On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium

Sergei M. Grudsky*, Kira V. Khmelnytskaya**,
Vladislav V. Kravchenko**
*Dept. of Mathematics
CINVESTAV
National Polytechnic Institute
Mexico City
**Dept. of Telecommunications, SEPI ESIME Zacatenco
National Polytechnic Institute
Av. IPN S/N, C.P. 07738 D.F. Mexico

February 5, 2008

Abstract

Maxwell's equations for the time-dependent electromagnetic field in a homogeneous chiral medium are reduced to a single quaternionic equation. Its fundamental solution satisfying the causality principle is obtained which allows us to solve the time-dependent chiral Maxwell system with sources.

1 Introduction

We consider Maxwell's equations for the time-dependent electromagnetic field in a homogeneous chiral medium and show their equivalence to a sin-
gle quaternionic equation. This result generalizes the well known (see [13], [6], [10]) quaternionic reformulation of the Maxwell equations for non-chiral media. Nevertheless the new quaternionic differential operator is essentially different from the quaternionic operator corresponding to the non-chiral case. We obtain a fundamental solution of the new operator in explicit form satisfying the causality principle. Its convolution with a quaternionic function representing sources of the electromagnetic field gives us a solution of the inhomogeneous Maxwell system in a whole space.

2 Maxwell's equations for chiral media

Consider time-dependent Maxwell's equations

$$
\begin{gather*}
\operatorname{rot} \vec{E}(t, x)=-\partial_{t} \vec{B}(t, x) \tag{1}\\
\operatorname{rot} \vec{H}(t, x)=\partial_{t} \vec{D}(t, x)+\vec{j}(t, x) \tag{2}\\
\operatorname{div} \vec{E}(t, x)=\frac{\rho(t, x)}{\varepsilon}, \quad \operatorname{div} \vec{H}(t, x)=0 \tag{3}
\end{gather*}
$$

with the Drude-Born-Fedorov constitutive relations corresponding to the chiral media [2, [11], 12]

$$
\begin{align*}
& \vec{B}(t, x)=\mu(\vec{H}(t, x)+\beta \operatorname{rot} \vec{H}(t, x)) \tag{4}\\
& \vec{D}(t, x)=\varepsilon(\vec{E}(t, x)+\beta \operatorname{rot} \vec{E}(t, x)) \tag{5}
\end{align*}
$$

where β is the chirality measure of the medium. β, ε, μ are real scalars assumed to be constants. Note that the charge density ρ and the current density \vec{j} are related by the continuity equation $\partial_{t} \rho+\operatorname{div} \vec{j}=0$.

Incorporating the constitutive relations (4), (5) into the system (11)-(3) we arrive at the main object of our study, the time-dependent Maxwell system for a homogeneous chiral medium

$$
\begin{gather*}
\operatorname{rot} \vec{H}(t, x)=\varepsilon\left(\partial_{t} \vec{E}(t, x)+\beta \partial_{t} \operatorname{rot} \vec{E}(t, x)\right)+\vec{j}(t, x), \tag{6}\\
\operatorname{rot} \vec{E}(t, x)=-\mu\left(\partial_{t} \vec{H}(t, x)+\beta \partial_{t} \operatorname{rot} \vec{H}(t, x)\right), \tag{7}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{div} \vec{E}(t, x)=\frac{\rho(t, x)}{\varepsilon}, \quad \operatorname{div} \vec{H}(t, x)=0 \tag{8}
\end{equation*}
$$

Application of rot to (6) and (7) allows us to separate the equations for \vec{E} and \vec{H} and to obtain in this way the wave equations for a chiral medium $\operatorname{rot} \operatorname{rot} \vec{E}+\varepsilon \mu \partial_{t}^{2} \vec{E}+2 \beta \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \vec{E}+\beta^{2} \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \operatorname{rot} \vec{E}=-\mu \partial_{t} \vec{j}-\beta \mu \partial_{t} \operatorname{rot} \vec{j}$,

$$
\begin{equation*}
\operatorname{rot} \operatorname{rot} \vec{H}+\varepsilon \mu \partial_{t}^{2} \vec{H}+2 \beta \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \vec{H}+\beta^{2} \varepsilon \mu \partial_{t}^{2} \operatorname{rot} \operatorname{rot} \vec{H}=\operatorname{rot} \vec{j} \tag{10}
\end{equation*}
$$

It should be noted that when $\beta=0$, (9) and (10) reduce to the wave equations for non-chiral media but in general to the difference of the usual non-chiral wave equations their chiral generalizations represent equations of fourth order.

3 Some notations from quaternionic analysis

We will consider biquaternion-valued functions defined in some domain $\Omega \subset$ \mathbb{R}^{3}. On the set of continuously differentiable such functions the well known Moisil-Teodoresco operator is defined by the expression $D=i_{1} \frac{\partial}{\partial x_{1}}+i_{2} \frac{\partial}{\partial x_{2}}+$ $i_{3} \frac{\partial}{\partial x_{3}}$ (see, e.g., [5]), where $i_{k}, k=1,2,3$ are basic quaternionic imaginary units. Denote $D_{\alpha}=D+\alpha$, where $\alpha \in \mathbb{C}$ and $\operatorname{Im} \alpha \geq 0$. The fundamental solution for this operator is known [9] (see also [10]):

$$
\begin{equation*}
\mathcal{K}_{\alpha}(x)=-\operatorname{grad} \Theta_{\alpha}(x)+\alpha \Theta_{\alpha}(x)=\left(\alpha+\frac{x}{|x|^{2}}-i \alpha \frac{x}{|x|}\right) \Theta_{\alpha}(x) \tag{11}
\end{equation*}
$$

where i is the usual complex imaginary unit commuting with $i_{k}, x=\sum_{k=1}^{3} x_{k} i_{k}$ and $\Theta_{\alpha}(x)=-\frac{e^{i \alpha|x|}}{4 \pi|x|}$. Note that \mathcal{K}_{α} fulfills the following radiation condition at infinity uniformly in all directions

$$
\begin{equation*}
\left(1+\frac{i x}{|x|}\right) \cdot \mathcal{K}_{\alpha}(x)=o\left(\frac{1}{|x|}\right), \quad \text { when } \quad|x| \rightarrow \infty \tag{12}
\end{equation*}
$$

which is in agreement with the Silver-Müller radiation conditions [8].

4 Field equations in quaternionic form

In this section we rewrite the field equations from Section 2 in quaternionic form.

Let us introduce the following quaternionic operator

$$
\begin{equation*}
M=\beta \sqrt{\varepsilon \mu} \partial_{t} D+\sqrt{\varepsilon \mu} \partial_{t}-i D \tag{13}
\end{equation*}
$$

and consider the purely vectorial biquaternionic function

$$
\begin{equation*}
\vec{V}(t, x)=\vec{E}(t, x)-i \sqrt{\frac{\mu}{\varepsilon}} \vec{H}(t, x) \tag{14}
\end{equation*}
$$

Proposition 1 The quaternionic equation

$$
\begin{equation*}
M \vec{V}(t, x)=-\sqrt{\frac{\mu}{\varepsilon}} \vec{j}(t, x)-\beta \sqrt{\frac{\mu}{\varepsilon}} \partial_{t} \rho(t, x)+\frac{i \rho(t, x)}{\varepsilon} \tag{15}
\end{equation*}
$$

is equivalent to the Maxwell system (6))-(8), the vectors \vec{E} and \vec{H} are solutions of (6)-(8) if and only if the purely vectorial biquaternionic function \vec{V} defined by (14) is a solution of (15).

Proof. The scalar and the vector parts of (15) have the form
$-\beta \sqrt{\varepsilon \mu} \partial_{t} \operatorname{div} \vec{E}+\sqrt{\frac{\mu}{\varepsilon}} \operatorname{div} \vec{H}+i\left(\operatorname{div} \vec{E}+\beta \mu \partial_{t} \operatorname{div} \vec{H}\right)=-\beta \sqrt{\frac{\mu}{\varepsilon}} \partial_{t} \rho+\frac{i \rho}{\varepsilon}$,
$\beta \sqrt{\varepsilon \mu} \partial_{t} \operatorname{rot} \vec{E}+\sqrt{\varepsilon \mu} \partial_{t} \vec{E}-\sqrt{\frac{\mu}{\varepsilon}} \operatorname{rot} \vec{H}-i\left(\operatorname{rot} \vec{E}+\beta \mu \partial_{t} \operatorname{rot} \vec{H}+\mu \partial_{t} \vec{H}\right)=-\sqrt{\frac{\mu}{\varepsilon}} \vec{j}$.
The real part of (17) coincides with (6) and the imaginary part coincides with (77). Applying divergence to the equation (17) and using the continuity equation gives us

$$
\partial_{t} \operatorname{div} \vec{H}=0 \quad \text { and } \quad \partial_{t} \operatorname{div} \vec{E}=\frac{1}{\varepsilon} \partial_{t} \rho .
$$

Taking into account these two equalities we obtain from (16) that the vectors \vec{E} and \vec{H} satisfy equations (8).

It should be noted that for $\beta=0$ from (13) we obtain the operator which was studied in [7] with the aid of the factorization of the wave operator for non-chiral media

$$
\varepsilon \mu \partial_{t}^{2}-\Delta_{x}=\left(\sqrt{\varepsilon \mu} \partial_{t}+i D\right)\left(\sqrt{\varepsilon \mu} \partial_{t}-i D\right)
$$

In the case under consideration we obtain a similar result. Let us denote by M^{*} the complex conjugate operator of M :

$$
M^{*}=\beta \sqrt{\varepsilon \mu} \partial_{t} D+\sqrt{\varepsilon \mu} \partial_{t}+i D
$$

For simplicity we consider now a sourceless situation. In this case the equations (9) and (10) are homogeneous and can be represented as follows

$$
M M^{*} \vec{U}(t, x)=0
$$

where \vec{U} stands for \vec{E} or for \vec{H}.

5 Fundamental solution of the operator M

We will construct a fundamental solution of the operator M using the results of the previous section and well known facts from quaternionic analysis. Consider the equation

$$
\left(\beta \sqrt{\varepsilon \mu} \partial_{t} D+\sqrt{\varepsilon \mu} \partial_{t}-i D\right) f(t, x)=\delta(t, x) .
$$

Applying the Fourier transform \mathcal{F} with respect to the time-variable t we obtain

$$
(\beta \sqrt{\varepsilon \mu} i \omega D+\sqrt{\varepsilon \mu} i \omega-i D) F(\omega, x)=\delta(x)
$$

where $F(\omega, x)=\mathcal{F}\{f(t, x)\}=\int_{-\infty}^{\infty} f(t, x) e^{-i \omega t} d t$. The last equation can be rewritten as follows

$$
(D+\alpha)(\beta \sqrt{\varepsilon \mu} \omega-1) i F(\omega, x)=\delta(x)
$$

where $\alpha=\frac{\sqrt{\varepsilon \mu} \omega}{\beta \sqrt{\varepsilon \mu} \omega-1}$. The fundamental solution of D_{α} is given by (11), so we have

$$
(\beta \sqrt{\varepsilon \mu} \omega-1) i F(\omega, x)=\left(\alpha+\frac{x}{|x|^{2}}-i \alpha \frac{x}{|x|}\right) \Theta_{\alpha}(x)
$$

from where

$$
F(\omega, x)=\left[\frac{i \sqrt{\varepsilon \mu} \omega}{(\beta \sqrt{\varepsilon \mu} \omega-1)^{2}}\left(1-\frac{i x}{|x|}\right)+\frac{i x}{|x|^{2}} \frac{1}{\beta \sqrt{\varepsilon \mu} \omega-1}\right] \frac{e^{i|x| \frac{\sqrt{\varepsilon \mu} \omega}{\beta \sqrt{\varepsilon \mu} \omega-1}}}{4 \pi|x|} .
$$

We write it in a more convenient form

$$
F(\omega, x)=\left(\frac{1}{(\omega-a)^{2}} A(x)+\frac{1}{\omega-a} B(x)\right) E(x) e^{\frac{i c(x)}{\omega-a}},
$$

where $a=\frac{1}{\beta \sqrt{\varepsilon \mu}}, c(x)=\frac{|x|}{\beta^{2} \sqrt{\varepsilon \mu}}, E(x)=\frac{e^{\frac{i|x|}{\beta}}}{4 \pi|x|}$,

$$
A(x)=\frac{i}{\beta^{3} \varepsilon \mu}\left(1-\frac{i x}{|x|}\right), \quad B(x)=\frac{i}{\beta \sqrt{\varepsilon \mu}}\left(\frac{1}{\beta}\left(1-\frac{i x}{|x|}\right)+\frac{x}{|x|^{2}}\right) .
$$

In order to obtain the fundamental solution $f(t, x)$ we should apply the inverse Fourier transform to $F(\omega, x)$. Among different regularizations of the resulting integral we should choose the one leading to a fundamental solution satisfying the causality principle, that is vanishing for $t<0$. Such an election is done by introducing of a small parameter $y>0$ in the following way

$$
\begin{equation*}
f(t, x)=\lim _{y \rightarrow 0} \mathcal{F}^{-1}\{F(z, x)\} \tag{18}
\end{equation*}
$$

where $z=\omega-i y$. This regularization is in agreement with the condition $\operatorname{Im} \alpha \geq 0$. We have
$\mathcal{F}^{-1}\{F(z, x)\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{1}{\left(\omega-a_{y}\right)^{2}} A(x)+\frac{1}{\omega-a_{y}} B(x)\right) E(x) e^{\frac{i c(x)}{\omega-a_{y}}} e^{i \omega t} d \omega$
where $a_{y}=a+i y$. Expression (19) includes two integrals of the form

$$
I_{k}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{\frac{i c}{\omega-a_{y}}} e^{i \omega t}}{\left(\omega-a_{y}\right)^{k}} d \omega, \quad k=1,2
$$

where $c=c(x)$. We have

$$
\begin{equation*}
I_{k}=\frac{1}{2 \pi} \sum_{j=0}^{\infty}\left(\frac{(i c)^{j}}{j!} \int_{-\infty}^{\infty} \frac{e^{i \omega t} d \omega}{\left(\omega-a_{y}\right)^{j+k}}\right) \tag{20}
\end{equation*}
$$

Denote

$$
I_{k, j}(t)=\int_{-\infty}^{\infty} \frac{e^{i \omega t} d \omega}{\left(\omega-a_{y}\right)^{j+k}}
$$

For $k=1$ and $j=0$ we obtain (see, e.g., [3, Sect. 8.7])

$$
I_{1,0}(t)=2 \pi i H(t) e^{i t a_{y}}
$$

where H is the Heaviside function. For all other cases, that is for $k=1$ and $j=\overline{1, \infty}$ and for $k=2$ and $j=\overline{0, \infty}$ we have that $j+k \geq 2$ and the integrand in (20) has a pole at the point a_{y} of order $j+k$. Using a result from the residue theory [4, Sect. 4.3] we obtain

$$
I_{k, j}(t)=2 \pi i \operatorname{Res}_{a_{y}} \frac{e^{i \omega t}}{\left(\omega-a_{y}\right)^{j+k}} \quad \text { for } t \geq 0 \text { and } j+k \geq 2
$$

Consider

$$
\operatorname{Res}_{a_{y}} \frac{e^{i \omega t}}{\left(\omega-a_{y}\right)^{j+k}}=\frac{1}{(j+k-1)!} \lim _{\omega \rightarrow a_{y}} \frac{\partial^{j+k-1}}{\partial \omega^{j+k-1}} e^{i \omega t}=\frac{(i t)^{j+k-1} e^{i a_{y} t}}{(j+k-1)!} \quad \text { for } t \geq 0
$$

and $j+k \geq 2$.
For $t<0$ we have that $I_{k, j}(t)$ is equal to the sum of residues with respect to singularities in the lower half-plane $y<0$ which is zero because the integrand is analytic there. Thus we obtain

$$
I_{k, j}(t)=2 \pi i H(t) \frac{(i t)^{j+k-1}}{(j+k-1)!} e^{i a_{y} t}
$$

Substitution of this result into (201) gives us

$$
I_{1}=i H(t) e^{i a_{y} t} \sum_{j=0}^{\infty} \frac{(-c t)^{j}}{j!j!} \quad \text { and } \quad I_{2}=-H(t) e^{i a_{y} t} t \sum_{j=0}^{\infty} \frac{(-c t)^{j}}{j!(j+1)!}
$$

Now using the series representations of the Bessel functions J_{0} and J_{1} (see e.g. [14, Chapter 5]) we obtain

$$
I_{1}=i H(t) e^{i a_{y} t} J_{0}(2 \sqrt{c t}) \quad \text { and } \quad I_{2}=-H(t) \sqrt{\frac{t}{c}} e^{i a_{\epsilon} t} J_{1}(2 \sqrt{c t})
$$

Substituting these expressions in (19) and then in (18) we arrive at the following expression for f :

$$
f(t, x)=H(t) e^{i a t} E(x)\left(-A(x) \sqrt{\frac{t}{c}} J_{1}(2 \sqrt{c t})+i B(x) J_{0}(2 \sqrt{c t})\right)
$$

Finally we rewrite the obtained fundamental solution of the operator M in explicit form:

$$
\begin{aligned}
f(t, x) & =H(t) \frac{e^{\frac{i t}{\beta \sqrt{\varepsilon \mu}}}}{\beta \sqrt{\varepsilon \mu}}\left(\mathcal{K}_{\frac{1}{\beta}}(x) J_{0}\left(\frac{2 \sqrt{t|x|}}{\beta(\varepsilon \mu)^{\frac{1}{4}}}\right)\right. \\
& \left.+\frac{i \Theta_{\frac{1}{\beta}}(x)}{\beta(\varepsilon \mu)^{\frac{1}{4}}}\left(1-\frac{i x}{|x|}\right) \sqrt{\frac{t}{|x|}} J_{1}\left(\frac{2 \sqrt{t|x|}}{\beta(\varepsilon \mu)^{\frac{1}{4}}}\right)\right) .
\end{aligned}
$$

Let us notice that f fulfills the causality principle requirement which guarantees that its convolution with the function from the right-hand side of (15) gives us the unique physically meaningful solution of the inhomogeneous Maxwell system (6)-(8) in a whole space.

Acknowledgement 2 The authors wish to express their gratitute to CONACYT for the support of this work via the grant Cátedra Patrimonial No. 010286 and a Research Project.

References

[1] Athanasiadis C, Martin P and Stratis I Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and lowchirality approximations. SIAM J. Appl. Math. 59 (1999), 1745-1762.
[2] Athanasiadis C, Roach G and Stratis I A time domain analysis of wave motions in chiral materials. Math. Nachr. 250 (2003), 3-16.
[3] Bremermann H Distributions, Complex Variables, and Fourier Transforms. Addison-Wesley Publ., 1965.
[4] Derrick W Complex Analysis and Applications. Wadsworth, Inc., 1984.
[5] Gürlebeck K and Sprössig W Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley \& Sons, 1997.
[6] Imaeda K A new formulation of classical electrodynamics. Nuovo Cimento B 32 (1976), 138-162.
[7] Khmelnytskaya K V, Kravchenko V V and Rabinovich V S Métodos cuaterniónicos para los problemas de propagación de ondas electromagnéticas producidas por fuentes en movimiento. Científica: The Mexican Journal of Electromechanical Engineering 5 (2001), 143-146.
[8] Khmelnytskaya K V, Kravchenko V V and Rabinovich V S Quaternionic fundamental solutions for electromagnetic scattering problems and application. Zeitschrift für Analysis und ihre Anwendungen 22 (2003), 147166.
[9] Kravchenko V V On the relation between holomorphic biquaternionic functions and time-harmonic electromagnetic fields. Deposited in UkrINTEI, 29.12.1992, \#2073 - Uk-92, 18 pp. (Russian).
[10] Kravchenko V V Applied quaternionic analysis. Heldermann-Verlag, Research and Exposition in Mathematics Series, v. 28, 2003.
[11] Lakhtakia A Beltrami fields in chiral media. World Scientific, 1994.
[12] Lindell I V, Sihvola A H, Tretyakov S A and Viitanen A J Electromagnetic waves in chiral and bi-isotropic media. Artech House, 1994.
[13] Shneerson M S Maxwell's equations and functional-invariant solutions of the wave equation. Differencialnye Uravneniya 4 (1968), 743-758 (Russian).
[14] Vladimirov V S Equations of mathematical physics. Nauka, 1984 (Russian); Engl. transl. of the first edition: Marcel Dekker, 1971.

