A is said to be semigroup-like if

δ(a) = a⊗ a.

If, in addition, a is invertible, then it is called group-like.
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The set of all semigroup-like elements in a bialgebra is closed under
multiplication. It follows that the set of all group-like elements G(A) of a
bialgebra A forms a multiplicative group.

Among the examples of bialgebras given above, the notions of the prim-
itive and group-like elements are especially transparent in the case A = FG.
As follows from the definitions, primitive elements are the additive func-
tions (f(xy) = f(x) + f(y)) while group-like elements are the multiplicative
functions (f(xy) = f(x)f(y)).

In the example of the symmetric algebra, there is an isomorphism

S(V )⊗ S(V ) ∼= S(V ⊕ V )

which allows to rewrite the definition of the coproduct as δ(x) = (x, x) ∈
V ⊕ V for x ∈ V . It can be even more suggestive to view the elements of
the symmetric algebra S(V ) as polynomial functions on the dual space V ∗

(where homogeneous subspaces S0(V ), S1(V ), S2(V ) and so on correspond
to constants, linear functions, quadratic functions et cetera on V ∗). In these
terms, the product in S(V ) corresponds to the usual (pointwise) multiplica-
tion of functions, while the coproduct δ : S(V )→ S(V ⊕ V ) acts according
to the rule

δ(f)(ξ, η) = f(ξ + η), ξ, η ∈ X∗.

Under the same identifications,

(f ⊗ g)(ξ, η) = f(ξ)g(η),

in particular,

(f ⊗ 1)(ξ, η) = f(ξ),

(1⊗ f)(ξ, η) = f(η).

We see that an element of S(V ), considered as a function on V ∗, is primitive
(group-like) if and only if this function is additive (multiplicative):

f(ξ, η) = f(ξ) + f(η),

f(ξ, η) = f(ξ)f(η).

The first condition means that f is a linear function on V ∗, that is, it
corresponds to an element of V itself; therefore,

P(S(V )) = V.

Over a field of characteristic zero, the second condition cannot hold for
polynomial functions except for the constant function equal to 1; thus

G(S(V )) = {1}.
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The completed symmetric algebra Ŝ(V ), in contrast with S(V ), has a lot of
group-like elements. Namely,

G(Ŝ(V )) = {exp(x) | x ∈ V },

where exp(x) is defined as a formal power series 1 + x + x2/2! + . . ., see
page 482.

Exercise. Describe the primitive and group-like elements in FG and in
U(g).

Answer: In FG we have P = 0, G = G; in U(g) we have P = g, G = {1}.

A.2.3. Filtrations and gradings. A decreasing filtration on a vector
space A is a sequence of subspaces Ai, i = 0, 1, 2, ... such that

A = A0 ⊇ A1 ⊇ A2 ⊇ . . .

The factors of a decreasing filtration are the quotient spaces griA = Ai/Ai+1.

An increasing filtration on a vector space A is a sequence of subspaces
Ai, i = 0, 1, 2, ... such that

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ A.

The factors of an increasing filtration are the quotient spaces griA = Ai/Ai−1,
where by definition A−1 = 0.

A filtration (either decreasing or increasing) is said to be of finite type
if all its factors are finite-dimensional. Note that in each case the whole
space has a (possibly infinite-dimensional) “part” not covered by the factors,
namely ∩∞i=1Ai for a decreasing filtration and A/ ∪∞i=1 Ai for an increasing
filtration.

A vector space is said to be graded if it is represented as a direct sum of
its subspaces

A =

∞⊕
i=0

Ai.

A graded space A has a canonical increasing filtration by the subspaces
⊕ki=0Ai and a canonical decreasing filtration by ⊕∞i=kAi.

With a filtered vector space A one can associate a graded vector space
G(A) setting

grA =

∞⊕
i=0

griA =

∞⊕
i=0

Ai/Ai+1

in case of a decreasing filtration and

grA =

∞⊕
i=0

griA =

∞⊕
i=0

Ai/Ai−1
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in case of an increasing filtration.

If A is a filtered space of finite type, then the homogeneous components
GiA are also finite-dimensional; their dimensions have a compact description
in terms of the Poincaré series

∞∑
k=0

dim(griA) tk,

where t is an auxiliary formal variable.

Example. The Poincaré series of the algebra of polynomials in one variable
is

1 + t+ t2 + ... =
1

1− t
.

Exercise. Find the Poincaré series of the polynomial algebra with n inde-
pendent variables.

One can also speak of filtered and graded algebras, coalgebras and bial-
gebras: these are filtered (graded) vector spaces with operations that respect
the corresponding filtrations (gradings).

Definition. We say that an algebra A is filtered if its underlying vector
space has a filtration by subspaces Ai compatible with the product in the
sense that

ApAq ⊂ Ap+q for p, q > 0 .

A coalgebra A is filtered if it is filtered as a vector space and

δ(An) ⊂
∑
p+q=n

Ap ⊗Aq for n > 0 .

Finally, a bialgebra is filtered if it is filtered both as an algebra and as a
coalgebra, with respect to the same filtration.

Definition. A graded algebra A is a graded vector space with a product
satisfying

ApAq ⊂ Ap+q for p, q > 0 and 1 ∈ A0 .

A graded coalgebra A is a graded vector space with a coproduct satisfying

δ(An) ⊂
∑
p+q=n

Ap ⊗Aq for n > 0 and ε|Ak = 0 for k > 0 .

A graded bialgebra is a graded vector space which is graded both as an
algebra and as a coalgebra.

The operations on filtered vector spaces descend to the associated graded
spaces.
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A.2.4. Proposition. The graded vector space associated to a filtered alge-
bra (coalgebra, bialgebra) has a natural structure of a graded algebra (respec-
tively, coalgebra, bialgebra) except, possibly, for the existence of the unit and
the counit.

Exercise. Find the conditions that a filtered algebra (coalgebra) has
to satisfy so that the associated graded space becomes a graded algebra
(respectively, coalgebra).

Definition. The graded completion of a graded vector space A = ⊕∞i=0Ai is

the vector space Â =
∏∞
i=0Ai.

For instance, the graded completion of the vector space of polynomials
in n variables is the space of formal power series in the same variables. Note
that a priori there is no non-trivial grading on the graded completion of a
graded space.

Note that the product in a graded algebra extends uniquely to its graded
completion; the same is true for the coproduct in a graded coalgebra.

A.2.5. Dual filtered bialgebra. Let A be a filtered bialgebra with a de-
creasing filtration Ak of finite type. For each k > 0 define Wk to be the
the subspace of A∗ consisting of all the linear functions on A that vanish on
Ak+1. Then Wk is contained in Wk+1 and the union

W =
⋃
k>0

Wk

is a filtered vector space with the increasing filtration by the Wk.

A.2.6. Proposition. W is a bialgebra with an increasing filtration, with
the operations induced by duality by those of A.

We say that W is a bialgebra dual to A. Note that W ⊆ A∗ and the
equality holds if and only if A is finite-dimensional.

Proof. If µ and δ are the product and the coproduct in A, respectively,
with ι the unit and ε the counit, the operations in W are as follows:

δ∗ :
∑

k+l=nWk ⊗Wl →Wn is the product in W,

µ∗ : Wn →
∑

k+l=nWk ⊗Wl is the coproduct in W,

ι∗ : W → F is the counit in W,

ε∗ : F→W is the unit in W.

First, let us see that δ∗ is indeed a product which agrees with the fil-
tration. W ⊗W is a subspace of A∗ ⊗ A∗ which, in turn, is a subspace of
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(A⊗A)∗. (The three spaces coincide if and only of A is finite-dimensional.)
We need to show that the image of the composition

Wk ⊗Wl ↪→ (A⊗A)∗
δ∗−→ A∗

lies in Wk+l.

Take w1 ∈ Wk and w2 ∈ Wl. The product of these elements is the
composition

A
δ−→ A⊗A w1⊗w2−→ F.

If a ∈ Ak+l+1 then

δ(a) =
∑
i

bi ⊗ ci,

where for each i we have bi ∈ Ap and ci ∈ Aq with p + q = k + l + 1. As a
consequence, either p > k or q > l which implies that (w1⊗w2)(bi⊗ ci) = 0
for all i and, hence, δ∗(w1 ⊗ w2) ∈Wk+l.

In order to see that µ∗ gives a coproduct on W which respects the
filtration, we have to verify that the image of the map

Wk ↪→ A∗
µ∗−→ (A⊗A)∗

lies in
∑

p+q=kWp ⊗Wq.

Take w ∈Wk and consider the composition

A⊗A µ−→ A
w−→ F.

Since w vanishes on Ak+1, the composition w ◦ µ is equal to zero on the
subspace

∑
p+q=k+1Ap⊗Aq and thus may be considered as a linear function

on the quotient vector space

A⊗A/
∑

p+q=k+1

Ap ⊗Aq.

Since the filtration Ai is of finite type, this quotient does not change if we
replace A with the finite-dimensional vector space A/Ak+1. Now, for any
finite-dimensional vector space A with a descending filtration and for all k
the subspaces A⊗A/ ∑

p+q=k+1

Ap ⊗Aq

∗
and ∑

p+q=k+1

(A/Ap+1)∗ ⊗ (A/Aq+1)∗

of A∗ ⊗A∗ coincide. This implies that µ∗(w) ∈
∑

p+q=kWp ⊗Wq.

We leave checking the bialgebra axioms to the reader. �
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A.2.7. Example. The bialgebra of F-valued functions on a finite group G
is dual to the bialgebra FG. Here the filtration on FG consists of only one
term: (FG)k = 0 for k > 0.

The fact the dual is defined only for filtered bialgebras of finite type and
not for bialgebras in general is explained by the following observation. If
the vector space A is infinite-dimensional, the inclusion

A∗ ⊗A∗ ⊂ (A⊗A)∗

is strict. The dual to a coproduct A→ A⊗A is a map (A⊗A)∗ → A∗ which
restricts to a product A∗ ⊗A∗ → A∗, and, hence, the dual of a coalgebra is
an algebra. However, the dual to a product on A is a map A∗ → (A⊗A)∗,
whose image does not necessarily lie in A∗⊗A∗. As a consequence, the dual
of an algebra may fail to be a coalgebra.

Exercise. Give an example of a bialgebra whose product does not induce
a coproduct on the dual space.

A.2.8. Group-like and primitive elements in the dual bialgebra.
Primitive and group-like elements in the dual bialgebra have a very trans-
parent meaning.

Proposition. Primitive (respectively, group-like) elements in the dual of a
filtered bialgebra A are those linear functions which are additive (respectively,
multiplicative), that is, satisfy the respective identities

f(ab) = f(a) + f(b),

f(ab) = f(a)f(b)

for all a, b ∈ A.

Proof. An element f is primitive if δ(f) = 1 ⊗ f + f ⊗ 1. Evaluating this
on an arbitrary tensor product a⊗ b with a, b ∈ A, we obtain

f(ab) = f(a) + f(b).

An element f is group-like if δ(f) = f ⊗ f . Evaluating this on an
arbitrary tensor product a⊗ b, we obtain

f(ab) = f(a)f(b).

In the same way, the additivity (multiplicativity) of a linear function
implies that it defines a primitive (respectively, group-like) element. �
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A.2.9. Hopf algebras.

Definition. A Hopf algebra is a graded connected bialgebra of finite type.
This means that A is a graded vector space A, with the grading by non-
negative integers

A =
⊕
k>0

Ak

and the grading is compatible with the operations µ, ι, δ, ε in the following
sense:

µ : Am ⊗An → Am+n ,

δ : An →
⊕
k+l=n

Ak ⊗Al ,

ι(1) ∈ A0 ,

ε |Ak= 0 for k > 0 .

An algebra A is said to be of finite type, if all its homogeneous components
An are finite-dimensional. An algebra is said to be connected, if ι : F → A
is an isomorphism of F onto A0 ⊂ A.

Remark. The above definition follows the classical paper [MiMo]. Nowa-
days a Hopf algebra is usually defined as a not necessarily graded bialge-
bra with an additional operation, called antipode, which is a linear map
S : A→ A such that

µ ◦ (S ⊗ 1) ◦ δ = µ ◦ (1⊗ S) ◦ δ = ι ◦ ε.
The bialgebras of interest for us (those that satisfy the premises of Theo-
rem A.2.11 below) always have an antipode.

Example. Recall that, given a basis of a vector space V , the symmetric
algebra S(V ) is spanned by commutative monomials in the elements of this
basis. If V is a graded vector space, and the basis is chosen to consist of
homogeneous elements of V , we define the degree of a monomial to be the
sum of the degrees of its factors. With this grading S(V ) is a Hopf algebra.

A.2.10. Dual Hopf algebra. If A be a Hopf algebra let Wk = A∗k and

W = ⊕k>0Wk.

The space W is also a Hopf algebra; its operations are dual to those of A:

µ∗ : Wn → ⊕
k+l=n

(Ak ⊗Al)∗ ∼= ⊕
k+l=n

Wk ⊗Wl is the coproduct in W

δ∗ : Wn ⊗Wm →Wm+n is the product in W

ι∗ : W → F is the counit in W

ε∗ : F→W is the unit in W
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The Hopf algebra W is called the dual of A.

Exercise. Check that this definition agrees with the definition of the dual
of a filtered bialgebra.

Exercise. Show that the dual of the dual of a Hopf algebra A is canonically
isomorphic to A.

A.2.11. Structure theorem for Hopf algebras. Is it easy to see that
in a Hopf algebra the primitive subspace P = P(A) ⊂ A is the direct sum
of its homogeneous components: P =

⊕
n>0
P ∩An.

Theorem (Milnor–Moore [MiMo]). Any commutative cocommutative Hopf
algebra is canonically isomorphic to the symmetric algebra on its primitive
subspace:

A = S(P(A)).

This isomorphism sends a polynomial in the primitive elements of A into
its value in A.

In other words, if a linear basis is chosen in every homogeneous com-
ponent Pn = P ∩ An, then each element of A can be written uniquely as a
polynomial in these variables.

Proof. There are two assertions to prove:

(1) every element of A can be expressed as a polynomial, that is, as a
sum of products, of primitive elements;

(2) the value of a nonzero polynomial on a set of linearly independent
homogeneous primitive elements cannot vanish in A.

First, let us prove assertion (1) for the homogeneous elements of A by in-
duction on their degree.

Note that under our assumptions the coproduct of a homogeneous ele-
ment x ∈ An has the form

(A.2.1) δ(x) = 1⊗ x+ · · ·+ x⊗ 1,

where the dots stand for an element of A1⊗An−1 + · · ·+An−1⊗A1. Indeed,
we can always write δ(x) = 1⊗ y + · · ·+ z ⊗ 1. By cocommutativity y = z.
Then, x = (ε⊗ id)(δ(x)) = y + 0 + · · ·+ 0 = y.

In particular, for any element x ∈ A1 equation (A.2.1) ensures that
δ(x) = 1 ⊗ x + x ⊗ 1, so that A1 = P1. (It may happen that A1 = 0, but
this does not interfere the subsequent argument!)

Take an element x ∈ A2. We have

δ(x) = 1⊗ x+
∑

λijp
1
i ⊗ p1

j + x⊗ 1,
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where p1
i constitute a basis of A1 = P1 and λij is a symmetric matrix over

the ground field. Let

x′ =
1

2

∑
λijp

1
i p

1
j .

Then

δ(x′) = 1⊗ x′ +
∑

λijp
1
i ⊗ p1

j + x′ ⊗ 1.

It follows that

δ(x− x′) = 1⊗ x′ + x′ ⊗ 1,

that is, x − x′ is primitive, and x is expressed via primitive elements as
(x− x′) + x′, which is a polynomial, linear in P2 and quadratic in P1.

Proceeding in this way, assertion (1) can be proved in degrees 3, 4, and
so on. We omit the formal inductive argument.

Now, assume that there exists a polynomial in the basis elements of
P(A) which is equal to zero in A. Among all such expressions there exists
one, which we denote by w, of the smallest degree; we can assume that it is
homogeneous (lies in An for some n). In particular, all monomials of degree
smaller than n are linearly independent. (We remind the reader that we
are working in a graded algebra, so the degree of a polynomial is calculated
taking into the account the degrees of the variables. In particular, a linear
monomial has the degree equal to the degree of the corresponding variable.)

Let a be a basis primitive element which appears in w as a factor in at
least one of the summands; we can write

w = akfk + ak−1fk−1 + . . . f0,

where the fi for i > 0 are polynomials in the basis primitive elements of
degree smaller than n. Now, δ(w) − (1 ⊗ w + w ⊗ 1) lies in the sum of the
terms Ap ⊗ Aq with p + q = n and p, q > 0; the sum of these terms has a
basis consisting of expressions mp ⊗mq where mp,mq are monomials in the
basis elements of P(A) of degrees p, q respectively. Inspection shows that
the terms in δ(w)− (1⊗w+w⊗ 1) with mp = ak add up to ak ⊗ fk. Since
δ(w) must be zero in A ⊗ A this implies that fk = 0 in A, which gives a
contradiction since the degree of fk is smaller than n.

This completes the proof. �

Corollary. An algebra A satisfying the assumptions of the theorem

(1) has no zero divisors,

(2) has the antipode S defined on primitive elements by

S(p) = −p .

(3) splits as a direct sum of vector spaces Ak = Pk ⊕ Rk, where Rk is
spanned by products of elements of non-zero degrees.
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The space R = ⊕Rk is called the space of decomposable elements.

Remark. In fact, there is a more general version of the Milnor-Moore the-
orem (see [ES]) which describes the structure of a cocommutative, but not
necessarily commutative Hopf algebra. The primitive subspace of such a
Hopf algebra is always a graded Lie algebra; a cocommutative connected
Hopf algebra A is canonically isomorphic to the universal enveloping alge-
bra of P(A).

A.2.12. Primitive and group-like elements in Hopf algebras. As
the Milnor-Moore theorem shows, a non-trivial cocommutative Hopf algebra
always has a non-empty primitive subspace. However, the only group-like
element in such a Hopf algebra is the identity. (In the case of commutative
algebras, which are all isomorphic to symmetric algebras, this was noted in
Section A.2.2.) As we shall now see, all these Hopf algebras acquire a wealth
of group-like elements after completion.

Let Â be the graded completion of a Hopf algebra A. We remind that
while any element of A can be written as a finite sum

∑
i<N xi with xi ∈ Ai,

elements of Â are represented by infinite sums
∑

i xi with xi ∈ Ai. The

operations on A extend to Â uniquely; note, however, that a priori Â comes
with no non-trivial grading.

Lemma. For the graded completion Â of a Hopf algebra A the functions exp
and log, defined by the usual power series, establish a one-to-one correspon-

dence between the set of primitive elements P(Â) and the set of group-like

elements G(Â).

Proof. Let p ∈ P(Â). Then

δ(pn) = (1⊗ p+ p⊗ 1)n =
∑
k+l=n

n!

k!l!
pk ⊗ pl

and therefore

δ(ep) = δ

( ∞∑
n=0

pn

n!

)
=
∞∑
k=0

∞∑
l=0

1

k!l!
pk ⊗ pl =

∞∑
k=0

1

k!
pk ⊗

∞∑
l=0

1

l!
pl = ep ⊗ ep

which means that ep ∈ G(Â).

Vice versa, assuming that g ∈ G(Â) we want to prove that log(g) ∈ P(Â).
By assumption, our Hopf algebra A is connected which implies that the
graded component g0 ∈ A0

∼= F is equal to 1. Therefore we can write
g = 1+h where h ∈

∏
k>0Ak. The condition that g is group-like transcribes

as

(A.2.2) δ(h) = 1⊗ h+ h⊗ 1 + h⊗ h.
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Now,

p = log(g) = log(1 + h) =
∞∑
k=1

(−1)k−1

k
hk

and an exercise in power series combinatorics shows that equation A.2.2
implies the required property

δ(p) = 1⊗ p+ p⊗ 1.

�

A.2.13. Exercise ([Sch, Lnd1]). Define the convolution product of two
vector space endomorphisms of a commutative and cocommutative Hopf
algebra A by

(f ∗ g)(a) =
∑

δ(a)=
∑
a′i⊗a′′i

f(a′i)g(a′′i ).

Let I : A→ A be the operator defined as zero on A0 and as the identity on
each Ai with i > 0. Show that the map

I − 1

2
I ∗ I +

1

3
I ∗ I ∗ I − 1

4
I ∗ I ∗ I ∗ I + . . .

is the projector of A onto the subspace of primitives P parallel to the sub-
space R of decomposable elements.

A.3. Free algebras and free Lie algebras

Here we briefly mention the definitions and basic properties of the the free
associative and free Lie algebras. For a detailed treatment see, for example,
[Reu].

A.3.1. Free algebras. The free algebra R〈x1, . . . , xn〉 over a commutative
unital ring R is the associative algebra of non-commutative polynomials in
the xi with coefficients in R. If R = F and V is the vector space spanned
by the symbols x1, . . . , xn, then the free algebra on the xi is isomorphic to
the tensor algebra T (V ).

Example. The algebra R〈x1, x2〉 consists of finite linear combinations of
the form c+ c1x1 + c2x2 + c11x

2
1 + c12x1x2 + c21x2x1 + c22x

2
2 + . . ., cα ∈ R,

with natural addition and multiplication.

The free algebraR〈x1, . . . , xn〉 is characterized by the following universal
property: given an R-algebra A and a set of elements a1, . . . , an in A there
exists a unique map

R〈x1, . . . , xn〉 → A

which sends xi to ai for all i. As a consequence, every R-algebra generated
by n elements is a quotient of the free algebra R〈x1, . . . , xn〉.
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The word free refers to the above universal property, which is analo-
gous to the universal property of free groups or Lie algebras (see below).
This property amounts to the fact that the only identities that hold in
R〈x1, . . . , xn〉 are those that follow from the axioms of an algebra, such as
(x1 + x2)2 = x2

1 + x1x2 + x2x1 + x2
2.

The algebra R〈x1, . . . , xn〉 is graded by the degree of the monomials;
its homogeneous component of degree k has dimension nk, and its Poincaré
series is 1/(1 − nt). The graded completion of R〈x1, . . . , xn〉 is denoted by
R〈〈x1, . . . , xn〉〉.

The free algebra R〈x1, . . . , xn〉 has a coproduct δ defined by the condi-
tion that the generators xi are primitive:

δ(xi) = xi ⊗ 1 + 1⊗ xi.

This condition determines δ completely since the coproduct is an algebra
homomorphism. There also exists a counit: it sends a non-commutative
polynomial to its constant term.

Proposition. The free algebra F〈x1, . . . , xn〉 is a connected cocommutative
Hopf algebra.

The proof is immediate.

A.3.2. Free Lie algebras. Recall that the space of primitive elements in
a bialgebra is a Lie algebra whose Lie bracket is the algebra commutator
[a, b] = ab−ba. Let F be a field and L(x1, . . . , xn) be the Lie algebra of prim-
itive elements in F〈x1, . . . , xn〉. Note that the xi belong to L(x1, . . . , xn).

Proposition. The Lie algebra L(x1, . . . , xn) has the following universal
property: given a Lie algebra g and a set of elements a1, . . . , an ∈ g there
exists the unique Lie algebra homomorphism L(x1, . . . , xn)→ g sending each
xi to ai.

Indeed, since F〈x1, . . . , xn〉 is free, there exists a unique algebra homo-
morphism

F〈x1, . . . , xn〉 → U(g)

sending the xi to the ai. Passing to the primitive spaces we recover the
Proposition.

Definition. The Lie algebra L(x1, . . . , xn) is called the free Lie algebra on
x1, . . . , xn.

The explicit construction of L(x1, . . . , xn) uses Lie monomials, which
are defined inductively as follows. A Lie monomial of degree 1 in x1, . . . , xn
is simply one of these symbols. A Lie monomial of degree d is an expression
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of the form [a, b] where a and b are Lie monomials the sum of whose degrees
is d.

The Lie algebra L(x1, . . . , xn) as a vector space is spanned by all Lie
monomials in x1, . . . , xn, modulo the subspace spanned by all expressions of
the form

[a, b]− [b, a]

and
[[a, b], c] + [[b, c], a] + [[c, a], b]

where a, b, c are Lie monomials. The Lie bracket is the linear extension of
the operation [ , ] on Lie monomials. Note that as a vector space a free Lie
algebra is graded by the degree of Lie monomials. Understanding the bracket
as the commutator we get an embedding of L(x1, . . . , xn) constructed in this
way into F〈x1, . . . , xn〉 as the primitive subspace.

Finding a good basis for a free Lie halgebra is a non-trivial problem; it is
discussed in detail in [Reu]. One explicit basis, the so-called Lyndon basis,
is constructed with the help of Lyndon words. The Lyndon words can be
defined as follows. Take an aperiodic necklace (see page 197) and choose the
lexicographically smallest among all its cyclic shifts. Replacing each bead
with the label i by xi we get a non-commutative monomial (Lyndon word)
in the xi. A Lyndon word w gives rise to an iterated commutator by means
of the following recurrent procedure. First, w = xixj is declared to produce
the commutator [xi, xj ]. If w is of degree more than two, among all decom-
positions of w into a nontrivial product w = uv choose the decomposition
with lexicographically the smallest possible v, and take the commutator of
the (possibly iterated) commutators that correspond to u and v.

Shown below is the Lyndon basis for the free Lie algebra L(x, y) in
small degrees (up to a linear change by a triangular matrix with ±1 on the
diagonal):

m dimL(x, y)m basis
1 2 x, y
2 1 [x, y]
3 2 [x, [x, y]] [y, [x, y]]
4 3 [x, [x, [x, y]]] [y, [x, [x, y]]] [y, [y, [x, y]]]
5 6 [x, [x, [x, [x, y]]]] [y, [x, [x, [x, y]]]] [y, [y, [x, [x, y]]]]

[y, [y, [y, [x, y]]]] [[x, y], [x, [x, y]]] [[x, y], [y, [x, y]]]

Exercise. Check that in any Lie algebra the identity [a, [b, [a, b]]] =
[b, [a, [a, b]]] holds.
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Norm. Sup. (4) 3 (1970) 23–74.

[Du1] S. Duzhin, A quadratic lower bound for the number of primitive Vassiliev invari-
ants, Extended abstract, KNOT’96 Conference/Workshop report, 52–54, Waseda
University, Tokyo, July 1996.

[Du2] S. Duzhin, Lectures on Vassiliev knot invariants, Lectures in Mathematical Sci-
ences, vol. 19, The University of Tokyo, 2002. 123 pp.

[Du3] S. Duzhin, Expansion of the logarithm of the KZ Drinfeld associator over Lyndon
basis up to degree 12, online at http://www.pdmi.ras.ru/ arnsem/dataprog/.

[Du4] S. Duzhin, Conway polynomial and Magnus expansion, St.Petersburg Math. Jour-
nal, v.23 (2012), no.3, pp. 541–550. Preprint arXiv:1001.2500v2.

[DKC] S. Duzhin, A. Kaishev and S. Chmutov, The algebra of 3-graphs, Proc. Steklov
Inst. Math. 221(1998) 157–186.

[DK] S. V. Duzhin and M. V. Karev. Detecting the orientation of long links by finite type
invariants. arXiv:math.GT/0507015. (Also as it Determination of the orientation
of string links using finite-type invariants ,Funct. Anal. Appl. 41 (2007) 208–216.)

[Dyn] I. A. Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math.
190 (2006) 29–76.

[ElMo] E. El-Rifai and H. Morton, Algorithms for positive braids, Quart. J. Math. Oxford
45 (1994) 479–497.

[ES] P. Etingof and O. Schiffmann, Lectures on quantum groups, International Press,
Boston, 1998.

[EFK] P. Etingof, I. Frenkel and A. Kirillov Jr., Lectures on representation theory and
Knizhnik—Zamolodchikov equations, Mathematical Surveys and Monographs, 58,
Amer. Math. Soc., Providence, RI, 1998.

[Eu] L. Euler, Meditationes circa singulare serierum genus, Novi commentarii
academiae scientiarum Petropolitanae 20 (1775) 140–186. (Reprinted in: Opera
Omnia, Ser.1, XV, Teubner, Leipzig–Berlin (1927) 217–267).

[FR] M. Falk and R. Randell, The lower central series of a fiber-type arrangement,
Invent. Math. 82 (1985) 77–88.

[Fi] T. Fiedler, Gauss diagram invariants for knots and links, Kluwer Academic Pub-
lishers, Dordrecht, 2001.

[FKV] J. M. Figueroa-O’Farrill, T. Kimura and A. Vaintrob, The universal Vassiliev
invariant for the Lie superalgebra gl(1|1), Comm. Math. Phys. 185 (1997), no. 1,
93–127. (Draft version available online at arXiv:math.QA/9602014).

[Fox] R- H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of
Math. (2) 57 (1953) 547–560.



492 Bibliography

[FH] W. Fulton and J. Harris, Representation theory, a first course, Graduate Texts
in Mathematics 129, Springer-Verlag, New York, 1991.

[GSH] C. P. Gabor, K. J. Supowit, and W.-L. Hsu, Recognizing circle graphs in polyno-
mial time, J. Assoc. Comput. Mach. 36 (1989) 435–473.

[Gar] F. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969)
235–254.

[GK] S. Garoufalidis and A. Kricker, A rational noncommutative invariant of boundary
links, Geom. Topol. 8 (2004) 115–204., arXiv:math.GT/0105028.

[GL] E.A. Gorin and V.Ya. Lin, Algebraic equations with continuous coefficients and
some problems of the algebraic theory of braids. Math. USSR Sb. 7 (1969) 569–
596; translation from Mat. Sb., N. Ser. 78(120), (1969) 579–610.

[Goer] L. Goeritz, Bemerkungen zur Knotentheorie, Abh. Math. Sem. Univ. Hamburg,
10 (1934) 201–210.

[G1] M. Goussarov, A new form of the Conway-Jones polynomial of oriented links,
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 193 (1991), 4–9
(online at http://www.pdmi.ras.ru/~duzhin/goussarov/). (English translation:
Topology of manifolds and varieties (O. Viro, editor), Adv. Soviet Math. 18 167–
172, Amer. Math. Soc., Providence, RI 1994).

[G2] M. Goussarov, On n-equivalence of knots and invariants of finite degree, Zap.
Nauchn. Sem. S-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 208 (1993), 152–
173 (online at http://www.pdmi.ras.ru/~duzhin/goussarov/). (English trans-
lation: Topology of manifolds and varieties (O. Viro, editor), Adv. Soviet Math.
18 173–192, Amer. Math. Soc., Providence, RI 1994).

[G3] M. Goussarov, Finite type invariants are presented by Gauss diagram formulas,
preprint (translated from Russian by O. Viro), December 1998.
http://www.math.toronto.edu/~drorbn/Goussarov/.

[G4] M. Goussarov, Variations of knotted graphs. The geometric technique of n-
equivalence, St. Petersburg Math. J. 12 (2001) 569–604.

[G5] M. Goussarov, Interdependent modifications of links and invariants of finite de-
gree, Topology 37 (1998) 595–602.

[GPV] M. Goussarov, M. Polyak and O. Viro, Finite type invariants of clas-
sical and virtual knots, Topology 39 (2000) 1045–1068. Preprint version:
arXiv:math/9810073v2 [math.GT].

[Gon1] A. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math.
Res. Lett. 5 (1998) 497–516.

[Gon2] A. Goncharov, Periods and mixed motives, arXiv:math/0202154.

[Gor1] V. Goryunov, Vassiliev invariants of knots in R3 and in a solid torus, Differential
and symplecttic topology of knots and curves, Amer. Math. Soc. Transl. (2) 190
(1999) 37–59.(http://www.liv.ac.uk/~su14/knotprints.html).

[Gor2] V. Goryunov, Vassiliev type invariants in Arnold’s J+-theory of plane
curves without direct self-tangencies, Topology 37 (1998) 603–620.
(http://www.liv.ac.uk/~su14/knotprints.html).

[HL] N. Habegger and X.-S. Lin, Classification of links up to link homotopy, J. Amer.
Math. Soc. 3 (1990) 389–419.

[HM] N. Habegger and G. Masbaum, The Kontsevich integral and Milnor’s invariants,
Topology 39 (2000) 1253–1289.

[Ha1] K. Habiro, Aru musubime no kyokusyo sousa no zoku ni tuite, Master thesis at
Tokyo University (in Japanese), 1994.



Bibliography 493

[Ha2] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000)
1–83.

[H] P. Hall, Nilpotent groups, Canadian Mathematical Congress, University of Al-
berta, Edmonton, 1957; also published as Queen Mary College Mathematics
Notes, Queen Mary College, London, 1969, and in The Collected Works of Philip
Hall, Oxford University Press, New York, 1988.

[Har] F. Harary, Graph theory, Addison Wesley, 1969.

[Ha] B. Harris, Iterated integrals and cycles on algebraic manifolds, Nankai Tracts in
Mathematics 7. World Scientific, River Edge, NJ, 2004.

[Hat1] A. Hatcher, A proof of the Smale conjecture, Ann. of Math. 177 (1983) 553–607.

[Hat2] A. Hatcher, Spectral sequences in algebraic topology,
http://www.math.cornell.edu/~hatcher/SSAT/SSATpage.html

[HV] V. Hinich and A. Vaintrob, Cyclic operads and algebra of chord diagrams, Selecta
Math. (N.S.) 8 (2002) 237–282.

[Hoff] M. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992) 275–290.

[HoOh] M. Hoffman and Y. Ohno, Relations of multiple zeta values and their algebraic
expression, J. Algebra 262 (2003) 332-347. preprint math.QA/0010140.

[HOM] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett and A. Ocneanu, A
new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12
(1985) 239–246.

[HT] J. Hoste and M. Thistlethwaite, Knotscape, computer program available from
www.math.utk.edu/~morwen/knotscape.html.

[HTW] J. Hoste, M. Thistlethwaite and J. Weeks, The first 1,701,936 knots, Math. In-
telligencer 20 (1998) 33–48.

[Hum] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate
Texts in Mathematics 9, Springer-Verlag, New York–Heidelberg–Berlin, 1980.

[Jimb] M. Jimbo, A q-difference analogue od U(g) and the Yang–Baxter equation, Lett.
Math. Phys. 10 (1985) 63–69.

[Jan] J. Jantzen, Lectures on quantum groups, Graduate Studies in Math. 6, Amer.
Math. Soc., Providence, RI, 1996.

[Jen] S. A. Jennings, The group ring of a class of infinite nilpotent groups, Can. J.
Math. 7 (1955) 169–187.

[Jo1] V. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer.
Math. Soc. (N.S.) 12 (1985) 103–111.

[Jo2] V. Jones, Hecke algebra representations of braid groups and link polynomials,
Math. Ann. 126 (1987) 335–388.

[Jo3] V. Jones, On knot invariants related to some statistical mechanics models, Pacific
J. Math. 137 (1989) 311–334.

[Kac1] V. Kac, A sketch of Lie superalgebra theory, Comm. Math. Phys. 53 (1977) 31–64.

[Kac2] V. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8–96.

[Kai] A. Kaishev, A program system for the study of combinatorial algebraic invariants
of topological objects of small dimension, PhD thesis, Program Systems Institute
of the Russian Academy of Sciences, Pereslavl-Zalessky, 2000.

[Kal] E. Kalfagianni, Finite type invariants for knots in three-manifolds, Topology 37
(1998) 673-707.



494 Bibliography

[KM] T. Kanenobu and H. Murakami, Two-bridge knots with unknotting number 1.
Proc. Amer. Math. Soc., 98 (1986), 499–501.

[Ka1] L. Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University
Press, Princeton, 1983.

[Ka2] L. Kauffman, The Arf invariant of classical knots, Contemp. Math. 44 (1985)
101–106.

[Ka3] L. Kauffman, On knots, Annals of Mathematics Studies 115, Princeton University
Press, Princeton, 1987.

[Ka4] L. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990)
417–471.

[Ka5] L. Kauffman, Virtual knot theory, European J. Combin. 20 (1999) 663–690.

[Ka6] L. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395–
407.

[Ka7] L. Kauffman, Knots and physics, World Scientific Publishing, 3rd edition, 1993.

[Kas] C. Kassel, Quantum groups, Graduate Texts in Math. 155, Springer-Verlag, New
York - Heidelberg - Berlin, 1995.

[KRT] C. Kassel, M. Rosso and V. Turaev, Quantum groups and knot invariants, Panora-
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[NaS] S. Naik, T. Stanford, A move on diagrams that generates S-equivalence
of knots, J. Knot Theory Ramifications 12, (2003) 717-724. Preprint
arXiv:math.GT/9911005.

[Ng] K. Y. Ng, Groups of ribbon knots, Topology 37 (1998) 441–458. (See also
arXiv:math.QA/9502017).

[Oht1] T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds and their sets,
Series on Knots and Everything, 29, World Scientific, 2002.

[Oht2] T. Ohtsuki, A cabling formula for the 2-loop polynomial of knots, Publ. Res. Inst.
Math. Sci. 40 (2004) 949–971.

[Oht3] T. Ohtsuki (ed.), Problems on invariants of knots and 3-manifolds, Invariants of
knots and 3-manifolds (Kyoto 2001), 377–572, Geom. Topol. Monogr. 4, Geom.
Topol. Publ., Coventry, 2004.

[OU] J. Okuda and K. Ueno, Relations for multiple zeta values and Mellin transforms of
multiple polylogarithms, Publ. Res. Inst. Math. Sci. 40 (2004) 537–564. Preprint
math.NT/0301277.
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Notations

Z, Q, R, C — rings of integer, rational, real and complex numbers.

1T — one-term relations, p. 99.

4T — four-term relations, p. 97.

A — algebra of unframed chord diagrams on the circle, p. 109.

Afr — algebra of framed chord diagrams on the circle, p. 106.

An — space of unframed chord diagrams of degree n, p. 105.

Afrn — space of framed chord diagrams of degree n, p. 105.

A(X) — coalgebra of tangle chord diagrams on the skeleton X, p. 155.

A(n) — algebra of chord diagrams on n lines, p. 163.

Ah(n) — algebra of horizontal chord diagrams, p. 161.

Â — graded completion of the algebra of chord diagrams, p. 230.

An — set of chord diagrams of degree n, p. 80.

A — Alexander-Conway power series invariant, p. 325.

αn — map from Vn to RAn, symbol of an invariant, p. 81.

B — algebra of open Jacobi diagrams, p. 142.

B(m) — space of m-coloured open Jacobi diagrams, p. 157.

B◦ — enlarged algebra B, p. 327.

Bn — set of open Jacobi diagrams of degree n, p. 142.

BNG — the Bar-Natan–Garoufalidis function, p. 413.

β — “bubble” as an element of the algebra Γ, p. 210. Also see Θ.

C — space of closed Jacobi diagrams, p. 128.
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504 Notations

Cn — space of closed Jacobi diagrams of degree n, p. 128.

Cn — Goussarov–Habiro moves, p. 436.

C(X) — space of tangle Jacobi diagrams, p. 155.

C(x1, . . . ,xn |y1, . . . ,ym) — space of mixed Jacobi diagrams, p. 157.

C — Conway polynomial, p. 45.

×2n — Conway combination of Gauss diagrams, p. 398.

Cn — set of closed diagrams of degree n, p. 135.

cn — n-th coefficient of the Conway polynomial, p. 46.

Dk(G) — dimension subgroups, p. 348.

∂C — diagrammatic differential operator on B, p. 326.

∂◦C — diagrammatic differential operator on B◦, p. 328.

∂Ω — wheeling map, p. 327.

δ — coproduct in a coalgebra, p. 470; in particular, for the bialgebra
Afr see p. 108.

∆n1,...,nk — operation A(k)→ A(n1 + . . .+ nk), p. 274.

ε — counit in a coalgebra, p. 470; in particular, for the bialgebra Afr
see p. 109.

F (L) — unframed two-variable Kauffman polynomial, p. 59.

Fm — free group on m generators, p. 353.

Φ — map B(y)→ C(x), p. 332.

Φ0 — map B → C, p. 334.

Φ2 — map B(y1,y2)→ C(x), p. 332.

Φ — general Drinfeld associator, p. 311.

ΦKZ — Knizhnik–Zamolodchikov Drinfeld associator, p. 281.

ΦQ — rational Drinfeld associator, p. 315.

ΦBN — Bar-Natan’s rational Drinfeld associator, p. 315.

ϕg — universal Lie algebra weight system, p. 170.

ϕTg — Lie algebra weight system associated with the representation,
p. 176.

Gn — Goussarov group, p. 422.

G — bialgebra of graphs, p. 424.

γkG — elements of the lower central series, p. 349.

Γ — algebra of 3-graphs, p. 208.

Γ(D) — intersection graph of a chord diagram D, p. 116.
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H =

(
1 0
0 −1

)
— element of the Lie algebra sl2, p. 173.

H — hump unknot, p. 233.

In — constant 1 weight system on An, p. 112.

I — a map of Gauss diagrams to arrow diagrams, p. 381.

I(K) — final Kontsevich integral, p. 233.

I — algebra of knot invariants, p. 49.

ι — unit in an algebra, p. 470; in particular, for the bialgebra Afr see
p. 109.

jn — n-th coefficient of the modified Jones polynomial, p. 84.

JkG — powers of the augmentation ideal JG, p. 348.

K — set of (equivalence classes of) knots, p. 27.

L(n) — group of string links strands modulo γn+1-equivalence, p. 372.

Li2 — Euler dilogarithm, p. 255.

L — bialgebra of Lando, p. 427.

Λ — Vogel’s algebra, p. 223.

Λ(L) — framed two-variable Kauffman polynomial, p. 59.

∇ — difference operator for Vassiliev invariants, p. 75.

Mn — Goussarov–Habiro moves, p. 416.

MM — highest order part of the coloured Jones polynomial, p. 407.

MT — mutation of a knot with respect to a tangle T , p. 319.

µ — product in an algebra, p. 470; in particular, for the bialgebra Afr
see p. 106.

P — Polyak algebra, p. 393.

Pn — primitive subspace of the algebra of chord diagrams, p. 113.

P — HOMFLY polynomial, p. 57.

P fr — framed HOMFLY polynomial, p. 70.

pk,l(L) — k, l-th coefficient of the modified HOMFLY polynomial, , p. 96.

ρg — universal Lie algebra weight system on B, p. 193.

ψn — n-th cabling of a chord diagram, p. 265.

R — ground ring (usually Q or C), p. 73.

RAn — R-valued functions on chord diagrams, p. 81.

R — R-matrix, p. 52.

R, R−1 — Kontsevich integrals of two braided strings, p. 236.

SA — symbol of the Alexander-Conway invariant A, p. 408.
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SMM — symbol of the Melvin-Morton invariant MM , p. 408.

Si — operation on tangle (chord) diagrams, p. 257.

symb(v) — symbol of the Vasiliev invariant v, p. 81.

σ — mirror reflection of knots, p. 23.

τ — changing the orientation of a knot, p. 23.

τ — reversing the orientation of the Wilson loop, p. 139.

τ — inverse of χ : B → C, p. 147.

Θ — the chord diagram with one chord, , p. 109.

θfr —- quantum invariant, p. 52.

θfr —- sl2-quantum invariant, p. 55.

θfr,StslN
—- slN -quantum invariant, p. 68.

V — space of Vassiliev (finite type) invariants, p. 73

Vn — space of unframed Vassiliev knot invariants of degree 6 n, p. 73.

Vfrn — space of framed Vassiliev knot invariants of degree 6 n, p. 82.

V• — space of polynomial Vassiliev invariants, p. 78.

V̂• — space of power series invariants, graded completion of V•, p. 78.

Wn — space of unframed weight systems of degree n, p. 100.

Wfr
n — space of framed weight systems of degree n, p. 100.

Ŵfr — graded completion of the algebra of weight systems, p. 112.

Z( ) — Kontsevich integral of in algebra B(y), p. 331.

Z( ) — Kontsevich integral of in algebra B(y1,y2), p. 332.

Zi( ) — i-th part of the Kontsevich integral Z( ), p. 333.

Z(K) — Kontsevich integral, p. 230.

ZK — algebra of knots, p. 27.

χ — symmetrization map B → C, p. 146.

χym — map C(X |y1, . . . ,ym)→ C(X,ym |y1, . . . ,ym−1), p. 157.

Ω′ — part of Z0( ) containing wheels, p. 334.

〈 , 〉y — pairing C(x |y)⊗ B(y)→ C(x), p. 159.

— open Hopf link, p. 331.

— doubled open Hopf link, p. 332.

— closed Hopf link, p. 339.

# — connected sum of two knots, p. 25, or two diagrams, p. 108; also
the action of C on tangle diagrams, p. 159.

———————–



Index

(A, b)-configuration, 450

E6, 462

E7, 462

E8, 462

F4, 462

G2, 462

L, 298

C〈〈A,B〉〉, 280

ΦKZ, 281

δ, 470

ε, 470

η(p,q), 289

ι, 470

µ, 470

slN , 462

spN , 462

soN , 462

Actuality table, 90

canonical, 392

ad-invariant

bilinear form, 462

Adjoint representation, 464

Alexander polynomial, 45

Alexander–Conway polynomial, 324

Algebra, 470

B◦, 327

filtered, 475

graded, 475

horizontal chord diagrams, 161, 278

of 3-graphs, 208

of knot invariants, 49

of knots, 27

of Vassiliev invariants, 75

symmetric, 465

tensor, 465

universal enveloping, 466, 472

Vogel’s Λ, 223

Almost direct product, 352

Alternance graph, 117

Antipode, 479

Antisymmetry relation, 130

Arf invariant, 65, 421

Associating tangle, 253, 256

Associator

axiomatic definition, 311

Augmentation ideal, 348

Auxiliary filtration, 455

Baguette diagram, 431

Bar-Natan–Garoufalidis function, 413

Bialgebra, 471

connected, 479

filtered, 475

graded, 475, 479

of chord diagrams, 105

of finite type, 479

of graphs, 424

of open diagrams, 145

of weight systems, 110

Blackboard framing, 33

Borromean move, 416

Borromean rings, 21

Braid, 29

combed, 360

flat, 380

fundamental, 37

generators, 30

pure, 29, 279

relation, 30

relations, 30

Bridge number, 64
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Brunnian link, 36

Bubble, 184, 210

Burau representation, 38

reduced, 38

Cabling

of closed diagrams, 266

of open diagrams, 266

of the Kontsevich integral, 268

of weight systems, 272

Canonical

invariant, 322

series, 322

Canonical decomposition of graphs, 120

Canonical filtration, 351

Casimir

element, 464

number, 465

tensor, 463

Casimir element, 170

generalized, 188

Casson invariant, 88, 389

Chen’s iterated integral, 354

Chern-Simons theory, 12

Chinese characters, 142

Chord

isolated, 99

Chord diagram, 80

degenerate, 449

anti-symmetric, 166, 252

coproduct, 108

distinguishing mutants, 343

for tangles, 155

mutation, 119

of a singular knot, 80

product, 106

spine, 429

symmetric, 140, 252

Chord diuagram

regular, 429

Chromatic polynomial, 118

Circle graph, 117

Clasp-pass move, 436

Closed diagram, 127

connected, 137

coproduct, 137

product, 137

Co-orientation, 446

Coalgebra, 470

filtered, 475

graded, 475

of tangle chord diagrams, 155

Cocommutativity, 470

Coloured Jones polynomial, 324

Comb with n teeth, 333

Commutativity, 470

Complexity

of a degenerate chord diagram, 450

Conjecture

Melvin–Morton, 407

Tait, 22, 67

Connected sum

of knots, 25

of diagrams, 108

Contraction of a tensor, 465

Convergent monomial, 285

Conway combination, 398

Conway knot, 59, 319

Conway polynomial, 45, 64, 324, 398

symbol, 96, 164, 324

table, 47

Coproduct, 470

in A, 108

in B, 145

in C, 137

in W, 110

Counit, 470

in A, 109

in W, 110

Crossing number, 41

Decomposition of graphs, 120

Deframing

of chord diagrams, 109

of framed knot invariants, 57

of weight systems, 113

Degree, 80, 127, 142, 208

Determinant of a link, 65

Diagram

1-3-valent, 142

combed, 361

baguette, 431

caterpillar, 166

closed, 127

Dynkin, 117

fixed, 222

Jacobi, 142

open, 141

Pont-Neuf, 194, 435

web, 142

Diagram complex, 452

Diagrammatic differential operator

on B, 326

on B◦, 328

Dilogarithm, 255

Dimension series, 348

Divergent monomial, 285

Double point, 72

Doubled-delta move, 421

Drinfeld associator, 281

Duality relation, 295

Duflo isomorphism, 325, 329, 468

Duflo-Kirillov map, 329

Dynkin diagram, 117
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Edge product, 209

Embedding, 17

Filtered bialgebra

dual, 476

Filtration

canonical, induced by a series, 351

Finite type invariant, 73

Fish

Willerton’s, 423

Flat braid, 380

Four-term relation

for chord diagrams, 97

for graphs, 426

for knots, 101

generalized, 125

horizontal, 99

Framed knot, 32

Framing, 32

blackboard, 33

independence, 102

Free Lie algebra L, 298

Fundamental theorem

for tangles, 156

Gauss diagram, 34

descending, 384

for singular knots, 384

for links, 405

realizable, 34, 382

unsigned, 396

Generalized 4-term relation, 125

Goeritz diagram, 37

Goussarov

–Habiro move

Mn, 416

Cn, 436

filtration, 75

group, 422

Graded completion, 230, 476

Graded space, 474

associated with a filtration, 474

Grading

by legs in B, 144

by loops in B, 144

Granny knot, 20

Graph

alternance, 117

canonical decomposition, 120

circle, 117

decomposition, 120

internal, 450

intersection, 116

prime, 120

split, 119

Group algebra, 348, 471

Group-like element, 111, 249, 273, 298, 472

Hexagon relation, 311

HOMFLY polynomial, 57, 399

framed, 70

table, 58

Vassiliev invariants, 96

Homogeneous components, 479

Hopf algebra, 479

dual, 479

Hopf link, 21

, 331

Hump, 233

IHX relation, 131

generalized, 133

Internal graph of a closed diagram, 137

Intersection graph, 116

conjecture, 118, 321

Intersection number, 42

Isomorphism

A ' C, 135

B ' C, 146

Duflo, 468

Isotopy, 19

Iterated integrals, 277, 354

Jacobi diagram, 127

for tangles, 155

mixed, for tangles, 156

unframed, 152

Jones polynomial, 48, 64

coloured, 324

highest part, 407

interlacing crossings formulae, 65

modified, 84

table, 87

switching formula, 65

symbol, 85, 164

table, 50

Kauffman bracket, 48

Kauffman polynomial, 59

table, 60–62

Killing form, 462

Kinoshita–Terasaka knot, 59, 319

Kirchhoff law, 133

Knizhnik–Zamolodchikov

equation, 278

Knizhnik-Zamolodchikov

associator, 281

Knot, 17

achiral, 23

alternating, 22

ambient equivalence, 20

ambient isotopy, 20

amphicheiral, 23

asymmetric, 23

chiral, 23
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classical, 382

Conway, 59, 319

figure eight, 20

framed, 33

granny, 20

invariant, 27

multiplicative, 27

invertible, 23

Kinoshita–Terasaka, 59, 319

long, 29, 441

plus-amphicheiral, 252

pretzel, 24

rational, 64

ribbon, 33

singular, 449

square, 20

strict Morse, 230

symmetric, 23

table, 26

torus, 264

trefoil, 20

unoriented, 18

virtual, 35

Knot diagram, 21

alternating, 22

reducible, 22

Knot invariant, 41

2-loop polynomial, 343

finite type, 73

Vassiliev, 73

Kontsevich integral, 230

of the Hopf link, 345

combinatorial, 302

convergence, 238

final, 233

for tangles, 236

for torus knots, 272

framed, 259

group-like, 249

invariance, 239

of the unknot, 337

preliminary, 233

reality, 248

KZ equation, 278

formal, 279

reduced, 280

Landen connection formula, 257

Lando

graph algebra, 427

Lawrence–Krammer–Bigelow
representation, 38

Leg

of a closed diagram, 130

of an open diagram, 142

Lie algebra

classical, 461

exceptional, 462

free L, 298

metrized, 463

weight systems, 169

Lie superalgebra, 198, 468

Link, 20

determinant, 65

Borromean rings, 21

Brunnian, 36

Hopf, 21, 339

Morse, 228

split, 64

strict Morse, 228

trivial, 21

Whitehead, 21

Link relation, 156

Linking number, 42, 65, 67, 95, 228, 405

Lower central series, 349

Magnus expansion, 353

Map

Φ : B → C, 332

Φ0 : B → C, 334

Φ2 : B ⊗ B → C, 332

Duflo-Kirillov, 329

f, 286

Markov moves, 31

Mixed diagram, 156

Move

pass, 421

Moves

∆, 436

Borromean, 416

clasp-pass, 436

doubled-delta, 421

Goussarov–Habiro

Mn, 416

Cn, 436

Markov, 31

Reidemeister, 21

framed, 33

Turaev

framed, 34

oriented, 32

unoriented, 31

Multiple polylogarithm, 290

Multiple zeta values, 289

Multiplication

of Vassiliev invariants, 75

Multivariate ζ-function, 289

Mutation, 319

of a chord diagram, 119

MZV, 284, 289

n-equivalence, 74

n-triviality, 75

Necklace, 197
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element, 197

Non-associative monomial, 298

One-term relation, 99

Open diagram, 141

Operation

Si on tangle chord diagrams, 257

∆i on tangle chord diagrams, 310

εi on tangle chord diagrams, 310

Order, 80, 127, 142, 208

Orientation

detecting, 140, 153

Pairing, 231

Pairing B◦ ⊗ B◦ → Γ, 328

Pass move, 421

Pentagon relation, 311

Perfect matching, 125

Poincaré-Birkhoff-Witt

theorem, 466

Poisson algebra, 459

Polyak algebra, 393

Polylogarithm, 290

Pont-Neuf diagram, 194, 435

Pretzel knot, 24

Prime graph, 120

Primitive element, 472

Primitive space

dimensions, 139

filtration, 138

in A, 113

in C, 138

Product, 470

in A, 106

in B, 144

in C, 137

in Γ, 209, 213

in W, 110

of tangles, 29

Quantum group, 51

Quantum invariant, 323

sl2, 52, 68

slN , 68

framed, 53

unframed, 57

R-matrix, 52

for slN , 68

Rational knots, 64

Regularizing factor, 306

Reidemeister moves, 21

framed, 33

Relation

AS, 130

four-term, 97

framing independence, 102

IHX, 131

Kirchhoff, 133

link, 156

one-term, 99

sliding, 160

STU, 128

two-term, 122

Resolution

complete, 73

Ribbon graph, 208

Ribbon knot, 33

Rogers five-term relation, 257

Scheme, 431

Self-linking number, 33, 44

Semigroup-like element, 472

Share, 119

Short-circuit closure, 364

Shuffle, 250

Skein relation

Conway’s, 46

Jones’, 48

Vassiliev’s, 72

Sliding relation, 160

Split of a graph, 119

Split union, 59

Square knot, 20

String link, 29

Strut, 152

STU, 128

Symbol

of a Vassiliev invariant, 81

of the Conway coefficients, 96

of the Jones coefficients, 84

Symmetric algebra, 465

Symmetric tensor, 465

Symmetrization map, 145

Table of

chord diagrams, 107

Conway polynomials, 47

dimensions of

the primitive spaces, 139

the spaces of Vassiliev invariants, 428

generators of Γ, 212

HOMFLY polynomials, 58

Jones polynomials, 50

modified, 87

Kauffman polynomials, 60–62

knots, 26

Lie algebra weight systems on Γ, 221

Tait conjecture, 22

Tangle, 28, 416

associating, 253, 256

chord diagrams, 155

elementary, 31

Jacobi diagram, 155
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parenthesized, 304

product, 29

simple, 31

tensor product, 29

parametrized, 237

Tangle diagrams

product, 158

tensor product, 158

Tensor, 465

symmetric, 465

Tensor algebra, 465

Theorem

Alexander, 30

Birman–Lin, 88

Goussarov–Habiro, 416

Le–Murakami–Kassel, 323

Markov, 31

Milnor–Moore, 480

Reidemeister, 21

framed, 33

Turaev, 31

Vassiliev–Kontsevich, 100

wheeling, 327

Three-graph, 208

bubble, 210

dodecahedron, 213

wheel, 213

Trefoil, 20

Turaev moves, 31

framed, 34

oriented, 32

unoriented, 31

Twin, 380

Two-loop polynomial, 343

Two-term relations, 122

Unframed chord diagrams, 105

Unit, 470

in A, 109

in W, 110

Univariate zeta function, 298

Universal enveloping algebra, 466

Universal Vassiliev invariant, 246

Unknot, 45

Goeritz, 37

Kontsevich integral, 337

Unknotting number, 42

Unknotting operation, 417

Vassiliev

extension, 72

invariant, 73

algebra of, 75

canonical, 248, 322

framed, 82

from HOMFLY, 96

group-like, 104

power series, 77

primitive, 104
symbol of, 81

universal for free group, 358

universal for knots, 246
universal for pure braids, 362

skein relation, 72

spectral sequence
for the space of knots, 451

Vassiliev invariant, 446
Vector space

of chord diagrams, 105

of closed diagrams, 128
of open diagrams, 142

of unframed chord diagrams, 105

Vertex
external, 130

internal, 130

Vertex product, 213
Vogel

algebra Λ, 223

Weight

of a MZV, 297
Weight system, 97

glN , 176, 189

sl2, 173, 185
slN , 178

soN , 180, 190

sp2N , 181
homogeneous, 112

Lie algebra, 169

multiplicative, 111
of the Conway coefficients, 205

of the Jones coefficients, 84, 176, 202

unframed, 99
Wheel, 139

in B, 195, 326
in C, 204

Wheeling, 325

Wheeling map, 327
Wheeling Theorem, 327

Wheels formula, 337

Whitehead link, 21
Whitney trick, 39

Wilson loop, 127

Witten, 11
Writhe

local, 22

of a knot diagram, 22
total, 22

Yang–Baxter equation, 52


