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Let T be the complex unit circle and a : [0, 1]× [0, 1]× T → C be
a continuous function. We formally represent a by its Fourier series
in the last variable,

a(x , y , t) =
∞∑

n=−∞
ân(x , y)tn, ân(x , y) =

∫
T

a(x , y , t)t−n |dt|
2π

.

The (N + 1)× (N + 1) variable-coefficient Toeplitz matrix
generated by a is the matrix

AN(a) =

(
âj−k

(
j

N
,
k

N

))N

j ,k=0

.
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This report concerned with weakest conditions on a that guarantee
the uniform boundedness of the spectral norms ||AN(a)||∞ as
N →∞. It is easily seen that

||AN(a)||∞ ≤
∞∑

n=−∞
M∞,∞(ân) :=

∞∑
n=−∞

sup
x∈[0,1]

sup
y∈[0,1]

|ân(x , y)|.

Hence, sup ||AN(a)||∞ <∞ whenever a is subject to the Wiener
type condition

∞∑
n=−∞

M∞,∞(ân) <∞.

M. Kac, W. L. Murdock and G. Szegö 1953, Simonenko I.B.
2000-2005,
Erhard T. and Chao B. 2001-2004.
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If a does not depend on the first two variables,

a(t) =
∞∑

n=−∞
ânt

n, ân =

∫
T

a(t)t−n |dt|
2π

,

then AN(a) is the pure Toeplitz matrix TN(a) := (âj−k)N
j ,k=0 and

the above inequality for ||AN(a)||∞ amounts to the inequality

||TN(a)||∞ ≤
∞∑

n=−∞
|ân| =: ||a||W .
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It is well known that actually

||TN(a)||∞ ≤ M∞(a) := sup
t∈T
|a(t)|

and that this is even true if a is an arbitrary function in L∞(T );
The bound ||a||W is much weaker than the bound M∞(a), and this
leads to the question whether there is a substitute for the bound∑∞

n=−∞M∞,∞(ân) of the type ||TN(a)||∞ ≤ M∞(a).
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Question 1. Is there a ∈ C ([0, 1]× [0, 1]× T ) such that

sup
N
||AN(a)||∞ =∞?

Answer: Yes!

Question 2. Whether sup ||AN(a)||∞ is finite if a has some
smoothness in the first two variables. While in third variable
a(x , y , ·) ∈ L∞(T )?
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Counterexamples

Theorem

There exist functions a(x , t) in C ([0, 1]× T ) such that

sup
N≥0
||AN(a)||∞ =∞.

Proof. Assume the contrary, that is, sup ||AN(a)||∞ <∞ for every
function a in C ([0, 1]× T ). Let S denote the Banach space of all
sequences {BN}∞N=0 of matrices BN ∈ C (N+1)×(N+1) such that

||{BN}∞N=0|| := sup
N≥0
||BN ||∞ <∞.
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By our assumption, the map

T : C ([0, 1]× T )→ S , a 7→ {AN(a)}∞N=0

is a linear operator defined on all of C ([0, 1]× T ). T is bounded.
(According to the closed graph theorem.) It means that there is a
const C <∞ such that

||AN(a)||∞ ≤ CM∞,∞(a)

for all a ∈ C ([0, 1]× T ).
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Fix N ≥ 2 and for j = 1, . . . ,N − 1, denote by Ij the segment

Ij =

[
j

N
− 1

2N
,

j

N
+

1

2N

]
.

Let aj be the function that is identically zero on [0, 1]\Ij , increases
linearly from 0 to 1 on the left half of Ij , and decreases linearly
from 1 to 0 on the right half of Ij . Put

a(x , t) = a1(x)t1 + a2(x)t2 + . . .+ aN−1(x)tN−1.
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As the spectral norm of a matrix is greater than or equal to the `2

norm of its first column and as âj(t) = aj(x) for 1 ≤ j ≤ N − 1, it
follows that

||AN(a)||2∞ ≥
∑N−1

j=1

∣∣∣∣aj

(
j
N

)∣∣∣∣2 =
∑N−1

j=1 12 = N − 1. (!)

Since a(x , t) = 0 for x /∈ ∪Ij and |a(x , t)| = |aj(x)t j | ≤ 1 for

x ∈ Ij , we obtain that M2
∞,∞(a) = 1. Consequently, (!) gives

N − 1 ≤ C 2 · 1 for all N ≥ 2, which is impossible.
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Definition 1.

Let 0 < α ≤ 1. We say that a continuous functions a(x , t) on
[0, 1]× T is in Hα,∞
if

Mα,∞(a) := sup
t∈T

sup
x1,x2

|a(x2, t)− a(x1, t)|
|x2 − x1|α

<∞,

Theorem

If 0 < a < 1/2, there exist functions a(x , t) in Hα,∞ such that

sup
N≥0
||AN(a)||∞ =∞.
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Sufficient conditions.

Case of symbols a(x , t).

M∞,∞(a) = sup
x∈[0,1]

sup
t∈T
|a(x , t)

M1+α,∞(a) := Mα,∞

(
∂a

∂x

)

Theorem (A)

Let α > 0. There exists a constant C (α) depending only on α
such that

||AN(a)||∞ ≤ C (α)(M∞,∞(a) + M1+α,∞(a))

for all functions a(x , t) in H1+α,∞.
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Lemma

If f (x) is a function in H1+α and f (0) = f (1), then

f (x) =
∞∑

n=−∞
fne

2πinx .

with

|fn| ≤
Mα(f ′)

22+απ|n|1+α
for |n| ≥ 1.
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Proof of the Theorem (A)
Proof. We write a = a0 + a1 with

a1(x , t) = (a(1, t)−a(0, t))x+a(0, t), a0(x , t) = a(x , t)−a1(x , t).

Then AN(a) = AN(a0) + AN(a1). Obviously,

AN(b(x)c(t)) =
(
b
(

j
N

)
ĉj−k

)N

j ,k=0
= DN(b)TN(c), (!!)

where DN(b) = diag(b(j/N))N
j=0 and TN(c) = (ĉj−k)N

j−k=0.
Taking into account that ||DN(b)||∞ ≤ M∞(b) and
||TN(c)||∞ ≤ M∞(c), we obtain that

||AN(a1)||∞ ≤ M∞(x)M∞(a(1, t)−a(0, t))+M∞(a(0, t)) ≤ 3M∞,∞(a).
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As a0(0, t) = a0(1, t)(= 0), Lemma gives

a0(x , t) =
∞∑

n=−∞
a0
n(t)e2πinx

with

|a0
n(t)| ≤ Mα(∂xa0(x ,t))

22+απ|n|1+α (!!!)

for |n| ≥ 1. From (!!) we infer that

||AN(a0
n(t)e2πinx)||∞ ≤ M∞(e2πinx)M∞(a0

n(t)) = M∞(a0
n).
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Thus, by (!!!),

||AN(a0||∞ ≤ M∞(a0
0) +

∑
|n|≥1

M∞(a0
n)

≤ M∞(a0
0 +

1

22+απ

∑
|n|≥1

Mα,∞(∂xa0(x , t))

|n|1+α
.

Since a0(x , t) = a(x , t)− a1(x , t) and ∂xa1(x , t) is independent of
x , we get

Mα,∞(∂xa0(x , t)) = Mα,∞(∂xa(x , t)) = M1+α,∞(a).
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Furthermore,

M∞(a0
0) = sup

t∈T

∣∣∣∣∫ 1

0
a0(x , t)dx

∣∣∣∣ ≤ M∞,∞(a0) = M∞,∞(a− a1)

≤ M∞,∞(a) + M∞,∞(a1) ≤ 4M∞,∞(a).

In summary,

||AN(a)||∞ ≤ 7M∞,∞(a) +

 1

22+απ

∑
|n|≥1

1

|n|1+α

M1+α,∞(a),

which implies the assertion at once.
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a(x , t) ∈ Hα,∞(a)

sup
N≥0
||AN(a)||∞ <∞?

If α > 1⇒ yes! If α < 1
2 ⇒ no

α ∈ [
1

2
; 1.]?

Theorem (B)

If a(x , t) is a function in Hα,∞ with α > 1/2, then there is a
constant C (α) <∞ depending only on α such that

||AN(a)||∞ ≤ C (α)(M∞,∞(a) + Mα,∞(a)) for all N ≥ 0.

α =
1

2
?
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Case of the symbol a(x , y , t)

Let 0 < α ≤ 1. We denote by Hα,α,∞ the set of all continuous
functions a: [0, 1]× [0, 1]× T → C for which

Mα,∞,∞(a) := sup
t∈T

sup
y∈[0,1]

sup
x1,x2

|a(x2, y , t)− a(x1, y , t)|
|x2 − x1|α

<∞,

M∞,α,∞(a) := sup
t∈T

sup
x∈[0,1]

sup
y1,y2

|a(x , y2, t)− a(x , y1, t)|
|y2 − y1|α

<∞,

and

Mα,α,∞(a) := sup
t∈T

sup
x1,x2

sup
y1,y2

|∆2a(x1, x2, y1, y2, t)|
|x2 − x1|α|y2 − y1|α

<∞
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where ∆2a(x1, x2, y1, y2, t) is the second difference

∆2a(x1, x2, y1, y2, t) = a(x2, y2, t)−a(x2, y1, t)−(a(x1, y2, t)−a(x1, y1, t))

and supz1,z2
means the supremum over all z1, z2 ∈ [0, 1] such that

z1 6= z2.

Theorem

Let a(x , y , t) be a function in Hα,α,∞ with α > 1/2. Then there
exists a constant E (α) <∞ depending only on α such that

||AN(a)||∞ ≤ E (α)(Mα,α,∞(a)+Mα,∞,∞(a)+M∞,α,∞(a)+M∞,∞,∞(a))

for all N ≥ 0.
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Discontinuous generating functions

For 0 < α ≤ 1, we denote by Hα,α the Banach space of all
continuous functions f : [0, 1]2 → C for which

||f ||α := M∞,∞(f ) + Mα,∞(f ) + M∞,α(f ) + Mα,α(f ) <∞,

where M∞,∞(f ) is the maximum of |f (x , y)| on [0, 1]2 and

Mα,∞(f ) = sup
y∈[0,1]

sup
x1,x2

|f (x2, y)− f (x1, y)|
|x2 − x1|α

,

M∞,α(f ) = sup
x∈[0,1]

sup
y1,y2

|f (x , y2)− f (x , y1)|
|y2 − y1|α

,

Mα,α(f ) = sup
x1,x2

sup
y1,y2

|∆2f (x1, x2, y1, y2)|
|x2 − x1|α|y2 − y1|α

,

Let L∞(T ,Hα,α) be the set of all measurable and essentially
bounded functions a : T → Hα,α.
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Theorem

Let a ∈ L∞(T ,Hα,α), where α > 1/2. Then

||AN(a)||∞ ≤ D(α) sup
t∈T
|a(x , y , t)||α,α

with some constant D(α) <∞ depending only on α.

Theorem

Let a ∈ L∞(T ,C 2([0, 1]× [0, 1]), then

sup
N
||AN(a)|| <∞.
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