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Abstract

In a paper from 2021, Albrecht Bottcher, Juanita Gasca, Sergei M. Grudsky, and
Anatoli V. Kozak gave a precise and complete description of all types of the limit
Schmidt—Spitzer sets for tetradiagonal Toeplitz matrices. In this paper, we consider
one of these possible cases, when the limit set consists of two analytic arcs that join at
one point forming a cusp. For this family of Toeplitz matrices, we provide asymptotic
formulas for every eigenvalue as the order of the matrix tends to infinity. Our analysis
provides a theoretical understanding of the structural behavior of the eigenvalues,
while the obtained formulas enable high-precision calculation of the eigenvalues.

Keywords Tetradiagonal Toeplitz matrix - Eigenvalue - Asymptotic formulas -
Simple-loop method
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1 Introduction

The behavior of the spectral characteristics of Toeplitz matrices as their dimension
tends to infinity has been intensively studied since the beginning of the last century.
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The starting point is Szeg6’s article [30] (see also monographs [7, 14, 15, 20] and the
literature cited therein). Thereafter, there were numerous versions of Szeg6’s theorem
on the asymptotic distribution of eigenvalues and the Avram—Parter-type theorems on
the asymptotic distribution of singular values [2, 11, 25, 27, 32]. An extensive litera-
ture is devoted to the asymptotics of Toeplitz matrix determinants (see, for example,
monographs [7, 15], papers [16, 18, 22, 36] and the literature cited there). Much atten-
tion is given to the asymptotics of the largest and smallest eigenvalues [13, 24, 28, 34,
35].

Such a great interest in the asymptotic behavior of spectral characteristics of
large Toeplitz matrices is motivated, to a very significant extent, by numerous
important applications, including the numerical solution of differential and integral
equations [21], stochastic processes and time series analysis [20], signal and image
processing [23, 26], quantum mechanics [21], etc.

However, despite the profound interest of many researchers in this area, the unde-
niably important problem of individual asymptotic formulas of all eigenvalues and
eigenvectors was not studied until 2009.

A substantial body of work focuses on numerical methods for finding the spectrum
of Toeplitz matrices for large values of their dimensions (see [19, 31, 37] and the
literature cited there). In the work [3] (see also [5, 6, 17] and review [6]), asymptotic
expansions were constructed for all eigenvalues of Toeplitz matrices with real-valued
symbols (the self-adjoint case) satisfying the so-called SL (simple loop) condition. The
latter means that the real-valued symbol under consideration has exactly one minimum
and one maximum on the unit circle. In the indicated articles, classes of polynomial,
infinitely differentiable, and finitely differentiable symbols were successively con-
sidered. The case of complex-valued symbols (non-self-adjoint Toeplitz matrices) is
more delicate.

The classical work [29] of Schmidt and Spitzer gives a description of the set for
which the eigenvalues of a sequence of Toeplitz matrices converges as the dimension
of the matrices tends to infinity. There was also proved that this set consists of a finite
number of analytic arcs (which, as was established somewhat later in [33], form a
connected set in the complex plane) and their analytic description was given. We refer
to the aforementioned set as the limit set.

Papers [4, 12] are particular cases of the application of [29], in both situations the
limit set of eigenvalues coincides with the image of the symbols when the variable
runs over the unit circle. Taking advantage of this situation, uniform asymptotic repre-
sentations for all eigenvalues were constructed for matrices with symmetric symbols
and symbols having power singularities on the unit circle. In the case of complex
polynomial symbols, the limit set is a structure of a more complicated nature.

In the article [10], a significant refinement of the results from [29] was obtained
for the case of a tetradiagonal Toeplitz matrix. There, it was proven that the set of
all tetradiagonal Toeplitz matrices is divided into three classes, each of which has the
limit set consisting of one, two, or three analytic arcs, respectively. Based on these
results, asymptotic expansions of all eigenvalues were obtained in [8, 9] in the case of
a limit set consisting of one arc.

In this paper, we consider the problem of deriving asymptotic expansions for all
eigenvalues of a tetradiagonal Toeplitz matrix whose limit set consists of two analytic
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arcs. Note that in this case these arcs form a cusp. Outside the neighborhood of the
cusp, we use a technique similar to the SL case, yielding asymptotic formulas of a
similar structure. Near the cusp, however, the SL method fails, necessitating a different
approach. Nevertheless, we still have a small set of eigenvalues not represented by any
of these two kinds of asymptotic expansions. However, numerical experiments show
that the asymptotic approximations work for all the eigenvalues. In a future paper, we
will use another approach that reveals a unique asymptotic formula encompassing all
of them.

To conclude, we note that the asymptotic method for calculating eigenvalues is of
fundamental importance in the case of complex-valued polynomial symbols. Standard
numerical algorithms encounter the problem of large instability, as a consequence, for
usual 16-precision digits, the results of calculations cease to be adequate already for
matrix dimensions in the range of 500-1000. To overcome this effect, it is necessary
to increase accuracy (64-precision digits and more) which sharply reduces the speed
of the algorithms used. The presented formulas serve as the basis for algorithms, with
significantly higher calculation speed. Namely, we have complexity of order O(n),
where 7 is the dimension of the matrix, and provide good accuracy already for n of
the order of 100, and this accuracy, naturally, improves with the growth of n.

This paper is structured as follows: in Sect. 2, we present our main results, concern-
ing the asymptotics of the eigenvalues for tetradiagonal Toeplitz matrices in the case,
where the limit set consists of two analytic arcs. In Sect. 3, we recall some known facts
about the limit set and provide new ones. In Sect. 4, we provide some properties of the
main actors of our analysis. To get the asymptotic expansions of the eigenvalues, two
different approaches are needed, one when the eigenvalues are far from the bifurcation
point, and another when they are close to it; we call them inner and cusp eigenvalues,
respectively. The analysis performed on the characteristic equation and the proofs for
the construction of the eigenvalue asymptotic expansions, are presented in Sects. 5
and 6, for inner and cusp eigenvalues, respectively. Finally, in Sect. 7, we present the
numerical results from a test conducted using our formulas.

2 Main results

Given a Laurent polynomial b(z) := b_1z7' + by + b1z + brz? with complex coeffi-
cients, let 7, (b) be the n x n tetradiagonal Toeplitz matrix generated by b. For example,
forn =35

[rlbob—1 O 0 O

by bg b_;y 0 O

Ts(by=| by by by b_; 0O
0O by by by b_g

0 0 by by by

In [10], by the use of the Schmidt and Spitzer trick [29, Lemma 3.1], the authors
showed that the analysis of the spectrum of 7,,(b) can be divided into two main cases.
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For instance, if b; = 0, choosing p, so that p2b2 = p’lb_l, then
o (Ty(b)) = b + p*b20 (Ty(z* +271)).
If by # 0, choosing p, so that pby = p~'b_; leads to
o (Ty (b)) = by + p*b20 (Ty(z* + ez +cz™1) @.1)

with ¢ = pb1/(p%by).
Taking into consideration (2.1), for ¢ € C \ {0}, we define

aix):=22+cz+cz7 (zeC\{0). (2.2)
For every A in C, we consider the equation
a(z) —r=0. (2.3)

Letz1(X), z2(A) and z3(A) be the solutions of (2.3) labeled in such a way that |z;(A)| <
|z2(A)] < |z3(1)]. Following Schmidt—Spitzer [29], the limit set associated to (2.2) is
defined by

Aa) :={r e C: |z1(M)] = |z2(M)] < lz3M)} - (2.4)

According to [29], the sequence of sets of eigenvalues of 7},(a) converges to A(a) in
the Hausdorff metric as n — oo. Therefore, for every n sufficiently large, it is natural
to search the eigenvalues of T, (a) in a neighborhood of A (a).

In [10, Theorem 4.5], it was stated that A(a) is the union of two analytic arcs with
one intersection point, if and only if the parameter ¢ belongs to the set

2(1 4 £+ £2)3/2
r= {:i:&: Zey}, (2.5)

14

where

- {p cosp = 1= P71 pe<1 ﬁ“
2p ' 272 '
In [10, Theorem 4.5], it was also established that if ¢ lies inside the region that I"
encloses, then A(a) has three analytic arcs, while if c is outside, then A(a) consists
of only one analytic arc. The curve (2.5) is shown in Fig. 1.

The case where A (a) consists of only one analytic arc was considered by Bogoya,
Gasca, and Grudsky in [8, 9]; they provide a complete description of the eigenvalue
asymptotic expansion of T, (a) as n — oo.

In this paper, we study the individual behavior of the eigenvalues of n x n Toeplitz
matrices T, (a) as n — oo, where a is given by (2.2) with the parameter ¢ in (2.5).
We remark that, we use ideas and techniques similar to the ones employed in [8, 9].
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Fig.1 Set I in pink

Fig.2 In teal the set a(T), in red
A(a) and in black the values
L1, 2, 03, for some parameter
cinll 2 B
2
0 - -
_9l |
K1
| | | |
-2 0 2 4

Denote by 11, 12, 13 the solutions of a’(z) = 0 labeled in such a way that |fp| >
[t1| > |t3]. By [10, Theorems 4.3, 4.5] (cf. Theorem 3.1 and Proposition 3.4), A(a)
is the union of two analytic arcs, one that initiates at 1 = a(#1) and terminates at
12 = a(h), and the second going from w3 = a(#3) to po; moreover, these arcs form a
cusp at uy. Figure 2 shows the limit set for some parameter ¢ in I, notice the skeleton
shape with respect to the range of a restricted to the unit circle T.

From [10, Theorems 4.3, 4.5], it is guaranteed the existence of a value ¢; in (0, 27),
such that the roots of a(z) — u» are the numbers >, t2, €/92t>. Let ¢ := Oand @3 := 27.
Now, we define the natural parametrization function of the limit set by

Y (s) = a(u(s)). (2.6)

where u is an analytic function defined on some complex open neighborhood of [0, 277]
that satisfies a(u(s)) — a(e’*u(s)) = 0 for every s € [0, 27]. Proposition 3.13 proves
that u restricted to [0, 2] is one to one, u(¢) = t1, u(p2) = t, u(p3) = t3, and
a([0, 2]) = A(a). In Proposition 3.14, we show that i inherits these properties.

In Remark 3.16, we show how to numerically compute « on the grid 2wk /N (j =
1,..., N) of [0, 2], making it possible to construct a polynomial approximation
of u. Figure 3 shows the range of this approximation restricted to [0, 2], for some
parameter c; exclusively for visual reference, we also plot the unit circle.

To perform the forthcoming analysis, we introduce the supporting actors of this
paper. Justified by Proposition 3.13, there exists M > 0, such that for every k > 1 and
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Fig.3 In red the set u ([0, 27]), T

in black the points #1. 2, 3 and 1r ]

in teal the unit circle for some t
c~ 1427071 +i 05l |
0 f
—0.5 f
71 - t2 -

| | | | |

every small v > 0, u is analytic on the set
- M
Qui = {z eC: 0<N@ <27, v<|R2)—el, INQ@)| < 7} . 2.7

To simplify notation, put o = 20,1 and €2,, = Q1. For every s € clos(£2p), let

is 3
Ss) = uc(s) , (2.8)
pGs)i=1—f(s), q(s):=1—e"f(s). 2.9)

For every small v > 0, and every s € ©2,,, define
S
n(s) ;= —iln —, (2.10)

where In stands for the principal branch of logarithm (see Lemma 4.3). Let n > 3,
then for every s € Qo, set

Lﬂé,m)
sin e \ ? ) f(s)rt? )
rp(s) 1= , R, (s) := —2 arcsin(r, (s)). (2.11)
p(s)
For every j € Z, put
27 j 27 B,
d o , 2.12
nj =@2+ 1t e (2.12)
where
1 1
J, = |:(n+ )902]’ g, = Jn_(n+ )<P2’
2 2w

) Birkhauser



Eigenvalue asymptotic expansion of large... Page 7 of 36 4

with [y] denoting the integer part of the number y. For § > 0, define the set

. . n,j
Bn,j = SEQO.|€n’j—S|<m s (213)
where
1n(dn.j)
enji=dnj— ﬁ (2.14)
31n(dn.j)l supseq, , I ()], if [R(s) — @a| > 4,
enj = { 300+ Dl )| 215)

; , if |M(s) — 2| <6.
2x(ljl+1)

Now, we present our main results. We start with the ones concerning the eigenvalues
of T,,(a) that are far from p,.

Theorem2.1 Let 1 > € > 0, n € N, and j € Z be, such that d, ; € (0,2m) and
|j|/n'?T€ is large enough. Then, there exists a unique value Sn,j € By, j, such that
Y (sy, ) is an eigenvalue of T, (a), and sy, ; satisfies the equation:

() | (DIR,Gs)
n+1 n—+1

: (2.16)

S =dnj

where |Ry(sn.j)| = O(n'/?|j|71/% exp(=61% 2 n)). Moreover, ¥ (su.;) # W (snp).
forevery j,k € Z, such that j # k, dy j,dnx € (0,27), and | j|/n' /%€, |k|/n'/>+€
are large enough.

Let n and j be as in Theorem 2.1 and let s, ; be the value in B, ;, such that s, ;
satisfies (2.16). We call A, ; = ¥ (s, ;) inner eigenvalues.

Theorem2.2 Let 1 > € > 0, n € N, and let j € Z, such that dy,j € (0,2m) and

n is large enough. Then, there exists a unique value s* . € B,, ; that satisfies
the equation:
1(s)
=dnj— ——. 2.17
S=dng =T (2.17)
Moreover, if |dy, j — ¢2| > 6, then
" 1
|An,j — ¥ (s, )l =0 i R (2.18)
and if § > |dy,j — ¢2|, then
. In |;‘—|
|An.j — w(sn,j” =0 W . (2.19)

® Birkhauser
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In the next theorem we derive asymptotic expansions for both s, ; and A, ;, where
sn,j satisfies (2.16); for this purpose, for every s € o we define

vo(s) =, v1(s) := —n(s), 02(s) 1= n(s)n'(s), (2.20)
1
lo(s) ==Y (s), [i(s) =P (9)v1(s), hls) =P (s)vals) + EW’(S)Ul(S)z-
2.21)

Theorem 2.3 (Asymptotic expansions of inner eigenvalues) Let 1 > € > 0,n € N,
and j € Z, such that d, ; € (0, 2m) and |j|/n'?*€ is large enough. Then

v1(dn, ;)  ©2(dy,j) .
n+1 n+10D2 "7
Lidn,j) = b(dnj)
n+1 (n+1)2

Sn.j = 00(dn,j) + (2.22)

Mnj = lo(dn j) + + Ruj. (2.23)

where

o rpj= 0(n’3) and Ry, ; = 0(n’3) ifldn,j — 2| > 8, or
o raj =0 (In(n/1jD*/(nj*) and R, j = O (In(n/|j?/(nj?)) if ldn.j — 2| < 6.

For each k = 1, 2, 3, we denote the Taylor expansion of ¥ around ¢; by

Y(s) = e+ Y (s — @) + Yol — o) + ¥ials — o) + Ols — gl

where the coefficients ¥ 1, ¥ 2, and ¥ 3 are computed in Theorem 3.15.
Under the conditions of Theorem 2.3, we call the extreme eigenvalues 1, _j, such
that A, j — urasn — oo, fork =1, 3.

Corollary 2.4 (Asymptotic expansions of extreme eigenvalues) Under the conditions
of Theorem 2.3, letk = 1and j' = j+ Jy,ork=3and j' =n+1—J, — j. If
j'/n — 0, then

7T2j/2 5 JT2j/2

P LA ) v S
nj = Mk + 1/fk,2(n+1)2 P

+ Ry jr, (2.24)

where R, j; = 0@ /n*).

In the case when A(a) consists of one analytic arc, the asymptotic expansions
derived in [8, Theorem 2.2] and [9, Theorem 2.4] are valid for all the eigenvalues of
T, (a), as n — oo. In contrast, Theorem 2.3 does not guarantee either (2.22) or (2.23)
if dy,j — @2 as n — 00, because the remaining terms in (2.22) and (2.23) are not
small enough.

Thus, our last results pertain to the eigenvalues that approaches > asn — oo. For
this purpose, for every n € N we define the function:

n+1

]
Ln(z) == z% (z 1), (2.25)

) Birkhauser



Eigenvalue asymptotic expansion of large... Page 9 of 36 4

and for every n € N, every j € Z and every A > 0, we put
N
n+1’

Uy ja= {s € C: |xn,j

Xn,j i=@2+ (2.26)

12
AlJl } . (2.27)

_ < 7
P
Theorem 2.5 There exists A > 0, such that for every n € N large enough, and

every j € Z\ {0}, such that x, ; € (0,27) and j = o(n'1?), there exists a unique
sn,j € Up,j A that satisfies the equation:

(£ () = Lale™). (2.28)
Moreover, the value (s, j) is an eigenvalue of T, (a).

Let n and j be as in Theorem 2.5, we call A, ; = ¥ (sy,;), such that s, ; satis-
fies (2.28) and | j|/n'/? « 1 cusp eigenvalues (observe that the index j has a different
meaning than the one given in Theorem 2.1).

For every n and every j, let

(—1)/e~ilntDe2 _q

Kn = i (2.29)

Theorem 2.6 (Asymptotic expansions of cusp eigenvalues) For every n large enough
and every 1 < j <n, such that j = o(nl/z), it follows that

(jn)® (jn)?

Anj = M2+ 1l’22m - 21/’2,2Kn,jm + Ry j, (2.30)

where R, j = O (js/n4).

Remark 2.7 Despite the results stated in Theorems 2.3 and 2.6, there exists a small set
of eigenvalues for which we have not provided an asymptotic expansion. However,
numerical experiments show that (2.23) works for these eigenvalues.

3 The limit set and the generating function

Recall that A(a) is the limit set defined by (2.4), where a is the Laurent polynomial
given by (2.2) with parameter ¢ in (2.5). In this section, we state several facts about
A (a), and derive the construction of # and ¥ mentioned in (2.6). Some of the following
results were proved in [10, 29].

Here, we use the idea given in [10], which is to analyze the equation a(z) —a(e'¥z) =
0. Since, for every z, 7 € C \ {0}:

a(z) —a(tzy) =127 1(1 = 1) (r(l +1) 4 et — c) , 3.1)

® Birkhauser
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studying the roots of (3.1) is equivalent to studying the roots of the polynomial:
Oz, 1) =11+ +ctz>—¢  (Vz,7 €O). (3.2)

Observe that, unlike (3.1), ® does not have any singularity at z = 0.
Notice also that

284t —c D@D

a'() 2 2

Z Z

So, let #1, 1>, 13 be the solutions of ®(z, 1) = 0 labeled, such that |;| > |#;] > |#3],
and denote p := a(ty) for each k = 1, 2, 3. Then, for each k = 1, 2, 3, the roots of
a(z) — uy are the values

)
e, t, —c(tp) "

Next theorem says that p; are the branch points of A(a), i.e., that a(z) — u has
multiple roots. The corresponding proof is in [10, Theorem 4.3].

Theorem 3.1 For each k = 1,2, 3, ux = a(ty) is a branch point of A(a). Moreover,
there exists gy € (—m, ]\ {0}, such that the roots of a(z) — py are tp, ta, €'%21t;.

For some parameter c in (2.5), the black dots in Figs. 2 and 3 show the values 1ty
and 7, respectively. ‘
Fix ¢, to be the value from Theorem 3.1, such that t,, 1>, ¢'#21, are the roots of
a(z) — pp. Vietta’s theorem for the equation a(z) — o = 0 implies
—c=85e"  —u=05(1+2), —c=nQ2+e?).  (33)
From the second equality in (3.3), we get
pa = —13(1 +2e'%) = —13'92(2 4 e712).

From the third equality in (3.3), 2 + e = —c/1;, hence

2,007 o0z
1ye'2c  1ye'V’c

M2 =

no o
From the first equality in (3.3), t23ei“’25 = —|c|? and |n|? = |c]*/3, so
_ e
HZ__|C|2/3 __|C| .
Similar procedures yield o = —5 — 4 cos(¢2) as well as |c| > 1, equality holding

only for ¢ = i (pp = £m).
A simple analysis shows that (3.2) is an irreducible polynomial in two variables.
Let D be the discriminant of ® and ®. Denote by E the set consisting of the zeros of

) Birkhauser
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7 +> 7(1 + 7) and the zeros of D. If g € C\ E, then the equation ®(z, tp) has three
distinct roots wi, ws, w3. Under these conditions we have the following Lemma [1,
Chapter 8, Section 2, Lemma 1].

Lemma 3.2 There exists an open disk Vo € C\E, containing 1o, and three analytic
functions gj(.), 4‘20, 4‘30 defined on Vyy with these properties:

1. <I>(§j(.)(r), 7) = 0in Vo;
2. {f () = 0j;
3. if®(z,7) =0, witht € Wy, then z = {J(.)(‘L')for some j.

The collection of all pairs (Vp, {?) from Lemma 3.2, forms what is called an alge-
braic function corresponding to the polynomial ®, [1, Chapter 8, Section 2].
Our next lemma is a direct application of Lemma 3.2.

Lemma 3.3 There exists an open neighborhood U of (—m, ) in C not containing w
or —m, and analytic functions uy, ua, uz on U, such that

1 ®(uj(s), eis) =0 forevery j =1,2,3andeverysinU;
2. uj(s) # u(s) for every s in U and every j # k.

Proof For every s € (—m, ), we can apply Lemma 3.2 with 7y = ¢, since 79 ¢ E.
Then, for every s € (—m, ) there exists an open disk Uy containing s and three
analytic functions uj'. defined on U with the properties given in Lemma 3.2, and such
that u;l (s*) # u3 (s*) for every s* € Uy and every j # k. The conclusion follows by
an usual analytic extension argument on the obtained pairs (Uy, uj) O

Let u; be as in Lemma 3.3, we label them, so that u;(0) = t;. Notice also that
D (e up(s), e~y = 0 for every k = 1,2, 3 and every s in (0, ), hence, ux(—s) =
S up(s).

Observe that (0, ) = —c # 0, so, for every s in (0, 27), ui(s) # 0. For every
k=1,2,3, define z3 (s) := —ce S (uy(s)) 2.

The next step is to construct a nice parametrization function, taking as bricks the
compositions a o uj. Thus, our next results describe the necessary properties for this
purpose.

Proposition 3.4 Let k = 1,2,3. For every s € [0, ), the solutions of the equation
a(z) = a(ui(s)) are

up(s), eSug(s), z3.x(9).

Proof From Lemma 3.3, a(ux(s)) = a(e’*ui(s)). Immediately follows that uy(s)
and e'Suy(s) are two solutions of the equation a(z) = a(ui(s)). Now, z3 £ (s) is the
third solution, since it satisfies Vietta’s equations applied to a(z) — a(ux(s)) = 0, in
particular:

¢y (5)°z3 1 (s) = —c. (3:4)

Hence the conclusion. O

® Birkhauser
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To state the remaining results of this section, we need some facts about the uy stated
in [10], and list them in the next remark.

Remark 3.5 In the proof of [10, Theorem 4.3, part (c)] were shown the following facts:

1. for every A € A(a), the roots z1 (1), z2(A), z3(1) of a(z) — A satisfy

lz1(V)] = lz2(M)] < [z3(M)],

the equality holding only for A = us;
2. Ju1(0)] = |11l < z3,1(0)] and [u3(0)| = |13] < |z33(0)[;
3. there exists € > 0, such that for every s € [—¢, €] \ {0}:

w1 ()] < lz3.1()],  |uz()] < 1233, |ua(s)| > |z32(5)];

4. there exists § > 0, such that for every s in a neighborhood of (¢ — 38, @2 +38) \ {¢2},
exclusively one of the uy satisfies ux(¢2) = 2 or ux(p2) = €', and |ux(s)| <
|23,k (5)1-

Now, we give a criterion for determining when a value a(uy(s)) belongs to A(a)
for givenk = 1,2, 3 and s in [0, 7).

Theorem 3.6 Lets € [0, ), and letk = 1,2, 3. Then, a(ui(s)) € A(a) if and only if
lur(s)| < |c|'/3. Furthermore, luy(s)| = |c|'/? if and only if lui(s)| = |t2].

Proof From Proposition 3.4, ux (s), e**u (s) and 23k (s) aretheroots of a(z)—a(ui (s)).

Suppose a(uk(s)) € A(a). By (2.4), |u(s)| < |z3.4(s)], since |ug(s)| = | uz(s)].
So, (3.4) gives

()P < |ug()* 231 (5)] = [cl.
Now, assume that |uk(s)|3 < |c|. From (3.4)

||

lur(s)| < ———= = 234 (). (3.5)
|uk (s)?
By (2.4) it follows that a(ui(s)) € A(a).
The second statement follows from (3.5) and i) of Remark 3.5. O

Corollary 3.7 For every s in (0, ), a(uz(s)) ¢ A(a).

Proof Without loss of generality we can assume that g2 > 0.
By (iii) of Remark 3.5, there exists € > 0, such that for every s € [—e¢, €] \ {0}

[uz(s)| > z3,2(5)].

If there exists 7 > § > €, such that [up(8)| = |z3.2(8)| and |uz(s)| > |z3.2(5)]
for every € < s < §, then, by (i) of Remark 3.5, necessarily a(#2(8)) = 2, so,
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Theorem 3.1 yields

[128), u20), 23] = |12, 00,12

The previous equality is only possible if § = ¢», leading to a contradiction with
Remark 3.5 part (iv). Analogously, if —m < § < —e. Then, |u2(s)| > |z3.2(s)| for
every s # 0, which by (2.4), implies the conclusion. O

Proposition 3.8 There is a unique ordered pair (j, k) € {(1, 3), (3, 1)}, such that for
every s in [0, 7], uj ()| < le|'?, lux()] < le|', and |uy(s)| = |02] = |c|'7? if and
only if s = ¢3.

Proof By Corollary 3.7 and (iv) of Remark 3.5, at least one of u| or u3 should satisfy
ur(p2) =t or up(p2) = ety Suppose that 7 > ¢ > 0 and u1(¢2) = t2, the other
cases follow similarly.

By (iii) of Remark 3.5, there exists € > 0, such that for every s € [—e€, €]

lur(s)l < lz3,1(s)1-

Suppose that there exists 7 > s* > ¢, such that |u;(s*)| = |z3,1(s™)| and |u;(s)| <
|z3.1(s)| for every s* > s > €. By (i) of Remark 3.5, a(u1(s*)) = u2, so

{ur(s™), e u1(s™), 23,15} = {r, e'?n, 12}.

Hence, |u1(s™)| = |z3.1(s™)|, which happens only at s* = ¢,. By (iv) of Remark 3.5,
there exists § > 0, such that |u(s)| < |z3,1(s)| forevery s € (92 — 3, g2 + ) \ {p2}.
A similar argument shows that |u1(s)| < |z3,1(s)| forevery s € (g2 —38, 7w +¢€)\ {g2}.
We have proved that for every s € [0, ] \ {¢2}, the inequality |u;(s)| < |z3,1(s)]
holds, by (2.4), this means that a(u(s)) € A(a), and by Theorem 3.6, we obtain that
lui(s)| < |c|'/3, with equality |u1(s)| = |c|'/3 occurring only if s = ¢5.

Now, from (iii) of Remark 3.5, [u3(s)| < [z3,3(s)| for every s € [—¢, €]. Assume
that there exists s’ in (e, ), such that |u3(s")| = |z3.3(s")|. By i) of Remark 3.5,
necessarily

{uz(s), € us(s'), z33(s")} = {2, €'P 12, 2}.

The last equality is possible only if s" = ¢,. However, by (iv) of Remark 3.5, we
get that uj(s) = u3(s) in a neighborhood of ¢;, but this contradicts Lemma 3.3.
Then, |u3(s)| < |z3.3(s)| for all s in [0, 7]. Analogously as before, from (2.4) and
Theorem 3.6, |u3(s)| < |c|'/3 for every s in [0, r].

If o = m, which by (2.5) occurs only when ¢ = =+i, then, the conclusion follows
similarly, just that in this case |« ()| = |u3(w)| = 1 = |c|. See Remark 3.9 below. O

Notice that, at first, it is not guaranteed that the uj are analytic at s = 7w, —7
(t = —1), the principal reason being that at those points the degree of ® drops
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1 - -
2 |- -
0.5 a
0f 1 of iz 1
—0.5+ -
_2| |
1k |
1 1 1 1 1 1 1 1
-1 —0.5 0 0.5 1 -2 0 2

Fig.4 For c =i, left: the set u[0, 27] in red, T in teal, right: the limit set A (a) in red and a(T) in teal

(see [1] for further details):
Oz, —1) = —c? —c=—c(Z>+1) = —c(z+ i)z —i).

By Corollary 3.7, Proposition 3.8, and the continuity of the roots under continuous
variation of the coefficients of ®, as s — m, it follows that |u3(s)| — o0, while one of
u1(s) and u3(s) converges to i and the other to —i. Moreover, it follows that « (s) and
¢S u3(s) are analytic continuations of each other for s on some open neighborhood of
.

Hence, with (j, k) obtained from Proposition 3.8, if u; (¢2) = t2, then we can define
an analytic function # on some open neighborhood of [0, 277 ] that satisfies u(¢x) =
foreach k = 1, 2, 3, and, restricted to [0, 27 ]:

. (3.6)
uj(s —2m), if w <s <2m.

ug(s), if 0<s=<m,
u(s) =
If e/ 2y, (¢2) = tp, then, e u(s) restricted to [0, 277 ] coincides with the right-hand side
of (3.6). Without loss of generality, in what follows, we suppose that u satisfies (3.6).
Now, we can properly define the generating function given by (2.6).

Remark 3.9 (cases ¢ = +i) Notice that i, —i, —c are the roots of a(z) + 1 = 0, and
as |c| > 1,then —1 € A(a). If c = +i, then p» = 7, and

i «/7 l «/7

H==®-+— I = Fi 3=*4———

1 4+4, 2 = Ft, 3 1 1
si,7f7 . 5 V7
=3 4 5 = —1, =3 l .
1 3 _8 n2 n3 8:':_8

Figure 4 shows the graph of u ([0, 27r]) and A(a) when ¢ = i.

Define w(s) 1= —ce *u~%(s). By Vietta’s theorem, it is clear that u(s), **u(s)
and w(s) are the roots of a(z) — a(u(s)).
Now, we present the main properties of ¢ and u that benefit all the posterior analysis.

) Birkhauser



Eigenvalue asymptotic expansion of large... Page 15 of 36 4

Proposition 3.10 ([0, 2r]) = A(a).

Proof From Theorem 3.6 and Proposition 3.8, we obtain that for every s € [0, 27],
lu(s)| < |w(s)|, hence ¥ (s) € A(a),i.e., ¥([0,27]) C A(a). Notice that 1/ (0) = u
and ¥ (2) = p3. Since ¥ is continuous and [0, 27 | connected, then v ([0, 277]) is a
connected subset of the connected set A (a) that has the extreme points 1 and p3, so,
necessarily ¥ ([0, 27 ]) = A(a). O

Proposition 3.11 The function u is one to one on [0, 27 ].

Proof Suppose that there exist 51, 53 € [0, 2] \ {¢2}, such that u(sy) = u(sy). Then,
Y (s1) = ¥(s2). By Proposition 3.10, ¥ (s1) € A(a), then the roots of a(z) — ¥ (s1)
are the same as the roots of a(z) — ¥ (s2), that is

isq isy

{u(s1), e”'uls)), w(sp} = {u(s2), e2uls2), wisz)}. (3.7)
From Proposition 3.8, [u(s;)| < |w(s;)|, so, w(s;) = w(s2). Then, eSlu(sy) =

€21 (s7). Therefore, ¢!1752) = 1, and this occurs if and only if 5| = s5. m]
Proposition 3.12 The function i is one to one on [0, 21 ].

Proof Suppose that there exist s1, 52 € [0, 7] \ {¢2}, such that ¥ (s1) = ¥ (s2). As
in the proof of Proposition 3.11, we have (3.7). In particular, w(s;) = w(s). If
u(sy) = u(s2), then s = so. If u(sy) = ei‘vu(sz), then s; = —s, which cannot
happen. Thus, ¥ is one to one on [0, 7 ].

By Proposition 3.10 and previous calculus, ¥ is one to one on [0, ], tracing an
arc contained in A(a) starting at ¥ (0) = p1 and terminating at ¥ (w) = —1.

Analogously, v is one to one on [, 27 ], tracing an arc contained in A (a) starting
on ¥ () = —1 and ending in ¥ (27) = u3.

Therefore, ¥ [0, 7) Ny (m, 2] = @, so, ¥ is one to one on [0, 27 ]. O

Foreach j € {1, 2}, denote by [A; ~ A ;1] the analytic arc contained in A (a) with
endpoints A; and A ;1. The next propositions summarize the properties of u and v
proved above.

Proposition 3.13 The function u has the following properties:

1. u is analytic on some open neighborhood of [0, 27 ].
2. u(0) =1, u(g2) =12, u(2m) = 3.
3. the restriction of u to [0, 21 ] is one to one.

4. |u(s)| < |c|'/3 for every s € [0, 2 \{92}, and |u(g2)| = |c|'/3.

Proposition 3.14 The function i has the following properties:

1.  is analytic on some open neighborhood of [0, 27 ].

2. Y(0) = w1, ¥(p2) = po, ¥ (21) = p3.
3. The restriction of ¥ to [0, 21r] is one-to-one.
4

. ¥ ([0, 27]) = A(a), in particular Y ([0, 21) = [u1 ~ p2l, ¥ ([g2, 27]) = [p2 ~
wu3l.
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We conclude this section with the asymptotic expansions of # and ¥ around the
points @. First we introduce some notation.

Recallthatgp; = Oand 3 = 27.Letk = 1, 2, 3. Hence, a(t;) = pranda’(1;) = 0.
Define the numbers a; » := a”(#)/2, ax3 := a”'()/6. From the Vietta’s formulas
applied to a(z) — ug, we obtain

3—1f 2
o=—>%, 3=
k.2 e k.3 tk(l—t)
In particular, app = 1 — ¢/?2 and ap3 = /%21, . Then, for every z in a small
neighborhood of #:
a(2) = p + a2z — 107 + a3z — 1) + Olz — 1. (3.8)

Recall also that a(e’##;) = jui. Define the numbers by | := a’(e'%1;), byo 1=
a (e'%1;)/2; clearly by,; = 0 and by, = a; for k = 1,3, and again by Vietta’s
formulas b1 = e 2(1 — ¢/%2)? and by 5 = 1 — 2¢~ 22, Therefore, for every z in
a small neighborhood of ¢/%;:

a(z) = ik + br1(z — %)% + bra(z — %) + Olz — €% *. (3.9)

The proof of the following theorem is analogous to the proof of [10, Theorem 4.5].

Theorem 3.15 Letk = 1,2, 3. Then, as s — @,

u(s) = ti + w1 (s — @) +weols — @) + Ols — @l (3.10)
V() =tk + Vi1 (s — o) + ¥rals — o) + ¥isls — @)’ + Ols — gl
(3.11)
where
ke Tk
U1 =—i—, Uor=——+, k=1,3),
k1 > k.2 4(3 — flf) ( )
. »2
U = —it), UWr=—— (2 + i cot 7)
3 -t}
Yi1=0, 2= /2 Yr3=0, (k=1,3),

41 -1}’
Y21=0, Yoo=-1(1—¢%), a3=3i1.

Proof Consider the Taylor expansion of u around ¢ of the form (3.10); substitute it
in (3.8) and apply the chain rule. Then, as s — ¢:

a(u(s)) = mk + U 1 (s — o) + Qe ot 112 + 3 31 ) (s — @)° + Ols — e[
(3.12)
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Therefore, ¥ 1 is zero. From (3.12) we get that ¥z o = ak,zuﬁyl and Y3 =

2a 2u Uk 2 + ak,3u2 1» hence, we only need to find the values 1 ;. For this pur-
pose, we consider the expansion:

(s — op)?

el = el (1 +ils —o0) — ——

+0|s—(pk|3). (3.13)

Multiply (3.13) and (3.10), then substitute it in (3.9) and apply the chain rule. Then,
as s — @i

a(eu(s)) = pp + b’ (uey +ite)(s — gx)
. t .
+ <bk,1e“”2 <uk,2 + iy — Ek) + br2e® P (e + il2)2) (s —p)?

+ Ols — i,
(3.14)
Recall that for every s € [0, 2n], ¥ (s) = a(u(s)) = a(e*u(s)); therefore, the values
ug,; and hence ¥ ;, are now easily obtained by comparing the coefficients of the
Taylor expansions around gy of (3.12) and (3.14). O

Remark 3.16 (Algorithm for constructing the limit set) Given (2.2) with parameter
c in (2.5), Theorem 3.6, and Propositions 3.10, 3.11, 3.12, justify the following
numerical way of constructing the corresponding limit set: Estimate the roots 71, f2,
and 73 of ®(z, 1), which, after the evaluation by the symbol a, returns the branch points
U1, 12, and 3. After that, take N arbitrary points 0 < 07 < -+ < oy < 7, and,
for each o}, select the only two solutions ui (o) of ®(z, €i%7) = 0 that satisfy the
inequality |ug (0;)| < |c| 173, Compute both a(ug (0;)); these (distinct) values will then
belong to A(a). After this procedure, it is feasible to provide a nice approximation of
the limit set using polynomial interpolation at the generated points.

4 Supporting actors

Recall that 2, ¢, f, p and q, n, , r, and R, are defined by (2.7), (2.8), (2.9), (2.10),
and (2.11), respectively. In this section, we provide some properties of these functions.
By Proposition 3.13, | f(s)| < 1 for every s in [0, 2], attaining the equality only
at s = ¢y. Figure 5 shows the graph of f restricted to [0, 27].
Define the values

1—¢2 1—1¢2
k . k
D) ’ fk,1~ l 4 s

;ZM (k=1,3)
83—t ' ’(4'1)

. 1 . v
oi=L  fha=-2i. fui=—;3 (7 + 3i cot 7) :

fi.2

fr,0 = —
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Fig.5 In red the set f ([0, 27]),
in black the points f (@) and in 1
teal the unit circle for

c~ —1.91873 —i0.66558
0.5 5

—0.5 - 8

Proposition 4.1 There exists some open neighborhood of [0, 21 ], where f is analytic.
Moreover, for every k = 1,2,3, as s — @i

F(8) = Fro+ fi1(s — @) + fr2(s — o) + Ols — g . (4.2)

Furthermore, as s — ¢

1
f(s) =exp <fz,1(s — @)+ (fz,z - Efﬁ,l) (s — )+ Ols — <P2|3> . (43)

Proof By Proposition 3.13, f is analytic on some open neighborhood of [0, 27].
From (3.10), as s — ¢:

u(s)® =1 + 3t¢up1 (s — @p) + 3ty | + e 2) (s — @) + Is — @l

Multiplying the last expression by (3.13), (4.2) follows.
Notice that f(s) = exp(In(f(s))) for s in a neighborhood of ¢,. Applying the
Mercator series to s — In(f(s)), as s — ¢a:

1
In(f(s)) = fa1(s — @2) + (fz,z - Ef%,l) (s —2)* + Ols — .

Hence, (4.3) is proven after taking the exponential in both sides of the equality above.
O

Letk = 1,2,3. Define pro == 1 — fr0, Pr1 = —f1 5 P2 = —fa2, ko =
1 —e'"%f0, g1 := —€' % (ifx.0 + fr.1). and qe 2 = "% (fe.0/2 — ifk.1 — fx.2)-

Proposition 4.2 p and g are analytic on some open neighborhood of [0, 2x]. More-
over, for everyk =1,2,3, as s — ¢

P($) = Pr.o + P (s — @) + prals — o) + Ols — g,

“4.4)
q(s) = qr.o + k.1 (s — @) + qr2(s — @)> + Ols — @l
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Proof By Proposition 4.1, p and g are analytic on some open neighborhood of [0, 27 ].
The expansions in the conclusion easily follow from (3.13) and (4.2). O

Lemma 4.3 There exist V1, V2 simply connected open neighborhoods of [0, ¢2) and
(92, 21 ], respectively, neither of them including >, such that n restricted to each Vy
is a well-defined analytic function. Moreover, for every § > 0 small enough, n and all
its derivatives are bounded functions on Q2s.

Proof By Proposition 4.2, there exist two simply connected open sets V; and V2, such
that

o [0, ¢2) € Vi and (¢2,27] C Vo

o @y ¢ Vofort =1,2;

o Qs C ViUV,

o both p and ¢ are analytic on each Vy;

o for every £ = 1,2 and every s € V; (possibly for a smaller value of M than in
25 (2.7))

=g, [1=pe)l <l

Then, for every s € V1, p(s) and g(s) belong to the open ball centered at 1 of radius
1, hence R(g(s)), N(p(s)) > 0. This implies that g(s)/p(s) ¢ {w € C: N(w) <
0, I(w) = 0}. Hence, 7 is a well-defined analytic function on Vj. Similarly follows
that 1 is a well-defined analytic function on V,. Furthermore, 1 is analytic on the
closure of 25, hence, 1 as well as all its derivatives are bounded on €2;. O

Let V; and V; be given by Lemma 4.3.
Proposition 4.4 Foreveryk = 1,3, as s — @i
2

t
TG0 (6-w?). (4.5)

nes) =

Furthermore, as s — ¢

n(s)=ilnls —@|+01), 7'(s)=- +0(). (4.6)

ls — @2l

Proof Letk = 1,3. Lemma 4.3, implies that as s — ¢:
. k.1
n(s) = —iln (1 + p—(s — @)+ 0 ((s — (pk)2)> .
qk.0

Hence, (4.5) is derived by the application of the Mercator series to the right-hand side
of previous expression.

Now, let k = 2. It follows easily that 9i(g(s)/p(s)) > Oforevery s in [0, 27 ]\ {¢2}.
This fact and Lemma 4.3 together imply that there exist open neighborhoods (0, ¢2) <
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Fig.6 For some ¢ € I' and

§ > 0, in blue and red the sets 0 5 b

([0, g2 — §)) and

n((g2 + 8, 27]), respectively 1k |
_oL il
_3L il
4 il
s ! ! ! ! ! ! il

V] € Vi and (¢2,27m) € V, C V,, such that restricted to them, 7 is analytic and
—m < arg(q(s)/p(s)) < m.Hence,ass — ¢

n(s) =—iln o0)

+0(1).

10| 1y 1)
p(s) p(s)

By (4.4), we get n(s) = iln|s — 2| + O(1) and 1'(s) = —i/|s — ¢2| + O(1), as
s — @. O

Figure 6 illustrates the graph of 7.

Lemma 4.5 For every § > 0 small enough, there exists C(8) > 0, such that for every
s in Qs

_,‘@
< C(9). .7
p(s)
Moreover, as s — ¢o
e_i%” 1
=0|—). (4.8)
p(s) <\/Is—<pz|)

Proof By Lemma 4.3, and the fact that p is uniformly bounded by below on Q5, we
obtain (4.7).
A direct calculus using Propositions 4.2 and 4.4 yield (4.8). O

Straightforward computations gives that the derivative of r,, is

!

Fsin> 4+ (n+2)f sin 5>—5rn.
2 2 p

(4.9)

f"+1ei(%3'*'§]) feoss n4+2-—17
+1
P 2 2

ra(s) =
Proposition 4.6 Let &6 > 0 be small enough, then, there exists A > 0, such that for
every n € N large enough:

sup [ru(s)| = O (e7"2), sup |r,(s)| = O (ne™"%), (4.10)

s€Qs S€Qs n
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sup |Ru(s)| = O (e7"%), sup |R,(s)| = O (ne™"2).  (4.11)

s€Qs 0 NS

Proof By Proposition 3.13, there exists A = A(§) > 0, such that | f(s)| < e for
every s in Q5. Therefore, for every s in Qs ,

lf ()" < e ™.

Moreover, since |3(s)| < M /n for every s in 25 ,, we conclude that exp(i (n +1)s/2)
is uniformly bounded on €25 ,. By Proposition 3.13 and Lemmas 4.5, 4.3, all the
other terms in (2.11) and (4.9) are bounded. Thus, we get (4.10). Now, for (4.11),
on R, apply the Taylor polynomial expansion of x +— arcsin(x) around 0 combined,
with (4.10). O

Proposition 4.7 For everyn > 3, on Qp pn, as s — ¢2

_ o [P (530 + D) —e2)?)
)= (s) — 2172 ’
3 5 (4.12)
fon = o (SR (201 DO — ¢2)%)
|rn(s)| - ISR(S)—§02|3/2 ’
and
2o — o [ P30+ DOIS) —92)?)
3 . 5 (4.13)
R =o [P (=3 + D) — 92)?)
Fa 1= IN(s) — 2372 '
Proof Letn > 3. From Proposition 3.4, it follows that as s — ¢
n+1 3 2
[f(I" =0 |exp —E(n + D) —e2)7 ) ). (4.14)
By (44),as s — ¢
1
'‘&y=0—"—]. 4.15
e (ﬂws) = m) @1
Now (4.12) is obtained from (4.14), (4.15) and (4.8). The computation for (4.13)
follows in similar manner. O

5 Inner eigenvalues
In this section, we prove Theorems 2.1, 2.2 and 2.3.

Letn > 3, and recall that 7}, (a) is the n x n Toeplitz matrix generated by (2.2) with
parameter c in (2.5).

® Birkhauser



4 Page220f36 S. M. Grudsky et al.

Widom’s formula [7, Theorem 2.8], applied to the case at hand, says that for given
s in 2, since u(s), ¢"*u(s) and w(s) are the roots of a(z) — ¥ (s), the characteristic
polynomial takes the form:

un+1wn+1 (eisu)n+1wn+1

det(yr(s) — Tu(a)) =

(u — eSu)(w — eSu)  (eSu —u)(w —u)
un+l(eisu)n+1

(U —w)(eSu —w)’ G-I

We start by reducing (5.1) to the main equation (2.16).
Theorem 5.1 For every n > 3, and for every s € Qg
. ns+n(s)

u()"w(s)'e' 2 sin (n+1)s +n(s)
q(s)sin 5 2

det(y(s) — Ty (a)) =

+ rn(s)> . (5.2)

Proof Let n > 3 and s € Qq. Put D,(s) := det(y(s) — T,(a)). We can then
rewrite (5.1) as follows

Dy (s) uttHlyn+l B ei(n+1)S(w _ eiSu) ei(}’l+l)S(u _ eisu)unJrl
T = elSu)(w — eiSu) (w—u) (w — w)wnt1
_ -unwn | <1 - ei(n+1)s(1 _ eis%) N ei(n+1)S(l _ eis)un+2)
(1 —eS)(1 —ets k) -4 (1 — Lywn+2
Since w(s) = —ce’isu’2(s), we have that f(s) = u(s)/w(s), hence
uw" ei(n+1)s ei(n+1)s 1— eis n+2
Dats) = (1 - 4. ( ) f
g(1 —e) p P
F 05 i S i(n+1)s £n+2
— ll,t:'w” ‘ ei(n+1)sei11 — 1+ 2ie'2 sin 2¢ f
2ie'2q sin 5 p
u"w"ei% C(n+Ds+n N ¢l sin %ei (Hzl)s—i%f”‘|r2
= — sin .
g sin 3 2 p
Finally, we just rewrite the right-hand side using (2.11). O

Let k = 1, 3. From, (3.10), (4.2), (4.4), (4.5), for every n sufficiently big:

. (=1)"e" ( 1—t,3>
lim det(y(s) — Tu(a)) = — n+1+ # 0.
5= @k 4 qk, 3

£ 9k.0 — 1}
Hence, 1¢1 and 3 are not eigenvalues of 7, (a).
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Recallthatd, ;,B,, j,ande,, ;,arcdecfined by (2.12),(2.13),and (2.14), respectively.
For every n > 3 and every j € Z, we define H, ;: Qo — Cby

G (=) Ry (s)

Hn.j(s) = dn.j = n+1 n+1

il

where j' == j + J,.

Proposition 5.2 Letn > 4, ands € Qqwiths # gy foreachk = 1,2, 3. Ifdet(y(s) —
T,(a)) = O, then there exists j in Z, such that

s = Hy j(s). (5.3)

Proof For every s in Q¢ with s # ¢r(k = 1,2, 3), as u(s) cannot take the value zero:

- ns+1(s)
u"(s) w'(s)e' 2

sin 5 g (s)

£0.

Hence, (5.2) is equal to zero if sin ("H)%—J“”(‘) + r,(s) = 0, and this equation is
equivalent to (5.3). O

To solve (5.3), Propositions 4.6 and 4.7 suggest analyzing two cases: when |d, ; —
@2| > & for some § > 0, and when d,, ; — ¢2. We, therelore, establish sufficient
conditions on n, j, and d, ; for (5.3) to admit a solution, and then prove Theorem 2.1.

Denote by || - ||a the supremum norm of functions defined on the set A C C.

Lemma5.3 Let§ > 0, n € N large enough, and j € 7, such that d, ; € Q0. If
|du,j — @2| > 6, then there exists A = A(8) > 0, such that for every s € B, j:

IRullB,; = O(™)., IR, = One™"™). (5.4)

Ifldy.j — 92| <3, then

1,2 6m? )
n'/ eXp <_ n+1

32 6% )
n/ €Xp <_ n+1
j13/2

IRullB,, = O . IR,lB,, =0

(5.5)
Proof (5.4) and (5.5) are easily derived from (4.11) and (4.13), respectively. O

Theorem 5.4 For everyn € Nand every j € Z, suchthatd, ; € Qo and | j |/nl/2+e
is large enough, Hy ; is a contraction on B, ;.

Proof Letn € Nand j € Z, such thatd, ; € Q,andlet0 < § < 1.
Step 1 (Hy, j[By,j1 € B, ;). Take s € B, j, then

[1dnj) =] [Ru)] _ [n@nj) =) | Ralls,,;
n+1 n+1 ~ n+1 n+1 °

|€n,j - n,j(s)l =<
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By the mean value theorem applied to n restricted to B, ;, we find that

(. — s IRallB,,
n—+1 n+1 °

/
lenj — Huj )| < [0'lls,

Recallthatd, ; = e, j —n(dy,j)/(n+1) and |e, j —s| < &n,j/(n+ 1)2. Therefore

(%))
, €n.j =S5 7 Tt | RnllB, ;
€n,j — n,](s)l =< ||77 ”an n+1 n+1 (5 6)
enj Ml In'ls, ;0@ )l [IRalB,
“(m+1D? n+1 (n+1)2 n+1

Suppose that |dj j — ¢2| > 8. From Lemma 4.3, n and n are bounded on Qj, in
particular, ||77/||Bn,,- < [In'llqs < oo. Hence, if n is large enough, by (2.15) and (5.4):

En,j In'lIs,; +1 N I RnllB,,; o Emj
n+1D2\ n+1 3 n+1 (n+1)2

len,j — Hp,j(s)| = (

Now, suppose that |d,, j — ¢2| < 8. From (4.6), [n'[|p, ; < nK1/|j| for some K1 > 0.

Then, if | j|/n'/>*€ is large enough, (5.5) and (5.6) applied to (5.6) yield

Fnj (Kl 1) ”Rl’l”Bn_j - gn.j
+ D2\ |/l n+1 (n+ 12

|en1_ n/(s)l_(

Step 2 (|Hy,j(s) — Hy, j(t)| < L|s —t| forsome 0 < L < 1). Lets,t € B, ;. By
the mean value theorem applied separately to 1 and R, restricted to By, ;, we obtain

[n(s) — @) |Ru(s) — R (2)]
+
n+1 n+1
- In'lls, ; ) ls — 1

: —t R —
e N A

|H, j(s) — Hy j(1)]

IA

Suppose |dy,, j — ¢2| > 8. From Lemmas 4.3 and 5.3, there exists K > 0, such that if
n is sufficiently large, then there exists 1 > Lj > 0 for which

nA 2K»>
|Hy.j(s) — Huj(D)] < |S—t|+K2€ Is =il < -—=ls =1l < Lils —1l.

Now, suppose |d,, j — ¢2| < 8. From (4.6) and (5.5), there exists K3 > 0 such that if
|j|/n'/?T€ is large enough, then there exists 1 > L, > 0 for which

1/2 6722
K3n'/% exp (— P )
|Hyj(s) — Hy j (D] By Is — 1] < Lals — 1.

— @2r|j)3?

Steps 1 and 2 combined yield the conclusion. O
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Proof of Theorem 2.1 By Theorem 5.4 and the Banach fixed point theorem, for every
n and j, such thatd, ; € B, ;j and || /n'/?*€ is large enough, there exists a unique
point s, j € By, j, such that H,_ j(sn j) = sy, j. From Proposition 5.2 we obtain that
Y (sy, ;) is an eigenvalue of T, (a).

Let j, k be different integers, such that d, ;,dnx € (0,27), and |j|/n'/?T¢,
|k|/nl/2Jré are large enough. If H,, j(sy,j) = Hpk(sn k), then j =k, i.e., sy j # Snx
for j # k. Furthermore, Proposition 3.14 implies that i is one to one on some open
neighborhood of (0, 27r). Hence, for n large enough ¥ (s, j) # ¥ (Sn.x)- O

Now, we show that if we solve the reduced version of (2.16), namely, (2.17), then
the resulting solutions s, i and the corresponding values (s, j), approximate s, ;
and Ay, ;, respectively.

For every n > 4 and every j, define Hrfj : Qo — Chby

x n(s)
Hn](s) = dn,j — m

The proof of next theorem is similar to the proof of Theorem 5.4, so we omit it.

Theorem 5.5 For everyn € Nand every j € Z, suchthatd, ; € Qo and | j |/nl/2+e
is large enough, H j is a contraction on By, ;.

Proof of Theorem 2.2 Theorem 5.5 and the Banach fixed point theorem, combined
imply that for every n and every j, such that d, ; € Qo,,, and |jl/n'/7€ is large
enough, there exists a unique point s;‘l" ;€ B, j, such that H;" j(s;" j) = s;‘l" j i.e., s;‘ i
satisfies (2.17).

Since H,_ j(sy,j) = su,j and H;:_’j(s:l"j) =sF

n,j’

we get that

[nCsn.j) = nGsy DI [Ry(sn )
n+1 n+1 °

*
|S"»/ - Sn,jl =

By the mean value theorem applied to 7 restricted to By, ;,

I5n.j — 5| < [7(sn.j) — 1n(dn, )l |n(d”a/) - 77(s;1k$j)| [Ry(Sn, i)l

mjt = n+1 n+1 n+1
_ 2B, . N LACWI
n—+1 n+1

Suppose |dy,.j — ¢2| > & and n is large enough. From (2.15), (5.4), and Lemma 4.3,

we obtain
611 (dn NI e A 1
Lk n.j _ _
|s"=/ Sn,jlf (n+1)3 +0< " >—0<n3)
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Proposition 3.14 implies that ¥ is uniformly bounded on some open set containing
[0, 7 ]. Then, we use the Taylor expansion of ¥ around s, ;, thus, for some &:

1
1//(5‘:?]‘) = W(Sn.j) + w/(é)(sn.j - s;:,j) = w(sn.j) +0 (n_3> .

So (2.18) follows.
Now, suppose § > |dy j — ¢2| and [jl/nl /2t is large enough. From (2.15), (4.6)
and (5.5), we get

*
ISn, j _Sn,j| =

172 6m? )
3In(dn. )N IIs,; o n'/? exp (‘ pES| ) _o0 lnIl}_'l
m(n+ 1)?| ] n|j|'/? '

Then, we apply the Taylor expansion of ¥ around s, ;, thus, for some &
V(g ) = Wlsng) + ¥ E)snj — 55 )

Notice that ¥/'(g2) = 0; therefore, Y'(€) = ¥'(¢2) + O(ljl/n) = O(jl/n).
Then (2.19) is derived. O

Now, we are prepared to obtain the asymptotic formulas for inner eigenvalues. First,
recall that vy and [} are defined by (2.20) and (2.21), respectively.

Proof of Theorem 2.3 From Theorem 5.4, if |j|/n'/?*€ is large enough, then s, ; €
By, j, hence

En,j dy, En,j
Sn,,:e,,,,+o(%)=dn,,»—”,fjfl)+o(;;). (5.7)

Moreover, s, ; satisfies (5.3). Then, substituting (5.7) in H,, ; and expanding 7 by the
Taylor formula around d,, ;:

10(dn,j) En,j
1 (dj + 252 + 0 (24)) I Rulls, |
Sn,j = dnj — + 0
’ ’ n—+1 n
. n(dn,j) n(dn,j)n/(dn,j) |77/(dn,j)|8n.j
n—+1 n+1) n
)12 . .
o <|n<dn,1>| 3||n"||B,,.,.) o (||n”||Bn,j|n§dn,,>|sn,,)
n n

2 12
& "I, ; Rulls, .
+0<n,, Ly +0<|| nnB,,,,)‘
n n
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If |dy,j — @2] > 6, by (5.4), (2.15), and Lemma 4.3, we obtain

N(dn.j)  0(dnj)0 (dn.;) Lo < ! )

—d - _
Smj = i T T n+1)2 3

n

Now, if § > |d,,j — @2, from (4.6), (5.5) and (2.15):

n 2
N(dn;) 1)1 (dn ) +0<(ln ) )

n+1 (n+1)?2 2

Sp,j =dn,j —
J J nj

So, we get (2.22).
Finally, substitute (2.22) in v, and expand ¥ by Taylor around d, ; to arrive
at (2.23). O

Proof of Corollary 2.4 Letk = 1,and j = —J,, + j’ for some sufficiently small j/ > 1.
Then, d,, j» = 27 j /(n + 1). Hence, from Theorem 5.5, (2.15), and (4.5), we get

. 2 . )
En,j 2r j -1 2mj j
e 0( )= - ol%). 5.8
Sn, j en.j+ ) P 3—t12(n+1)2+ 3 (5.8)

To derive (2.24), substitute (5.8) in (3.11). If k =3 and j = n+ 1 — J,, — j’, the proof
is similar. m|

6 Cusp eigenvalues
If in Theorem 2.3 we suppose that | j|/n'/?> — 0, then the asymptotic expansion (2.23)
is not justified. Thus, in this section, we derive the eigenvalue asymptotic expansions
when | j|/n'/? < 1. 1In particular, we prove Theorems 2.5 and 2.6.

Recall that &, xn, j» Un, j,a,and k, j are defined by (2.25), (2.26), (2.27), and (2.29),
respectively. Let f; = 2, ; be the values defined by (4.1).

We start our analysis by reducing (5.1) to (2.28) (cf. (2.17)). Letn > 4, 1/2 >
o > 0and M > 0. We define the set

M N M
I, = {se@z 0 < [NRGs) —@2| < ——, |\S(S)|§—}.
+a n

n2
Define also F),: TT,, — C by
Fas) = Ti(s = 02) (£ () = &ale™). (6.1)

Theorem 6.1 For every n > 3, and every s € I,

u(s) w(s)" e "t Fy(s)

IO =IO = S —wm e )

(6.2)
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Proof Let D, (Y (s)) = det(y(s) — T,,(a)). By Widom’s formula (5.1),

un+lei(n+1)s un+1 wn+1 un+lwn+1
Dy (¥ (s)) = - - — ‘ -
¥ u—w ueS —w  ue'S —u (u —eSu)(w — esu)

un+lei(n+1)s un+1 _ wn+1 wn+1 un+1wn+1

T uels —w u—w ue's —u (u — eSu)(w — eisu)
un+1wn+1ei(n+l)s s

= - (&) = ute™).

u(uets — w)
The conclusion follows from (6.1). O

Notice that, for every n > 3, from the properties of u, in (6.2), the factor

u(s)nw(s)n+lei(n+l)s

u(s)e’s —w(s)

(6.3)

is both bounded from above and away from zero on I1,. Hence, from (6.2), a straight-
forward computation yields

(n + 1)t22n€i(n+1)(p2
elv2 — 1

lim det(y(s) — T (@) = £0.
S—@)

So 7 is not an eigenvalue of T, (a).

We proceed to explore the asymptotic behavior of F, as s — ¢, for n large.

To simplify notation, we relabel x = s — @2, fi = f2.1, f2 = 2.2, where f2.1 and
f2.2 are given by (4.1).

Proposition 6.2 Foreveryn € N large enough, and for every x, such that > +x € I1,,

_ 122
Flgr + 1" :efl(nJrl)x(l " <f2 _ %f%) (n+ 1) + (12 szl) o+ 1)2x4>

+ 0mx) + 0(nx®).

Proof By (4.3)
1
[+ 0" =exp (ﬁ(n +Dx + (fz - §f%) (n+ Dx® + 0<n|x|3>) :
Now, we factorize the term exp(f1 (n 4 1)x) and expand by Taylor the rest, giving us
n+1 f1(n+1)x 1 2 2 1 1 2 : 2.4
fl+x)" =elt T+ (R=3f) o+ D"+ 2 (2= 5fi) (14D
+0mlx ) + 0 |xP) + 0(n*1x[%) + 0<n3|x|6)).
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. . .. . . 1
We derive the conclusion taking into consideration that [x| < M /n2 ™%, O

Proposition 6.3 Foreveryn € N large enough, and for every x, such that g, +x € I1,,

f1x 1

fi(n+Dx _
gn(f(QDZ +x)) = e— + (1 _ %) (efl(nJrl)x _ 1>

1¢2 14212
4 (2—af) ; 21) 4 1yreniosne 4 (220 _szl) (n + 12xdef D
1 1
+ O|nx?|.
Proof By (4.2)
flo2 +x) 1 f2
e - 41— =4 0x].
flpa+x)—1  fix f2 .

Combining last equality with the expansion given in Proposition 6.2 yield the conclu-
sion. O

Proposition 6.4 Foreveryn € Nlarge enough, and for every x, such that p;+x € I1,:

—i(n+1)¢@2 ,—i(n+1)x _
e = C -

— + Olx].

Proof The conclusion follows after plugging the expansion e™* = 1 4+ O|x| in
Ca(e™ W20, O

From Propositions 6.3 and 6.4, for every n € N large enough, and for every x — 0,
such that ¢» 4+ x € I1,, we obtain

Fo(pa 4 x) ="+ — 1+ §1x (ef””“”‘ - 1) + Fa(n 4 DxeN+Dx
52 (6.4)
+ 72(11 + 1)2xdeft e 4 f1xKcn (x) + O(n|x3|)’

where

e~ i+ ,—in+Dx _ |

1
T1i=f1 — %, 2= f2 — §f%v e (X) 1= —

1 — el

The last ingredient we need to prove Theorem 2.5, is the Taylor expansion of F),
around ;. To this end, let n € N be large enough and j € Z. Consider (6.4) and its
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derivatives with respect to x, and |0]| < A|j |2, for some A > 0; then

. ‘ 0 Fr ) o 1. 6?
n <Xn,/ - (n+1)2> = l’l(Xl’l,j)_ n(Xn,/)( ~|—1)2 (Xn /)( +1)4

(F///( )ﬁ)

(6.5)
Straightforward computations yield that
(jn)? jT % (m? 7’
F, ) = —= o=
n(Xn,/) 32’1_{_ + fikn.j +1+2(n+1)2 5 )
0 f16 (jm)*0 7’ j6
F/ ; = (0] (0]
00 G = PG T ERAVE
92 2 '6 jS
F/ ; o 0
w 0ot) Gy = fl( +4J2+ (n >+' (n )
1j1° j°
F/// — 0 J .
n &) (n+1)5 n3
Hence, (6.5) becomes:
0 (Jﬂ N 8 ym)
F P —=
n<Xn,j (n+1)2> 82 ‘|‘f1 n] + ) (}’l—‘rl)2
f ume 6
+ (6.6)
nr 1 S e f12( 1)
'3 j6 jS
+o( >+0< >+0< )
n
For every n > 4 and every j in Z, set
F2(jm)? 3/ @ N, .
On,j = szl +Kn’j7TJ=Z<00t72—l)7[2J2+Kn’jT[j. (6.7)

From (6.6),

2,2 s N2 . . .
enj flKnj(Jn) .13 .16 .18
Folyy = —2mi ) = on o(L)+o(L)+o(L
"(X”’f (n+1)2> xnrie TOG2) o) TO
-3 1) -8
j j j
_0<M>+0<$>+0<%>.

Thus, if we suppose that 1 < |j| <« n'/?, then

B N\ (] j°
Fu (Xn./ - m) =0 (n—2> + 0 <$> . (6.8)
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Proofof Theorem2.5 Let n € N and j € Z \ {0}, such that x, ; € (0,27) and
ljl/n'? < 1.

Recall that the factor (6.3) is both bounded from above and away from zero on I1,,.
Therefore, if a value s in IT,, satisfies (2.28), then (6.2) equals zero, implying that v (s)
is an eigenvalue of T, (a).

Now, from (6.6), if n is large enough and j € Z satisfies 1 < |j| < n'/?, then

, 0 (J m)? T fie A
Fu <Xn,j_m> 32 +f1 n,j +1 nrl ‘|‘rn./(9)’ (6.9)

where 0 = 0(j?) and |, ;(©)] = O (101*/n?) = O(j*/n*). We define the auxiliary
functions:

f10 (jm)?

V() = ST p(0) = %zn

+f1Kl’lj + rn,j(0).

+1

From (6.9), there exists A > 0, such that for every 6 € C with |0] < Aj2/|f1|, we get.
1p(0)] < Aj?/(n + 1). Thus, for |6] = Aj2/If1]:

-2

v(@®)| = /
y _
n+1

> [p®)],

SO

@)+ 1(p +v)E) > [p@O)] = [(p +v)(O) = v(O)].

By Rouche’s theorem, v and p + v have the same number of roots inside the ball
{w: |w| < Aj?/|f1]}. On this set, there exists only one root of p + v, since v has only
zero as a root. In other words, there exists a unique value s, ; in U, ; 4, such that
¥ (su, ;) is an eigenvalue of T, (a). O

We are prepared to conclude our analysis and proof Theorem 2.6.

Proof of Theorem 2.6 From Theorem 2.5 and (6.8), we have that

+ Iz " _)=o
T w2 T

if and only if 6 is of the form (6.7). Then

oy L+0 J* (6.10)
Sn,j_Xn,j_(n+1)2 P .

Finally, for (2.30), just substitute (6.10) in (3.11):

(jm)? (jm)?

I/I(Sn<j):li2+w2,2m_2¢ 2K n]( +1)3
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c 3 .5
+ (Y23 — i¥2282) % +0 <,J1_4> _

Direct computation shows that Y2 3 — iY2 282 = 0. Hence, we get (2.24). O

Remark 6.5 In Theorem 2.6, we can use negative integers j; however, the expan-
sion (2.30) is the same if we choose j or —j.

7 Numerical experiments

In this section, we show some numerical tests of the asymptotic formulas we obtained
for the eingevalues A, ; of T, (a). These experiments demonstrate the computational
advantages of our formulas for even not so large n.

We compute u# on a uniform mesh of [0, 2], see Remark 3.16. Then, with these
points we construct a polynomial approximation of «. Finally, we make approximations
of all the other functions that appear in (2.23).

For every n > 4 and every j, we introduce the following notation:

) AﬁiP denotes the eigenvalues of 7;,(a) computed using a general eigenvalue algo-
rithm from Sagemath, depending of n, we use from 100 to 1000 digits of precision;
o A;‘f‘}er denotes the approximation resulting from (2.23);

o AE’;} j denotes the approximation resulting from (2.24);

o )Lsuj?gp the approximation resulting from (2.30);

o define the error values

Inner .__ |4 Gen Inner Ext .__ |1Gen Ext

En,j = |)»n,j —)\n’j [, Ek’n,j = |)Ln’j —Ak’n’j|,
usp . 4 Gen Cusp,,

By = I = 0,57

o define the relative error values

|)‘nGe/n _ }\'Ext |

k,n,j
REEXI L e— -1,
k.n,j ° Gen ’
|)‘n,j — Mkl
Gen __ 4 Cusp
L Y
n,j

p"ﬁi‘n — M2l

Figure 7 plots the 10-base logarithm of E};f‘}er for ¢ = i, different values of n, and
every A, ;, see Remark 3.9.

Observe in Fig. 7, that as A, ; approaches (1 the error E53§p increases drastically.

On the other hand, Fig. 8 shows that our approximations )\S’";p are much better for
these eigenvalues.

We test (2.24) for ¢ = i, some values of n, k = 1, and j = 1, 2, the corresponding
error EE’;‘ j and normalized error NEE"nt ;= n4EE”‘n‘, i /j* are shown in Table 1. The
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—10 |-

—12

—14

16} ©

| |
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0 2

o
V)
3

Fig. 7 Ten-base logarithm of the individual absolute error Ei“?er for ¢ = i and n =
128, 256, 512, 1024, 2048, in red, blue, green, black, and orange, respectively

Fig.8 Ten-base logarithm of the T T
divi Inner Fhy (e} 1t
individual absolute errors E .y + +, ° A
Cu J _al + W [e)e) N
(blue) and £, (red) for ¢ = i " ° S
and n = 2048, and the 4, ; o+, . o
closest to 1 © *y o o
—6 - o * + o |
6 + +
o + + o
+ +
[¢] + [¢]
+++
—8 |- OOO + O,
+
+
+
—10 |- + N
| + | |
2537 s 2597
512 512
relative error REE’;; I and normalized relative error RNEE’;} = n* REE’;t j /j* are

shown in Table 2.

We test (2.30) for ¢ = i, some values of n and j = 1, 2, the corresponding error

Cusp . Cusp _ _4,Cusp , .5 . .
Ek,n,j , and normalized error NEk’n’j =n Ek,n,j /Jj> are shown in Table 3. The relative
Cusp _ n4 RECusp

fn.j = k.n,j /J° are shown in

error RES:.[’ ., and normalized relative error RNE
Table 4.
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Table 1 For ¢ =i, some n and
P Ext Ext
j=1,2, El,);t,j and NEL’;.].

Table 2 For ¢ =i, some n and

j=1.2,RES™P and RNES™P
v L

Table 3 For ¢ =i, some n and

. Cusp Cusp
=12, ELn,j and NEl,n,j

Table 4 Error and normalized

Cusp Cusp
errors REl,n.j and RNEl,n.j’

respectively, for j = 1,2

Ext Ext Ext Ext
n EP NEY, , Efho NEY, »
128 8.38 x 1078 225 1.45 x 107° 243
256 533 x 1077 22.9 9.22 x 1078 24.7
512 3.36 x 1079 23.1 5.81 x 1077 24.8
1024 211 x 10710 232 3.65x 10710 251
2048 132x10712 232 2.28 x 10~ 1 25.1
E E E E
n REL’;;1 RNEL’;"I RElj‘n{2 RNEL’;;2
128 758 x 1070 1.24 328x 1074 1.34
256 191 x 107> 125 826 x 1075 1.35
512 479 %x107%  1.26 207 x 1075 136
1024 120x107%  1.26 519%x 107 1.36
2048 232 x 1077 1.26 130x 107 136
Cusp Cusp Cusp Cusp
n El i NE| .5 E\un NE|,
128 5.29 x 1077 142 8.54 x 107° 71.6
256 531 x 1078 142 5.19 x 1077 69.7
512 2.07 x 10~° 142 3.20 x 1078 68.7
1024 1.29 x 10710 142 1.98 x 10~ 68.2
2048  8.07 x 10712 142 124 x 10710 679
Cusp Cusp Cusp Cusp
n RE| 5 RNE 7 RE[,) RNE ;5
128 446 x 1074 7.30 1.83x 1073  3.75
256 .10 x 1074 7.25 434 x107%  3.59
512 276 x 1075 7.22 1.07 x 1074 3.51
1024 6.88x 1070 721 2.65x 1075 347
2048  1.72x107¢ 720 6.58 x 1070 3.45
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