## On the Trace-Class Property of Hankel Operators Arising in the Theory of the Kortewegde Vries Equation

S. M. Grudsky

CINVESTAV del I.P.N, México
International Workshop on Operator Theory and its Applications (IWOTA 2019) Lisbon, Portugal July 22-26, 2019

This work is based on joint work with

## ALEXEY RYBKIN

## Abstract

The trace-class property of Hankel Operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller's criterion for the trace-class property of Hankel operators and on the precise analysis of the arising tripe integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg-de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.

## Hankel Operators

$$
\begin{equation*}
\mathbb{H}\left(\varphi_{x}\right):=J P^{-} \varphi_{x} P^{+}: H^{2}(\Pi) \rightarrow H^{2}(\Pi) \tag{1}
\end{equation*}
$$

where $H^{2}(\Pi)$ is Hardy space in the upper half-plane

$$
\Pi:=\{\lambda \in \mathbb{C} \mid \operatorname{Im} \lambda>0\} ;
$$

$J$ - is the reflection operator defined by:

$$
(J f)(\lambda)=f(-\lambda), \lambda \in \mathbb{R}
$$

and $P^{ \pm}$are the analytic projections defined by

$$
\begin{gathered}
\left(P^{+} f\right)(\xi)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(\tau)}{\tau-\xi} d \tau, \quad \xi \in \bar{\Pi} \\
\left(P^{-} \varphi\right)(\xi)=\left(J P^{+} J \varphi\right)(\xi)
\end{gathered}
$$

which act on the space $L_{2}(\mathbb{R})$.

Note that is $\xi$ belongs to the real axis $\mathbb{R}$, then the above integral is understood as the limit value almost everywhere over non-tangential directions in the upper half-plane $\Pi$.

## Symbol of Hankel Operator

$$
\begin{equation*}
\varphi_{x}(\lambda)=T(\lambda) G_{-}(\lambda) e^{i \Phi(\lambda, x)} \tag{2}
\end{equation*}
$$

Here

$$
\begin{equation*}
\Phi(\lambda, x)=8 t \lambda^{3}+2 x \lambda, t>0, x \in \mathbb{R} \tag{3}
\end{equation*}
$$

The function $G_{-}(\lambda)$ can be represented as the Fourier integral over the half-axis:

$$
\begin{equation*}
G_{-}(\lambda)=\int_{0}^{\infty} e^{-2 i \lambda s} g(s) d s, \tag{4}
\end{equation*}
$$

where $g(s) \in L_{1}\left(\mathbb{R}_{+},(1+s)^{\alpha}\right)$, is nonegative-valued almost everywhere, i.e.

$$
\begin{equation*}
\int_{0}^{\infty} g(s)(1+s)^{\alpha} d s<\infty, \quad \alpha \geq 0 \tag{5}
\end{equation*}
$$

$$
T(\lambda) \in H^{\infty}(\Pi)
$$

## Main Result

Let $\mathfrak{S}_{1}$ denote the set of all trace-class operators acting on the space $H^{2}(\Pi)$. Recall that a compact operator $A$ belong to $\mathfrak{S}_{1}$, if the sequence of its singular numbers $\left\{s_{j}(A)\right\}_{j=1}^{\infty}$ is summable. The norm of an operator $A$ in $\mathfrak{S}_{1}$ is defined as

$$
\|A\|_{\mathfrak{S}_{1}}:=\sum_{j=1}^{\infty}\left|s_{j}(A)\right|
$$

Along with the operator (1) we consider its derivatives with respect to the parameter $x$. It is easy to see that

$$
\begin{equation*}
\frac{\partial^{j}}{\partial x^{j}} \mathbb{H}\left(\varphi_{x}\right)=\mathbb{H}\left(\varphi_{j, x}\right), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{j, x}(\lambda)=(2 i)^{j} \lambda^{j} \varphi_{x}(\lambda), \quad j=0,1,2, \ldots \tag{7}
\end{equation*}
$$

If $\varphi \in L^{\infty}(R)=>\mathbb{H}(\varphi)$ is bounded on $H^{2}(\Pi)$

$$
\mathbb{H}\left(h-\varphi_{0}\right)=H\left(\varphi_{0}\right), h \in H^{\infty}(\Pi) .
$$

It should be noted that $\varphi$ and $h$ could be unbounded.

## Theorem

If the function $\varphi_{x}(\lambda)$ is of the form (2)-(5) with $g(s) \in L_{1}\left(\mathbb{R}_{+}(1+s)^{j / 2}\right), j \in \mathbb{N}$, then

$$
\frac{\partial^{k}}{\partial x^{k}} \mathbb{H}\left(\varphi_{x}\right) \in \mathfrak{S}_{1}, \quad k=0,1, \ldots j
$$

and

$$
\left\|\frac{\partial^{k}}{\partial x^{k}} \mathbb{H}\left(\varphi_{x}\right)\right\|_{\mathfrak{S}_{1}} \leq\left\{\begin{array}{l}
L_{1}, \quad x>0 \\
L_{2}(1+|x|)^{k / 2}, \quad x<0
\end{array}\right.
$$

where the constants $L_{1}$ and $L_{2}$ are independent of $x \in \mathbb{R}$.

## Peller's Theorem

We say that a function $f(\xi)$ analytic in $\Pi$ belongs to the space $A_{1}^{1}(\Pi)$ if and only if

$$
\|f\|_{A_{1}^{1}(\Pi)}:=\int_{0}^{\infty} \int_{-\infty}^{\infty}\left|f^{\prime \prime}\left(\xi_{1}+i \xi_{2}\right)\right| d \xi_{1} d \xi_{2}+\sup \left\{f(\xi) \mid \xi_{2} \geq 1\right\}<\infty
$$

where $\xi=\xi_{1}+i \xi_{2}$ is a complex variable belonging to the complex plane $\mathbb{C}$. we introduce the following modification of an analytic projection:

$$
\left(\widetilde{P^{+}} f\right)(\xi)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left(\frac{1}{\tau-\xi}-\frac{\tau}{1+\tau^{2}}\right) f(\tau) d \tau .
$$

Theorem (V.Peller, 1980)
Let $\varphi \in L_{\infty}(\mathbb{R})$, Then $\mathbb{H}(\varphi) \in \mathfrak{S}_{1}$ if and only if

$$
\left(\widetilde{P^{+}} \bar{\varphi}\right)(\xi) \in A_{1}^{1}(\Pi) .
$$

## Lemma

Let $\varphi=h \varphi_{1}$, where $h \in H^{\infty}(\Pi)$, and $\varphi_{1} \in L_{\infty}(\mathbb{R})$. If the operator $\mathbb{H}\left(\varphi_{1}\right)$ belongs $\mathfrak{S}_{1}$, then so does the operator $\mathbb{H}(\varphi)$, and

$$
\|\mathbb{H}(\varphi)\|_{\mathfrak{S}_{1}} \leq\|h\|_{L_{\infty}}\left\|\mathbb{H}\left(\varphi_{1}\right)\right\|_{\mathfrak{S}_{1}}
$$

## Remark

The symbol $\varphi_{j, x}(\lambda)$ contains the multiplier $T(\lambda) \in H^{\infty}(\Pi)$. Therefore, in what follows, we consider the symbol

$$
\begin{equation*}
\varphi_{j, x}^{0}(\lambda)=\lambda^{j} G_{-}(\lambda) e^{i \Phi(\lambda, x)} \tag{8}
\end{equation*}
$$

Applying Pellier's Theorem to the Hankel operator with this symbol of the form, we must first estimate the integrals

$$
\begin{gather*}
I_{j}(\xi, x):=\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left(\frac{1}{\tau-\xi}-\frac{\tau}{1+\tau^{2}}\right) \tau^{j} \overline{G_{-}(\tau)} e^{-i \Phi(\tau, x)} d \tau \\
\xi \in \Pi, j=0,1,2, \ldots, \\
l_{j}^{(2)}(\xi, x):=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{\tau^{j} \overline{G_{-}(\tau)} e^{-i \Phi(\tau, x)}}{(\tau-\xi)^{3}} d \tau, \quad \xi \in \Pi, j=0,1,2, \ldots \tag{9}
\end{gather*}
$$

## The Saddle-Point Method

Using (4) we obtain

$$
\overline{G_{-}(\tau)}=\int_{0}^{\infty} e^{i 2 \tau s} g(s) d s
$$

Here and further, we assume that $g(s) \geq 0$ almost everywhere and $g(s) \in L_{1}\left(\mathbb{R}_{+},(1+s)^{j / 2}\right)$. Thus, the integral (9) can be written as

$$
\begin{equation*}
I_{j}(\xi, x)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty}\left(\frac{1}{\tau-\xi}-\frac{\tau}{1+\tau^{2}}\right) \tau^{j} e^{-i \Phi(\tau, x)}\left(\int_{0}^{\infty} g(s) e^{i 2 \tau s} d s\right) d \tau \tag{10}
\end{equation*}
$$

Changing the order of integration, we obtain

$$
\iota_{j}(\xi, x)=\frac{1}{2} \int_{0}^{\infty} g(s) J_{j}(s, \xi, x) d s
$$

where

$$
\begin{gathered}
J_{j}(s, \xi, x):=\frac{1}{\pi i} \int_{-\infty}^{\infty}\left(\frac{1}{\tau-\xi}-\frac{\tau}{1+\tau^{2}}\right) \tau^{j} e^{-i \Phi(\tau, x-s)} d \tau \\
\Phi(\tau, x-s)=8 t \tau^{3}+2(x-s) \tau
\end{gathered}
$$

Let us make the following change of variables

$$
\tau=\beta(s) u, \quad \xi=\beta(s) \xi^{\prime}, \quad \text { where } \quad \beta(s)=\left(\frac{(s-x)}{12 t}\right)^{1 / 2}
$$

Setting

$$
S(u)=\frac{u^{3}}{3}-u, \quad \Lambda(s, x):=\Lambda(s):=\frac{(s-x)^{3 / 2}}{(3 t)^{1 / 2}}
$$

we obtain

$$
J_{j}(s, \xi, x):=\widetilde{J}_{j}\left(s, \xi^{\prime}, x\right)=\beta^{j}(s) \widetilde{\iota}_{j}\left(s, \xi^{\prime}, x\right)-\beta^{j+2}(s) \widehat{\iota}_{j}(s, x)
$$

where

$$
\begin{align*}
& \widetilde{\iota}_{j}\left(s, \xi^{\prime}, x\right)=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u^{j} e^{-i \Lambda(s) S(u)}}{u-\xi^{\prime}} d u  \tag{11}\\
& \widehat{\imath}(s, x)=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u^{j+1} e^{-i \Lambda(s) S(u)}}{1+\beta^{2}(s) u^{2}} d u . \tag{12}
\end{align*}
$$

Let us find a saddle-point contour for the integral (12). The critical points $u_{ \pm}$can be found from the equation

$$
S^{\prime}(u)=u^{2}-1=0, \quad u_{ \pm}= \pm 1
$$

It is easy to calculate that

$$
S\left(u_{ \pm}\right)=\mp \frac{2}{3}, \quad S^{\prime \prime}\left(u_{ \pm}\right)= \pm 2, \quad S^{\prime \prime \prime}\left(u_{ \pm}\right)=2
$$

Thus, the saddle-point contours are determined by the equations

$$
\begin{align*}
& S(u)+\frac{2}{3}=(u-1)^{2}+\frac{1}{3}(u-1)^{3}=-i v^{2}, v \in \mathbb{R}  \tag{13}\\
& S(u)-\frac{2}{3}=-(u+1)^{2}+\frac{1}{3}(u-1)^{3}=-i v^{2}, v \in \mathbb{R} \tag{14}
\end{align*}
$$

It is easy show that Esq. (13) and (14) are uniquely solvable for any $v \in \mathbb{R}$. We denote their solutions by $u_{ \pm}(v)$ and introduce the saddle-point counters

$$
\Gamma_{ \pm}:=\left\{z=u_{ \pm}(v) \mid v \in \mathbb{R}\right\} .
$$

It is easy to see that, in a neighborhood of the critical points ( $\left.u_{ \pm}(0)= \pm 1\right)$, the following asymptotic relations hold:

$$
\begin{array}{ll}
u:=u_{+}(v)=1+e^{-i \frac{\pi}{4}} v+O\left(v^{2}\right), & v \in[-\varepsilon, \varepsilon] \\
u:=u_{-}(v)=-1+e^{i \frac{\pi}{4}} v+O\left(v^{2}\right), & v \in[-\varepsilon, \varepsilon]
\end{array}
$$

Moreover, it is easy to see that, for sufficiently large $v$, we have

$$
\left.\begin{array}{llll}
u_{+}(v) \sim \sqrt[3]{3} & e^{i \frac{\pi}{2}} & |v|^{2 / 3}, & \\
u_{+}(v) \sim \sqrt[3]{3} & e^{-i \frac{\pi}{6}} & v^{2 / 3}, & \\
v^{2} \rightarrow+\infty \\
u_{-}(v) \sim \sqrt[3]{3} & e^{i \frac{\pi}{2}} & v^{2 / 3}, & \\
u_{-}(v) \sim \sqrt{3} & e^{i \frac{7}{6} \pi} & |v|^{2 / 3}, & \\
u^{2} \rightarrow-\infty
\end{array}\right\}
$$

## Estimation of the Second Term of Peller Theorem

## Lemma

The integral (12) can be estimated as

$$
\left|\widehat{\widehat{\jmath}}_{j}(s, x)\right| \leq \frac{\text { const }}{\beta^{2}(s) \Lambda^{1 / 2}(s)},
$$

where "const" is independent of $s$ and $x$.

## Lemma

The integral (11) can be represented as

$$
\widetilde{I}_{j}\left(s, \xi^{\prime}, x\right)=\widetilde{I_{j}^{+}}\left(s, \xi^{\prime}, x\right)+\widetilde{I_{j}^{-}}\left(s, \xi^{\prime}, x\right)+\widetilde{I}_{j, \operatorname{Res}}\left(s, \xi^{\prime}, x\right),
$$

where

$$
\widetilde{I_{j}^{ \pm}}\left(s, \xi^{\prime}, x\right) \left\lvert\, \leq \mathrm{const}\left\{\begin{array}{cl}
\frac{1}{\left|\xi^{\prime} \mp 1\right| \Lambda^{1 / 2}(s)}, & \left|\xi^{\prime} \mp 1\right| \Lambda^{1 / 2}(s) \geq 1 \\
1, & \left|\xi^{\prime} \mp 1\right| \Lambda^{1 / 2}(s) \leq 1
\end{array}\right.\right.
$$

$$
\left|\widetilde{I}_{j, \text { Res }}^{0}\left(s, \xi^{\prime}, x\right)\right| \leq \text { const },
$$

and "const", is independent of $s, \xi^{\prime}$ and $x$.

## Theorem

Let $I_{j}(\xi, x)$ be the expression given by (10), and let $g(s) \in L_{1}\left(\mathbb{R}_{+},(1+s)^{j / 2}\right)$. Then, for $j=0,1, \ldots$,

$$
\left|\ell_{j}(\xi, x)\right| \leq \begin{cases}c_{1}, & x \geq 0 \\ c_{1}+c_{2}|x|^{j / 2}, & x<0\end{cases}
$$

where $c_{1}$ and $c_{2}$ are independent of $\xi$ and $x$.

Substituting representation (4) into (9), we see that

$$
\begin{equation*}
I_{j}^{(2)}(\xi, x)=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{\tau^{j} e^{-i \Phi(\tau, x)}}{(\tau-\xi)^{3}}\left(\int_{0}^{\infty} g(s) e^{i 2 \tau s} d s\right) d \tau \tag{15}
\end{equation*}
$$

Changing the order of integration, we obtain the representation

$$
\iota_{j}^{(2)}(\xi, x)=2 \int_{-\infty}^{\infty} g(s) J_{j}^{(2)}(s, \xi, x) d s
$$

where

$$
\begin{equation*}
J_{j}^{(2)}(s, \xi, x):=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\tau^{j} e^{-i \Phi(\tau, x-s)}}{(\tau-\xi)^{3}} d \tau \tag{16}
\end{equation*}
$$

Making the same change of variables in the integral (16), we see that

$$
J_{j}^{(2)}(s, \xi, x)=\beta(s)^{j-2} \widetilde{l_{j}^{(2)}}\left(s, \xi^{\prime}, x\right)
$$

where

$$
\begin{equation*}
\widetilde{l_{j}^{(2)}}\left(s, \xi^{\prime}, x\right)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{u^{j} e^{-i \Lambda(s) S(u)}}{\left(u-\xi^{\prime}\right)^{3}} d u \tag{17}
\end{equation*}
$$

## Lemma

The integral (17) can be represented as

$$
\widetilde{l_{j}^{(2)}}\left(s, \xi^{\prime}, x\right)=\widetilde{l_{j,+}^{(2)}}\left(s, \xi^{\prime}, x\right)+\widetilde{l_{j,-}^{(2)}}\left(s, \xi^{\prime}, x\right)+\widetilde{l_{j, R e s}^{(2)}}\left(s, \xi^{\prime}, x\right),
$$

where

$$
\widetilde{\mid \ell_{j, \pm}^{(2)}}\left(s, \xi^{\prime}, x\right) \left\lvert\, \leq \mathrm{const} \begin{cases}\frac{1}{\left|\xi^{\prime} \mp 1\right|^{3} \Lambda^{1 / 2}(s)}, & \left|\xi^{\prime} \mp 1\right| \Lambda^{1 / 2}(s) \geq 1 \\ \Lambda(s), & \left|\xi^{\prime} \mp 1\right| \Lambda^{1 / 2}(s) \leq 1\end{cases}\right.
$$

$$
\left|\widetilde{I}_{j, R e s}^{(2)}\left(s, \xi^{\prime}, x\right)\right| \leq \operatorname{const}\left\{\Lambda(s)^{-\frac{j-2}{3}}\left|\xi^{\prime \prime}\right|^{j-2}\left(\left|\xi^{\prime \prime}\right|^{6}+\left|\xi^{\prime \prime}\right|^{3}+1\right) e^{-c\left|\xi^{\prime \prime}\right|^{3}}\right\}
$$

here $\xi^{\prime \prime}=\xi^{\prime} \Lambda^{1 / 3}(s), c>0$ and "const" are independent of $s, x$ and $\xi^{\prime} \in \Pi \backslash\left(D_{1} \cup D_{-1}\right)$.

Theorem
Let $l_{j}^{(2)}\left(\xi^{\prime}, x\right)$ be the function given by (15), and let $g(s) \in L_{1}\left(\mathbb{R}_{+},(1+|s|)^{j / 2}\right)$. Then

$$
A(x):=\int_{\Pi}\left|\iota_{j}^{(2)}(\xi, x)\right| d \xi \leq\left\{\begin{array}{l}
c_{3}, x \geq 0 \\
c_{3}+c_{4}|x|^{j / 2}, x<0
\end{array}\right.
$$

where $c_{3}$ and $c_{4}$ are independent of $x$.

## Applications to the Korteweg-de Vries Equation

$$
\begin{gather*}
\frac{\partial u(x, t)}{\partial t}-6 u(x, t) \frac{\partial u(x, t)}{\partial x}+\frac{\partial^{3} u(x, t)}{\partial x^{3}}=0, \quad t \geq 0, x \in \mathbb{R} . \\
u(x, 0)=q(x), \\
\inf \operatorname{Spec}\left(\mathbb{L}_{q}\right)=-a^{2}>-\infty \quad \text { (is bounded below); }  \tag{18}\\
\left.\int^{\infty}(1+|x|)^{N}|q(x)| d x<\infty, \quad N \geq 1 \quad \text { (decreases at }+\infty\right) . \\
L_{q}=-\partial_{x}^{2}+q-\text { Schrödinger operator. }
\end{gather*}
$$

The condition

$$
\sup _{|I|=1} \int_{I} \max (-q(x), 0) d x<\infty
$$

is sufficient for (18).

## Inverse Scattering Method (GGKM-Gardner, Green, Kruskal, Miuro)

(1) Solving the Schrödinger equation $\mathbb{L}_{q} u=k^{2} u$ we find $S_{0}=\left\{R(k),\left(\kappa_{n}, c_{n}\right)\right\}$, where $R(k), k \in \mathbb{R}$, is the reflection coefficient and $\left(\kappa_{n}, c_{n}\right), n=1,2, . ., N$, are the so-called data on bound states associated with the eigenvalues, $-\kappa_{n}^{2}$.
(2) $S(t)=\left\{R(k) \exp \left(8 i k^{3} t\right), \kappa_{n}, c_{n} \exp \left(8 \kappa_{n}^{3} t\right)\right\}$.
(3) Step 3 reduces to solving the inverse scattering problem for recovering the potential $u(x, t)$ (which now depends on $t \geq 0$ ) from $S(t)$. This procedure leads to the following explicit formula, which is usually called the Dyson determinant:

$$
u(x, t)=-2 \partial_{x}^{2} \log \operatorname{det}(I+\mathbb{H}(x, t))
$$

## Symbol of the Hankel Operator

$$
\varphi_{x, t}(k)=R(k) \xi_{x, t}(k)+\int_{0}^{a} \frac{\xi_{x, t}(i s) d \rho(s)}{s+i k}
$$

where $-a^{2}$ is the lower bound of the spectrum of $\mathbb{L}_{q}$ and $\rho(s)$ is a measure with the properties

$$
\begin{gathered}
\text { Supp } \rho \subseteq[0, a], \quad d \rho \geq 0, \quad \int_{0}^{a} d \rho<\infty \\
\mathbb{H}(x, t)=\mathbb{H}\left(\Phi_{x, t}\right)+\mathbb{H}\left(\xi_{x, t} R_{0}\right)
\end{gathered}
$$

where $\Phi_{x, t}$ is a meromorphic function in the upper half-plane (its particular form is inessential) and $R_{0}$ is the reflection coefficient of $q$ bounded on $(0, \infty)$.

For $R_{0}$ we have the representation

$$
R_{0}(\lambda)=T(\lambda) \int_{0}^{\infty} e^{-2 i \lambda s} g(s) d s
$$

where $T \in H^{\infty}(\Pi)$, so that $T(\lambda)=O(1 / \lambda),|\lambda| \rightarrow \infty, g$ is a function subject to the only constraint

$$
|g(s)| \leq|q(s)|+\text { const } \int_{s}^{\infty}|q|
$$

## Global Classical Solution of KDV

(1) $\frac{\partial^{n+m}}{\partial x^{n} \partial t^{m}} \mathbb{H}\left(\Phi_{x, t}\right) \in \mathfrak{S}_{1}$.
(2) Main Theorem implies:

For the operator $\mathbb{H}\left(\xi_{x, t} R_{0}\right)$, we proved that if

$$
\int^{\infty}(1+|s|)^{N}|q(s)| d s<\infty
$$

then

$$
\frac{\partial^{n+m}}{\partial x^{n} \partial t^{m}} \mathbb{H}\left(\xi_{x, t} R_{0}\right) \in \mathfrak{S}_{1}
$$

for all $n$ and $m$, satisfying the condition

$$
n+3 m \leq 2 N-1
$$

## Theorem

Suppose that the (real) initial profile $q$ satisfies the condition

$$
\left.\inf \operatorname{Spec}\left(\mathbb{L}_{q}\right)=-a^{2}>-\infty \quad \text { (is bounded below }\right)
$$

$$
\int^{\infty}(1+|x|)^{N}|q(x)| d x<\infty, \quad N \geq 1 \quad(\text { decreases }+\infty)
$$

Then the function $\tau(x, t):=\operatorname{det}(1+\mathbb{H}(x, t))$ is well defined on $\mathbb{R} \times \mathbb{R}_{+}$, and its classical derivatives $\partial^{n+m} \tau(x, t) / \partial x^{n} \partial t^{m}$ exist provided that $n+3 m \leq 2 N-1$. Moreover, for $N \geq 3$ the Cauchy problem has a global (in time) classical solution which is given by

$$
u(x, t)=-2 \frac{\partial^{2}}{\partial x^{2}} \log \tau(x, t), \quad t>0
$$

