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1. Introduction

Independently of whether we really need them or not, the eigenvalues of a Hermitian
matrix are something we want to know. Central finite differences over the uniform grid
with stepsize h = 1/(n + 1) for the differential operators —d%/dz? and d*/dz* on the
interval (0,1) with appropriate boundary conditions lead to the symmetric tridiagonal
and pentadiagonal n x n Toeplitz matrices

6 —4 1
2 _1 —4 6 —4 1
—1 2 1 1 —4 6 —4 1
1 1 :

h? ’ ht ’

-1 1

-1 2 RE—;

1 —4 6

respectively. More generally, for the operator (—1)*d?*/dz?¥ we obtain the symmetric
n X n Toeplitz matrix whose first row is

(1) () () (o)

(n — k — 1 zeros). This is a banded matrix, and the so-called symbol associated with a
banded symmetric Toeplitz matrix having the first row (co, 1, ¢, ..., ¢k, 0,...,0) is the
function on the complex unit circle T defined by

k k
at) =co+ Y _an(t' +t7) =co+2) cpcos(lo), t=e7 €T,
=1 =1

The n x n Toeplitz matrix with the symbol a is denoted by T),(a). In the case where the
first row is (1.1) we get

e = (°F) + Sy o P L R T

(=1
=(1-1/H)*1-t) =2 -t —1/t)F = (2 —2cos(0))*.

Thus, discretizing the operator (—1)¥d?¥/dz?* gives us the Toeplitz matrix

1

(2 -2 cos(0))"), (1.2)
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and for the operator ’,i:o(—l)kakdx%/dx% with positive numbers «j, the resulting
matrix is

Tn< M %(2 - 2cos(o—))k) = aol + ]‘;‘T‘;Tn<i Ok p2u=2k(g _ 2cos(a))k). (1.3)

«
k=0 k=1 H

What can be said about the eigenvalues of Toeplitz matrices we encounter in (1.2)
and (1.3)? Clearly, this is eventually the question on the eigenvalues of the Toeplitz
matrices Tp,(a,,) with

7Y — (9 _ 9 cos(a))* B — 2cos(o))"™
an(€!7) = (2 = 2eos(o))" + (55 (2 = 2eos(@))" !
+...+(nf‘1ﬁ(2—2cos(0)) (1.4)

with real numbers 3i,...,8,—1 = 0. The difficulty is that not only the order of the
matrix T}, (a,) depends on n but also the symbol a,,.

For o € R, put g, (o) = a,(e'?). The function g, is strictly monotonically increasing
on [0, 7] from 0 to its maximum M,,. It results that the eigenvalues of T}, (a,) all belong
to the open interval (0, M), and Theorem 4 of [1] tells us that the eigenvalues are all
simple. Thus, we may label and order them as follows:

AT (an)) < Aa(Tn(an)) < .. < An(Th(an)).

The collective behavior of the eigenvalues of “pure” Hermitian Toeplitz matrices is
described by Szegé’s classical limit theorem [2]. See the books [3-5]. In the case of order
dependent symbols such as (1.4) we may have recourse to the theory of GLT sequences
(Generalized Locally Toeplitz sequences), which has its origin in the work of Tilli [6]
and was developed to a powerful machinery by Serra-Capizzano and his students and
colleagues in a series of papers. We refer to the book [7] by Garoni and Serra-Capizzano.
For the order dependent symbol (1.4), GLT theory gives

T T

Jim > w - % /F((2 — 9cos(o))*)do = %/F(@ — 9cos(o))*)do
Jj=1 - 0

for every continuous function F' on R; see [8, Theorem 1.2] and [9,10] for more details.
(Note that F((2 — 2cos(o))") is an even function.) Thus, the collective distribution of
the eigenvalues of T),(a,) is independent of the constant 3i,...,[5,—1 in (1.4). We also
see that the eigenvalues of T,,(a,) eventually fill the segment [0,4#] densely and are
distributed like the values of the function (2 — 2 cos(o))* for o € (0, 7). In other terms,
as n — 00, the fraction of the eigenvalues in some interval (¢, d) converges to the fraction
of the o € (0,7) for which (2 — 2cos(o))* € (e, d).
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This paper is devoted to the asymptotic behavior of individual eigenvalues. Let first
B1=---=Bu_1 =0, that is, consider a(e'”) = (2 — 2cos(c))*. In that case the symbol
is independent of n. For pn = 1, the eigenvalues are known exactly:

A (T0(2 — 2 cos(0))) = 2 — 2 cos (n”—jl) (G=1,...,n). (1.5)

We obtain in particular that

(T (2 — 2cos(0))) = 2 — 2(1 - %(71171)2 + 0(%)) = (?1171)2(1 +0o(1)) (L6)
as n — oo. For general u we have
A (T ((2 = 2cos(0))H) = W(l +o0(1)) as n — oo (1.7)

with certain constants c¢,. This was proved by Parter [11,12]. From (1.6) we infer that
c1 = 72, Parter showed that ¢y = 500.5467 ... is the fourth power of the smallest positi-
ve x satisfying cos(x) = 1/ cosh(x), and in [13] it was observed that c3 = (27)® ~ 61529
and that ¢, grows astronomically fast as @ — oo:

= VEm(L) " (1+0(F) ) s ns e

See also the second author’s contribution to the article [14].

Toeplitz matrices T,, with nonnegative symbols that do not vanish identically are
positive definite, i.e., (T, f, f) > 0 for all nonzero f € C™. This implies that the smallest
eigenvalue of the matrix given by (1.4) is larger than or equal to the smallest eigenvalue
of T,,((2 — 2 cos(o))*) and thus, for sufficiently large n,

AT (an)) = M (Th((2 — 2cos(o))H)) = m (1.8)

Finally, one can show that the largest eigenvalue A, (T}, (ay)) of T, (ay) converges to the
maximum of (2 — 2cos(o))¥, that is, A\, (Th(a,)) = 4* as n — oo.

Parter [11,12] and Widom [15] studied not only the smallest and largest eigenvalues
of T,,((2 — 2cos(0))*) but also the so-called extreme eigenvalues. They established in
particular analogues of (1.7) for A\; (T, ((2—2 cos(o))*) and 4#— A\, j41 (T ((2—2 cos(0))*)
if j € {1,2,3,...} is a fixed number. See also pages 256 to 259 of [16].

By asymptotic formulas for the individual eigenvalues of the Toeplitz matrices with
the symbol (1.4) we mean formulas of the type

qu m/n+1))+0< 1 )asn%oo, (1.9)

nm—i—l
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which should hold uniformly for all indexes j in some prescribed sets S,,, for example,
Sn, = {1,2,...,100} or S,, = {[\/n],...,n}, and in which qo, ..., g are functions de-
pending only on u, By, ..., Bm—1. Unfortunately, we are unable to master the task of
proving such formulas in full generality. We therefore restrict ourselves to the case yu = 2
and small m, with the conviction and hope that this case may prepare the ground for
understanding more general situations.

If 1 =1 (and hence no betas appear), formula (1.5) says that A;(T,,(a)) = g(7j/(n+
1)) with g(o) = a(e'?). Thus, in this case (1.9) holds with go(c) = g(o), qr(c) = 0 for
all £ > 1, and for arbitrarily large m.

Let us consider the case 4 = 2 and $; = 0. In that case formulas of the type (1.9)
were derived in [17,18]. We want to mention a delicacy of the matter. Namely, in [18] it
is shown that there do not exist continuous functions qo, . . .,q4: [0, 7] = R and numbers
C > 0,N € N such that

4 .
aw(rj/(n+ 1) C
M2 = 2eos(@)) = > 0 \ STy

for every n > N and every j € {1,...,n}. On the other hand, it is proved there that for
an arbitrary integer m > 0 there are continuous functions qq,...,¢m: [0,7] = R and a
number C,,, > 0 such that

m

et S T/ D) Co
T2 = 2eos(e))) = 3 S <

(1.10)

whenever n > 1 and % log(n) < j < n and that there is a constant C' > 0 such that,
with the same 40,41, 42, g3,

3
A (T (2 = 2c08(0))%) = Y

k=0

qk<wj/<n+2>>‘< c
nt2k | Sto)yr

forallm > 1andall j € {1,...,n}.
Formula (1.10) concerns what we call inner eigenvalues. For the extreme eigenvalues,
it was established in [17,18] that, for every fixed j =1,2,..

el

9 Aj 1 Aj 4A% 1
A(Tn(2 = 2eos(9))) = g O(E) Tt (ntlp +O($>

with certain constants A; that are solutions of explicitly given nonlinear equations.
Last but not least, we want to emphasize that individual eigenvalue asymptotics for
Toeplitz matrices with certain order dependent symbols have also been studied in [8,19].
The symbols treated in paper [19] are of the form
|272/n+” |O_|27(n71)/n.

1
‘O’|2+7|0|271/n+

1 1
nl/n n2/m o o nn—=1)/n
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Such matrix sequences arise in the numerical approximation of distributed-order frac-
tional differential equations. Paper [8] deals with symbols ¢(o) + S,d(c) where 5, is
1/(n+1) or 1/(n+ 1)+ and both ¢ and d are so-called simple-loop symbols. These
are smooth real functions which move strictly monotonically from the minimum to the
maximum and then strictly monotonically back from the maximum to the minimum with
nonzero second derivatives at the minimum and the maximum. As the second derivative
of (2 —2cos(c))? vanishes at the minimum, this is not a simple-loop symbol. Moreover,
paper [8] contains numerical experiments for the symbol (1.4) with g = 2. The numerical
data obtained there anticipate part of the results we will rigorously prove here.
Throughout the following we let 5 > 0 and

s

an(€'”) = gn(0) := (2 = 2cos(0))* + (n+1)?

(2 — 2cos(0)). (1.11)

The main results on the asymptotic behavior of the individual eigenvalues of T, (a,)
will be stated in Section 2. Our proofs of these results occupy much space. The starting
point is the representation of A;, in the form A;, = g¢,(s;j,) and the derivation of a
manageable equation for s;,. This is done in Section 3. In Section 4 we prepare the
proofs, which will then be given in Section 5. Section 6 contains some selected numerical
experiments.

2. Main results

Let a,(e'9) = gn(o) be the symbol (1.11). Thus, we are dealing with the n x n
pentadiagonal symmetric Toeplitz matrix with 6 + 23/(n + 1)? on the main diagonal,
—4 — f3/(n+1)? on the two neighboring diagonals, and 1 on the two next-neighbors. We
abbreviate A; (T}, (an)) to Aj . We already know that

0<Apn<Apn<...<Apn (2.1)

for all n, that A1, > ca/(2(n + 1)*) for all sufficiently large n (recall (1.8)), and that
Ann — 16 as n — oo.

We consider \;, as n — oo. This includes that j may also depend on 7, that is,
we actually study sequences of the form \; ,. If j,/v/n — 0, we speak of extreme
eigenvalues. For example, we have this case for A, (j > 1 fixed) or A|iog(n)|n- If
all we know is that j, — oo, we say that we are concerned with inner eigenvalues.
Notice that with this terminology A|1og(n)|,» counts as both extreme and inner. If even
Jn/v/n — oo, we refer to \; . as strictly inner eigenvalues. For instance, the central
eigenvalue \|, /2|, and the upper eigenvalues A\, % (k > 0 fixed) are strictly inner
eigenvalues. The eigenvalues A| /), are inner but neither extreme nor strictly inner.
Herewith our main results.
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Table 1
The solutions Aj; of & = mj + 7(x) for B = 3 and j = 1,...,12 obtained in Mathematica
v.14 with 50 precision digits.

A
4.6615957921253250704770283809852175762404777989570329941397516124742
7.8294357550286280464178485224978660178640330119617839862874945103994
10.9833219742053586857558636944919324013825126356233870292544720164376
14.1297083866674503605432431142412867774937568040962386988935124151196
17.2737576759361830668285878591532490830030757604197293039667440327106
20.4167666752780333653448447261680646408376114269524511082439997941392
23.5592496662074388344504002956960693389393620185033287471112478472193
26.7014380862110537101045668827905284566037755080621804941835825906322
29.8434488417154735629659308097877516397130369383543849499314490373543
32.9853461256939590010781633627961538946284882867448068757571468688292
36.1271675617397123740954961433504885555276833628962867845017802482102
39.2689363835010789993399482697496623249078649039256071620370774499135

© 00O Utk WN K|S

—
= o

—
N

Theorem 2.1. (Extreme eigenvalues) For each fixed j the equation

r=mj+n(x)

with

z(z? + B)~/?sinh /22 + f — sin(z)
cosh y/x2 4+ 8 — cos(z)

possesses a unique solution x € R. Denote this solution by A;. If {jn} is a sequence
satisfying jn//n — 0, then

A

fi(x) := 2arctan

A.

for all n and j < jn, where |Rjn| < Cj°/n® with some constant C' independent of j
and n.

We remark that g,,(A;/(n + 1)) is of the order j*/n*.

A key point in the previous theorem is that we arrived at an equation not depending
on n, namely 2 = mj 4+ 7(x). This technique is reminiscent of the one used in the classical
works [11,12,15,20], where the values A; came from the eigenvalues of a certain integral
operator. More recently, a similar approach was used in [21].

The equation z = 7j + 7(z) can easily and almost instantly be solved with any
equation solver, for instance FindRoot in Mathematica v.14. See Table 1. Notice that,

for instance, if j, = [log,o(n)], then the first 12 values of A; are sufficient to go up to
n = 10'2.
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Theorem 2.2. (Inner eigenvalues) For s,o € (0,7), put

— uretan sin(s)
s () 1= 2arct (2 —2cos(s) + \/1 — cos(s) \/3 — COS(S)) 22

and
qo(0) :=4(1 — cos(0))?,  qi(o) := 8sin(c)(1 — cos(a))nmx(a).
Let {jn} be a sequence converging to infinity. Then, with o, = 7j/(n+1),

71(0j,n)

n—+1 +Ljn

Ajn = qo(0n) +
for allm and j > j,. We have L;,, = O(j%/n*) as n — oo uniformly in j > j,, which
means that there is a constant C' independent of j and n such that |L;,| < Cj?/n* for

all 3 = 9n.

Theorem 2.3. (Strictly inner eigenvalues) Let nin, Go, 1, 0jn be as in the previous
theorem. In addition, put

q2(0) := 2(1 = cos(0)) {5 + 45in(0) 1 () M1 (0) + 20 (0) (1 + 2 cos(0)) }.
Let {jn} be a sequence satisfying jn//n — co. We have

q1(05,n) n q2(05,n)
ntl | (nt 1)

Ajn = qo(0.n) + + Kjn
for alln and j > j,. Given such a sequence {j,}, there is a constant C independent of j
and n such that |K;,| < Cj/n* for all j > j,.

When 8 = 0, the symbol in (1.11) coincides with the one studied in [17]. We here want
in particular to understand the influence of the parameter 3 on the expansion of A;,,.
For the inner eigenvalues, the previous two theorems tell us that 3 is only affecting the
term with denominator (n + 1)2, and hence we can say that its influence is relatively
small in this case. However, for the extreme eigenvalues, Theorem 2.1 reveals that [ is
affecting A; directly; see Fig. 1. Consequently, its influence is stronger in this case.

3. The equations behind the main results
Recall that we order the eigenvalues of A;, of T,,(a,) as in (2.1). These lie all in

(0, M,,) with M,, = 16 + 48/(n + 1)2. The strict monotony of g,: (0,7) — (0, M,)
implies that the equation A;,, = gn(s;,,) has a unique solution s; , € (0,7) and that
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4.73 7.85
4.65r 7.821
4.58r 779+
450 7761
4.42 ! ! ! 7.74 - . . .
0 4 8 12 16 0 4 8 12 16

Fig. 1. The variation of the parameter A; in Theorem 2.1, with respect to 8 € [0,16] for j = 1 (left) and
j = 2 (right).

Sin <820 < ... < Spn.

Our goal is to obtain asymptotic expansions for the “abscissas” s; . These will then give
the desired asymptotics for the eigenvalues A;,. We therefore start with studying the
equation A = gy, (s).

We define the auxiliary function b, : [0,27] x [0,7] = R by

oo gy In(0) = gn(s)
bu(e,8) : cos(s) — cos(o)’

As the following lemma shows, this function is much nicer than it appears at the first
glance.

Lemma 3.1. We have

bu(t,s) = —2t71 + 4+ 29%(s) — 2t

with v, (s) = \/4sin?(s/2) + 6/(n + 1)2.
Proof. Taking ¢t = €' we obtain

by (t,s) = —%
--&= 2c08(0))* = (2= 2cos(s))* B (2= 2cos(0)) = (2~ 2cos(s))

cos(o) — cos(s) (n+1)2 cos(o) — cos(s)

23
(n+1)2’

= 4(2 — cos(o) — cos(s)) +

and it remains to notice that cos(c) = (t +¢71)/2 and 2 — 2 cos(s) = 4sin?(s/2). O

Thus, b,(el?,s) = by — 4cos(o) with a constant by > 4 (depending on s and n).
This implies that, for each s, the symmetric tridiagonal Toeplitz matrix T, (b, (-, s)) is
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invertible for every m and n; see, e.g., [16, Sections 2.2 or 10.1]. The inverse of T,,, (b (-, ))
will be denoted by T,,,1(b,(-,s)). We consider T}, 2(b,(-,s)) and think of this matrix as
acting on the linear space of polynomials co+cit+ - -+ ¢, 11t ! (t € T) in the natural
fashion. Let yx(t) := t*. Then

On(t,s) := [T, (ba (", 9))x0) (1), (3.1)
is a well-defined polynomial of the above form for each s and n. We may write
On(t,s) = 0o(s) + 01 (s)t + -+ + Oppa (s)t™ (3.2)

where the coefficients 6y(s),. .., 0,+1(s) are the entries of the first column of the matrix
T, L5 (bu(-, ), which is real.

Theorem 3.2. A number A\ = g,(s) is an eigenvalue of Ty, (a,) if and only if there is a
j € Z such that

(n+1)s =mj+ Hy(s),
where H,(s) := 2arg ©,(e'*, s).
Proof. Let P,: L?(T) — L?*(T) be the projection defined by

o) m—1
P Y ft* =) St
k=0

k=—oc0

and recall that we may identify the range of P,, with C™. We are looking for the values
A € (0,M,) for which T},(a,)X = AX has non-zero solutions X € P,L?(T). Using
A = gn(s) and switching to the variable s, the previous equation becomes

Tn(an — gn(s))X =0, (3.3)
which can be written in polynomial language as

P (an — gn(s))X = Pobyu(-,s)p(-,8) X =0,

where p(t,s) = p(el?,s) := cos(s) — cos(c) = —t71/2 + cos(s) — t/2. Equivalently

(Pn+1 — Pl)bn(7 S)le('7 S)X = 0 (34)

The function X is a polynomial of degree n — 1 in the variable ¢, and hence we can write
X(t) =x0+ 21t + -+ + 251" L. The product b, (t, s)x1(t)p(t, s) X (t) equals

zot™! + (1 — Buwo) + -+ + (Tp_o — ﬁnxn_l)tn""l + X1t (3.5)
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where 3, := 4 + 3/(n + 1)2. Indeed, we have b, (t,s) = —2t~1 + 4 + 292(s) — 2t and
72 (s) = 4sin?(s/2) + B/(n + 1) = 2 — 2cos(s) + B3/(n + 1)? by Lemma 3.1, and hence
bn (t7 S)Xl (t)p(ta S)X(t) equals

—2(1 = (2+~2(s))t + 12) ( - 2% + cos(s) — %t) (20 + a1t + -+ zp 1t")
= (1= (B — 2cos(s))t + £2) (% — 2cos(s) + t) (z0 + 1t + -+ 2y 1" )
= 20+ { — 2cos(s)ao + @1 — (B — 2cos(s))ao} + -

+{ = (B — 2008())Tn_1 — 2008(8)Tn_1 + T} + 1"

Zo
= 7 + Tl — ano + -+ (xn—2 - ann—l>tn+l + mn—ltn+2-

Equation (3.4) tells us that the coefficients of t¥ with k =1,...,n in (3.5) are zero. We
so arrive at the equation

bn(ta S)Xl(t)p(tv S)X(t) = xot_l + (xl - anO) + (xn72 - ﬁnxnfl)tn—i_l +mn71tn+2' (36)
We are now ready to solve (3.3) for X. Take
Y = Poyobn(-, s)x1p(, $)X.

Since Pp,12x10(+, $)X = x1p(+, 5) X, we get Y = Ty, 12(bn (-, 8))x1p(+, $)X or equivalently,
T, L5 (ba(, )Y = x1p(+, s)X. In addition, (3.6) implies that Y (t) = yo + yp41t" ! with
Yo = 1 — Bpxo and Yp41 = Tp_2 — Bprp—1. This gives

T (ba ()Y = 50[T 5 (bn (-, 8))x0) (8) + Yt [T 2 (b (-, 8)) X 1] (1)

Therefore

tp(t, )X (1) = yo[ T2 (b (-, )X0) (1) + Y1 [T o (b (-, 8))Xn41](B). 3.7)

We now employ the previous expression to derive a relationship between s and the
function ©,, given by (3.1) which does not involve the coefficients yy and yy,11. Consider
the flip operator W,, given by

n—1

n—1
Wa Z fktk = Z fnflfktk-
k=0 k=0

Using the well-known identity Wy, 2T} 12(bn (-, 8)) Wy = Thyo(bn(-, s)), where by, (, 5) :=
b, (t71,s), we easily obtain

[Tl (bn (-, 8)) Xnsa ] () = 71O, (171, 5).
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Hence (3.7) can be written as
tp(t, s) X (t) = yoOn(t,s) + yn+1tn+16n (t_la s),
which combined with p(e'®, s) = p(e™!,s) = 0 yields

0= yO@n(eisa 5) + yn—&-lei(nJrl)S@n(eiisa S)a
0= yO@n(e_is,S) + yn+1e—i(7L+1)s®n(eis7s).

The previous linear system has non-trivial solutions if and only if its determinant is zero,
that is,

Gn(eisvs)

i(n+1)s _ + )
¢ O, (=15, )

Finally, the theorem is a direct consequence of the previous equation together with the
equality ©,(t,s) = ©,(t71,s), which follows from (3.2). O

Theorem 3.2 provides us with an implicit and exact equation for the eigenvalues of
T, (ay). However, the term H,,(s) is difficult to handle, and hence we expand it to obtain
a simpler expression. It turns out that such an expansion depends on the collective
behavior of n and s. We will take the argument of ©,(e'*,s) in (-, 7], will denote
by s = s}, the solution of (n + 1)s = 7j + H,(s), and Theorem 5.1 will show that
s}, coincides with the s;, introduced above. (Note that in Theorem 3.2 the choice of
the argument is not yet specified.) Getting the asymptotics of s

J.n Tequires asymptotic
analysis of H,(s) in the cases sn — oo and s?n — 0, which will eventually lead to the

following two theorems.

Theorem 3.3. (Inner and strictly inner eigenvalues) Denote by s;, the numbers given
by gn(8j.n) = Ajn. Let nun(s) be the function (2.2), put

po(0) =0, pi(o) =nw(0), p2(o):= nINN(J)nI/NN(J)7

and abbreviate wj/(n+ 1) to o,
(i) If j = jn — 00, then

(n+ 1)3j,n =mj+ UINN(Sj,n) + Ejn

and there is a constant C independent of n such that |Ej, | < C/jZ for all sufficiently
large n.
(ii) If j = jn — 00, we have

p1(0jn)

j
n+1 + Js

Sjn = Po(0jn) +
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where |F}, ,| < C/n? for all sufficiently large n with a constant C' independent on n.

(iii) If even j/\/n = jn/\/n — o, then

p1(oj,n) n p2(0j,n)

G
ntl o mt1)z O

$jn = Do(0jn) +

and there is a constant C independent of n such that |G;, »| < C/(j2n) whenever j,//n
is large enough.

Theorem 3.4. (Extreme eigenvalues) If j/\/n = j,/v/n — 0 as n — oo, then the numbers
8jn given by gn(sjn) = Njn satisfy

(n+1)sjn =7j + NMexr(8j,n) + Rjn

where

(1+ gepiez) ™ sinh /(0 + 1)22 1 5 — sin((n + 1)s)
cosh \/(n+1)2s2 4+ 8 — cos((n + 1)s) >

and there is a constant C independent of n such that |R;, | < Cj2/n whenever j,//n

Nexr(s) := 2arctan (

is sufficiently small.

We are now going to prove Theorems 3.3, 3.4 and subsequently we will prove Theo-
rems 2.1, 2.2, 2.3. The proofs require some technical preliminaries. These are the subject
of the following section.

4. Technical matters
According to (3.1), ©,(t, s) is the solution of

Tot2(bn(:8))On (-, 5) = Xo;

that is, Pp42by(t,8)Pry20n(t,s) = Phiob,(t,$)0,(t,s) = 1. In addition, Lemma 3.1
and (3.2) tell us that b, (t,s)0,(t,s) is the polynomial —26(s)t~ + - -+ — 26,41 (s)t" 2.
Consequently, we may actually write

by (t,8)0,(t, s) = fuo(s)t*1 +1- un+2(s)t”+2,

where ug(s) = 20y(s) and up42(s) = 20,,41(s). Since by, is bounded away from zero, we
can solve the previous equation for ©,,, obtaining

Ou(t, 5) —ug(8) 7L+ 1 — upga ()t 2 —ug(s)t™t 4+ 1 — uyyo(s)t" 2
n 78 = =
bu(t, s) —2t=1 +442v2(s) — 2t




M. Bogoya et al. / Linear Algebra and its Applications 706 (2025) 24—54 37

Thus, H,(s) = 2arg©,(e'*, s) equals

_ —is _ i(n+2)s
1 —wug(s)e Upia(s)e ) (41)

H,(s) =2arg ( bt s)

Notice now that ©,,(t, s) is a polynomial of degree n+ 2 in the variable ¢. This implies
that the zeros of the denominator above must be zeros of the numerator also. Since the
zeros of the denominator are

1 1
t1p=1+ 572(5) + %(S)\/ 1+ ZWZL(S)v (4.2)

we arrive at the system

7 ug(s) + 7 U, 40(s) = 1,
1

t5 'uo(s) + 15 Punqa(s) = 1,

which, by Cramer’s rule together with the equality t1to = 1, gives

n+2 n+2 n+2 n+2
tl — t2 _ tl — t2

Upgls) = = ,
o(s) t1—1t2—1(t?+3 —t§+3) t?+3 _t;L-l-S

(s) tyt—tt t —to
U S) = = .
n+2 tl—ltg—l(t?-i-i% _ tg+3) t?+3 _ tg-‘r?)

(4.3)

We can now simplify (4.1) further. From (4.2) we know that t; and ¢9 are real, and
hence by (4.3), so are ug and u, 2. In addition, Lemma 3.1 tells us that for each s € [0, 7],
the function b, (-, s) is positive. This shows that the real part of the term in parentheses
in (4.1) is

{1 — up(s) cos(s) — un42(s) cos((n + 2)s)}/bn(t, s),

while its imaginary part equals

{ug(s) sin(s) — upya(s)sin((n + 2)s)}/bu(t, s).

Hence, we may take

H,\(s) = 2arctan ( uo(s)sin(s) — up42(s)sin((n + 2)s) >, (4.4)

1 — ug(s) cos(s) — upy2(s) cos((n + 2)s)

and we will work with this choice of the argument throughout the following. See Fig. 2.
Our next goal is to expand H, in such a way that the main term is independent
of n. It turns out that such an expansion depends on the joint behavior of n and s. We
therefore split the task. The following Lemmas 4.2 and 4.3 show the resulting asymptotic
expressions for H,, in different cases. But first we need the following technical result.
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1.570F 1.570F
1.180+ 1.180+
0.785H 0.785F
0.393 1 0.393
0.000 . : : 0.000 :
0 x z 3z P 0 z z EES P
4 2 4 4 2 4

Fig. 2. The function H, in (4.4). Left: for n = 50 and 8 = 0 (blue), 8 = 10 (red), and 8 = 100 (gray).
Right: for # = 10 and n = 10 (blue), n = 20 (red), and n = 40 (gray). (For interpretation of the colors in
the figure, the reader is referred to the web version of this article.)

Lemma 4.1. As sn — oo, we have

tro = ra(s) + o(i),

sn?

where t1 o is given by (4.2) and

kit (s) =14 2sin?(s/2) & 2sin(s/2)1/1 + sin?(s/2).

In addition, to <1 — s/8 for all sufficiently large n.

Proof. Note that

1
2

=2 (5) () o (5) ) o s (5) o)
and use 1 +sin?(s/2) > 1 and 4sin?(s/2) > (4/72)s? to get
=tz (5) w2 (5) 1+ (5) {140 ) +0(i)

= rx(s) + O(L),

sn?

1

1309)

tio =14 -72(s) £yn(s)y/1+

where x4 (s) = 1+ 2sin?(s/2) + 2sin(s/2)+/1 + sin?(s/2), proving the first assertion.
To prove the second assertion, take the minus sign above and write

et (G () - (3)) 0(ch)
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<am(3) [y () +om (3)) o)

which in combination with /1 + sin?(s/2) + sin(s/2) < v/2+ 1 < 4 and sin(s/2) > s/m
for s € [0, 7], produces

1 S 1 S 1
to—1<—5sin(3)+0(—5) <= +0(—3).
2 PR + sn?2 27 + sn?
Since sn — oo, the error term is arbitrarily small, hence the proof is finished after
noticing that —s/(27) < —s/8. O

Lemma 4.2. We have H,,(s) = nixx(s) + O(1/(s*n?)) as sn — oo, where nix(s) is given
by (2.2).

Proof. We use (4.4), which is an exact equation for H,. But first, we need to expand
the involved terms ug and u, 2. Note that t1t5 = 1 to obtain t/t; = t3. From (4.3) we
can write

up(s) = 1 1= (to/t)"? 11— 5"+
0 - 11— (tz/tl)n+3 -2 1 _tg(nJrS)'

Because s € (0,7, we have y,(s) € (0,+/4 + /2) for every n > 1. Then from basic
calculus and (4.2), we know that ty is a decreasing function of ~,(s) such that t5 €
(9/100, 1) for every n > 1. Consequently, lim,, o ug(s) = t2, but this is not enough for
our purposes. We need to obtain an accurate bound for ug(s) —t2 and proceed as follows.
Notice that log(1 — z) < —x for « € (0, 1). From Lemma 4.1 we know that t5 < 1 — s/8.
Hence

t;(n+2) _ t;lQinog(tg) — O(e2nlog(1fs/8)) — O(efsn/él)

)

that is, 2" "2 = O(e=s"/4),
We are ready to estimate ug. Using that to < 1 for every n > 1 and s € (0, 7], we can
write

uo(s) =t - {14 0(e 1)} =ty + O(e™*/*). (4.5)
A similar calculation produces
Unga(s) = O(e™*™®) as  sn — oo, (4.6)

and we have what it is necessary to prove the lemma. Combining (4.5) and (4.6) with (4.4)
we obtain
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H,(s) = 2arctan ( {t2 + O(e*"/*)} sin(s) — O(e=*"/%) )

1 —{t2 + O(e=s"/%)} cos(s) — O(e—s"/8)
tysin(s) + O(e"/8) )

)

1 —tacos(s) + O(e—sn/8)
to sin(s)
(

2arct +0( ! )
= 2arctan
1 — o cos(s) sesn/8

= 2arctan (tl ?nc(cfs)(s) + O(sesln/s)) (4.7)

From Lemma 4.1 we know that t; = k4 (s) + O(1/(sn?)) where

ki (s) =1+ 2sin? (;) + 2sin (g),ll + sin? (g)7

=2 — cos(s) + /1 — cos(s)y/3 — cos(s). (4.8)

= 2arctan (

Hence, it is easy to see that x4 (s) — cos(s) is bounded away from zero and has order
O(s). Consequently,

sin(s) _ sin(s)
t1 —cos(s)  ki(s)—cos(s)+O(1/(sn?))
sin(s)

~ {51 (s) — cos(s) {1+ O(1/(s2n2))}

e 1O laa))
_ sin(s) +O( 1 ) (4.9)

Ky (s) — cos(s) s2n?

Finally, combining (4.7) with (4.9), we obtain

H,(s) = 2arctan < sin(s) n O( 1 ))

K4 (8) — cos(s) §2n?

= 2arctan <ﬁ(?os(s)> + 0(521712)'

This together with (4.8) finishes the proof. O

Lemma 4.3. Assume s > ¢/n for some e > 0. Then H,(s) = nexr(s) +0(s?n) as s*n — 0
with Nexr(s) as in Theorem 3.4.

Proof. The assumption s > &/n implies 1/n? = O(s?) and hence

Yn(8) = \/4sin2 (g) + (nfl)Q = /521 O(s%) + O(s2) = O(s),
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as s — 0. We begin by expanding ¢ 2. Due to (4.2) we can write

2 = 1% 70(5) + 572(5) + O (5))

102(s) + O(%),

=1x7,(s) + 5

as s — 0, which implies that log(t12) = £v,(s) + O(s®). We then have

157 =ty ot7 3!
=ty 2exp{(n + 1)log(t12)}
= {1 7(s) + O(s*)} exp { £ (n + 1)ya(s) + O(s’n) }
— {1+ 7 (5) + O(5) }eF(nH1Dm () O(°n)
= {1 7,(s) + O(s*) }e ") (1 4 O(sn)),

as s = 0. A similar calculation produces
153 = (1 £ 29,(s))e= ") 4 O(s%n).

We now use (4.3) to derive asymptotic expressions for wg and upi2. By
and (4.11), we can write

wos) = NI — (1= g (5))e 4D 4 O(s°n)
0 (1+ 27 (s)) e D) — (1 — 2%( ))e=(FD7(5) + O(s3n)
_ tanh((n + 1)y (s)) + Ya(s)
tanh((n + 1)74(s)) + 274(s)

+ O(s%n)

1 Yn(8) 30,
= G (n F Dy(s) + 2 () O

1 'Yn(s) 30,
=1 tanh((n 4+ 1)y, (s)) +0(s™n).

Similarly, using that

cosh((n + 1)y, (s)) = O(e™), O(s) + O(s*>n) = s{O(1) + O(s’n)} = O(s),

and sinh((n + 1)7y,(s)) = O(e*™), we get

29, (s) + O(s3n)
2sinh((n + 1)vn(8)) + 49,(s) cosh((n + 1)y, (s)) + O(s3n)
n(s) +O(s%n)
sinh((n + 1)y (s)) + O(s)

Unp+2 (S) =

41

(4.10)

(4.11)

(4.10)
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)40 )
sinh((n + 1)y, (8)){1 + O(s)}

o ’Yn(s) 2n
= S ey O

which because of v, (s)/sinh((n + 1)7v,(s)) = O(1/n) = O(s) can be simplified to

_ 'Yn<5)
unt2(8) = S ) T O(s"n).

Note again that b, (-, s) is positive for each s € (0, 7]. Combining the previous expressions
with (4.1) this time, we obtain

H,(s) = 2arg{l — ug(s)e™™ — up4o(s)e!" 25}
= 2arg{1 — ug(s)(1 — is + O(s”)) = uny2(s)(1 + is + O(s%)) /" TD°}

9 n(8) _ m(s) cos((n + 1)s)
= 2arg {tanh((n + Dyn(s) sinh((n + 1)y,(s))

j
(sl DN L
*(S mmm+n%<»)+“ )}

Since s < 7y,,(s) for sufficiently small s, this can be simplified to

s) = 2arctan "/%(5) Sinh((n + 1)%1(8)) - Sin((n + 1)5) + O(SZn)
H,(s) = 2arct < cosh((n + 1)y, (s)) — cos((n + 1)s) + O(s%n) >
9 arctan <{v =E) sinh((n + 1)v,(s)) —sin((n + 1)s }{1 +O(s n)}>
{cosh((n+ 1)yn(s)) — cos((n+1)s) }{1+ O(s®n)}
5 sinh((n + 1)n(s)) — sin((n + 1)3)) )
COSh((n + 1)’7n( )) - COS((’n, + 1)3) :

= 2arctan (

Finally, we need to get rid of the term ~,(s). Taking into account that

_ B
535‘(”*m+n22

(n+ 1D)ya(s) =/ (n+1)2s2+ 5+ O(s

)4m+0@%

we arrive at

H,(s)=2arcta UJF#)_WSM\/”H“ B —sin((n+ 1)s)
s)=2arctan
" cosh\/(n+1)2s2 + 8 —cos((n+1)s)

which gives us the lemma. O

>—|— O(s*n),
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5. Proofs of the main results

We have A\, = gn(sjn) with 51, < s2., < ... < S, and Theorem 3.2 implies that
(n+1)sjn, —mj = Hy,(s;n,) for an appropriate choice of the argument in Hy(s;,) =
2arg O(e'*in, s;,). In (4.4) we specified Hy,(s) to take values in (—m,7]. The following
theorem shows that this is the right choice.

Theorem 5.1. Let H,,(s) be given by (4.4). Then the equation (n+1)s —wj = H,(s) has

a unique solution s = s, for all n and all j € {1,2,...,n}. If n is large enough, we
have s3 ,, = sjn for all j € {1,2,...,n}.

Proof. Put F,(s) := (n+ 1)s — H,(s). Then our equation reads
F,(s) = 7j. (5.1)

From (4.4) we infer that H,, is continuous on [0, 7] and that H,(0) = H,(7) = 0; recall
Fig. 2. For 1 < j < n, we have F,,(0) = 0 < jm and F,(7) = (n+ 1)m > jw. The
intermediate value theorem therefore tells us that (5.1) has a solution s}, € (0, 7). It is
obvious that s}, # sy, for j # k. Thus, we get at least n different solutions as j changes
from 1 to n. By Theorem 3.2, each solution gives an eigenvalue gn(s;n), and hence there
cannot be more than n solutions. It follows that s}, is the unique solution to (5.1).

It remains to show that s}, = s;,. Recall that g, is strictly monotonically increasing
Jan
{1,...,n}. Thus we only need to show the ordering s7 , < 85, < ... <S5}, ,-

From (1.8) with g = 2 we deduce that A1, > C/(n + 1)* with some constant C for
all n. Thus, for all j,n we have gn(s},) = Ai.n = C/(n+ 1)*. If K is large enough, then

N ; _
on [0,7]. Because g(s},) is an eigenvalue, we must have s}, = si, for some k €

1

K(650"+ G @) 2 nlei0) > g

and writing 5%, = 7j,/(n + 1), we get 7}, + 77, > C/K. This shows that there is a
constant £ > 0 such that 7;, > ¢ for all j,n. In summary, s}, > ¢/n for all j, n.
Consider the set Q. := {(s,n): s € (0,7),n € N, sn > £}. We want to show that
there is an n such that H,(s) € [0, 7] for all (s,n) € Q. with n > N.
Let first sn — oo with s € (0, 7). From Lemma 4.2 we know that

1
Hn(s) = nuwn(s) + O(W)»
where ny(s) = 2arctan(sin(s)/{k4(s) — cos(s)}). Because sin(s)/{r,(s) — cos(s)} > 0
for s € (0, ), there is a sufficiently large M such that H,(s) € [0, 7] for every (s,n) with
s € (0,m) and sn > M.
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Fig. 3. The region Q. for e = 1/2, M = 2, and § = 1. The blue, red, and gray curves are the hyperbolas
n=M/s, n= 6/32, and n = £/s, respectively. The light-blue and light-gray shaded regions correspond to
the (s,n) with sn > M and s?n < §, respectively. In this case M?/§ = 4. (For interpretation of the colors
in the figure, the reader is referred to the web version of this article.)

Assume now that s?n — 0 with s > ¢/n. Lemma 4.3 shows that

H,, () = nuxr(s) + 0(52“)

with 7gxr(s) as in Theorem 3.4. To simplify the calculation, consider the new variable
x = (n+1)s and write gxr(s) = 7(z) with

z(z® + ) 1/281nh\/z2 B — sin(z (5.2)
cosh y/x2 4+ 3 — cos(x .

Since cosh(x) > cos(z) for z > 0, the denominator in (5.2) is positive. Because sinh(x)/x

fi(x) := 2arctan (

is a strictly increasing function on (0, 7) and sinh(z) > sin(z) for « > 0, we obtain

sinh \/22 + smh > sin(z)

:v2+ﬁ x T

for x > 0, which implies that the numerator in (5.2) is also positive. Therefore 7(x) €
(0,7) for x > 0, and we conclude that H,(s) € [0,n] for every (s,n) with s € (0,7) and
s2n < § for some sufficiently small 6 > 0.

We just proved that H,(s) € [0, 7] for the (s,n) satisfying sn > M or s’n < § with
s > ¢/n, that is, for the (s,n) € Q. lying above the hyperbola n = M/s or between
the hyperbolas n = ¢/s and n = §/s?. This is either the entire (2., in which case
H,(s) € [0,7] on all of Q., or the hyperbolas n = M/s and n = §/s? intersect. In the
latter case, H,(s) € [0, 7] on the (s,n) € Q. with n > M?/4. See Fig. 3.

We are now ready to finish the proof. We know that (n +1)s},, — Hy(s},,) = 7j and
(n+1)s51, — Ha(sj41,,) = (3 +1). It follows that

st S T H"(S;-s-l,n) B H”(S}kn)
Jj+l,n Jn n + 1 )
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Jmn
be different, we actually obtain s7,;, > s
1,...,.n—1. 0O

and since H, (s}, ,) — Ha(s},) € [-m, 7], we get that s,,, > s} ,. Since they must

*

7 for all sufficiently large n and all j =

Proof of Theorem 3.3. Theorem 5.1 tells us that (n + 1)s;, = mj + Hy(s;,) with
H,(sjn) in (—m,m) (and actually in (0,7)). It follows that ns;, — oo and s;, > cj/n
with some constant ¢ independent of j and n. We can therefore apply Lemma 4.2 to
conclude that

(n+1)sjn =7J + o (Sjn) + O(@) = 7j + N (S5,n) + O<ji2>7
which proves part (i).

To prove parts (ii) and (iii), consider the function U, (s) := (n + 1)s — n(s). Basic
calculus shows that this is a strictly increasing and infinitely differentiable function on
(0,7]. Moreover, lim,_,o4 Upn(s) < 2 < wj and U,(7) = (n 4+ 1) > 7j. Hence, the
intermediate value theorem implies that U, (s) = jm has a unique solution §; , in (0, 7).

Intuitively, the points s;, and §;, must be “close” to each other. To estimate the
distance between them, we proceed as follows. We have

(T'L + 1)5j,n - Hn(sj,n) = 7Tj7 (n + 1)'§j,n - nINN(gj,n) = 7Tja (53)

and hence (n-+1)]55,n— 8] = |Ha(55,0) — s (35,0) |- Sinice () = 1 (5)+O(1/(52n%))
by Lemma 4.2 and since 7 (85.n) — Mon(85.0) = M (§) (84,0 — 8j,n), for some & between
Sjn and 8., we get

. R 1
(n+1Dlsjn—38jnl < M|sjn—3jnl+ O<—2 nz)

Jin

with some constant M, which implies that

. 1 1
(57 — 830] = O<n) ~0(): (5.4

To simplify the writing, we now use the abbreviation h = 1/(n + 1). From the second

equation in (5.3) we obtain that §;,, = ;. + M (8;n)h, where o, = 7jh, and this
equation can be solved by iteration as follows. We first write §;, = 0;, + O(h) and
iterate to get

Sjm = 0Ojn + nINN{Uj,n +O(h)}h
=0} + Nn(05.0) 0+ O(R?).

The latter equality together with (5.4) completes the proof of part (ii). A second iteration
yields
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8jn = 0jn + Mn{0jn + Man(05,0) 0 + O(hg)}h
=0jn+ WINN(Jj,n)h + 771NN(Uj,n)nl/NN(UJ'JL)h2 + O(h3)-

If j/4/n — oo, then

0(527) + 0 =0(557) +0(5) = 0(3z;):

which in combination with (5.4) completes the prof of part (iii). (Notice that a third
iteration is pointless because it will produce a new term of order O(h3).) O

Proof of Theorem 2.2. We have \;,, = g,(s;,). Thus, with h :=1/(n + 1) the asymp-
totics of Theorem 3.3(ii) gives

Njn = gn{ T + M (04.0) b+ O(1/(57n)) + O(1/n*)}
= 9n(0j.n) + 9 (@50 (s (05,0) b + O(1/ (5%n)) + O(1/n®)} + O(gy(0),n) /0?),

and as

gn(0n) = 4(1 = cos(a;.4))* + O(4° /n*) = O(j*/n*),
9n(0.n) = 2sin(0;,){Bh* + 4(1 — cos(o;n)) } = O(5%/n?),
gn(ojn) = 2(Bh% + 4) cos(oj )+ 8(1 — 2COS2(O']',")) = 0(j2/n?),

we arrive at the assertion. O

Proof of Theorem 2.3. Proceeding as in the previous proof but this time with the asymp-
totic expansion provided by Theorem 3.3(iii), we obtain

Ajn = gn{ij,n + UINN(UJ}n)h =+ UINN(Uj,n)n{NN(Jj,n)hQ + O(hs)}
= Gn(0n) + 91 (050) (M (0.0) 2+ T (0,0 ) Wen (050 )R}
90 (05n)

+TnINN(Uj,n)2h2 + O(.g;:l(aj,ﬂ)hg)v

which after noticing that ¢/ (c;,) = 2sin(c;,){4 — Bh? — 16cos(0;,)} = O(j/n) and

n
some straightforward computation gives the assertion. 0O

Proof of Theorem 3.4. From Theorem 5.1 we infer that there are positive constants ¢ and
C such that €/n < s1, < s, < Cj/n for all sufficiently large n and all j € {1,2,...,n}.
If j/v/n — 0, this implies in particular that s?nn = O(j%/n) converges to 0. We can
therefore have recourse to Lemma 4.3 to obtain that

(n+1)sj,n = 7j + Nuxr(8j,n) + O(sinn) = 7j + Nexr(85,n) + O(jQ/n),
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Fig. 4. Left: The function 7 for 8 = 0 (blue), 8 = 10 (red), and B = 20 (green). Right: The same for 7. (For
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

as desired. 0O

Proof of Theorem 2.1. We proceed following the idea of [21]. As in the proof of Theo-
rem 5.1, consider the variable x; = (n + 1)s; . Theorem 3.4 says

x5 = mj +ii(x;) + 02 /n). (5.5)

Recall that j < j, and that {j,} is a sequence satisfying j,/+/n — 0. Consider equa-
tion (5.5) without the error term, that is,

x =7j + Hx). (5.6)
One can show that the function 7 is in C®°, strictly increasing with 0 < #/(z) < 1-40 <

/2, the
intermediate value theorem implies that for each j > 0 the equation (5.6) has a unique

1, and bounded for z > 0. See Fig. 4. Since 7(0) = 0 and lim,_,~ 7(z)

solution A;.
Combining (5.5) with (5.6) we obtain

|z = M| < [i;) = (A5)] + O /n) = |7 ()l — Azl + O /m),
for some (; between z; and A;. Since 0 < 7)’(z) <1 -6 < 1, we conclude that
|z — Ayl < (1/9)0(5%/n) = O(52/n).

Taking into account that ; = (n +1)sjn we have Ajn = gn(sjn) = gn(;/(n +1)). Let
Ain = 9n (Aj/(n+ 1)) and note that

m(757) - n(537)| -

for some &; between z; and A;. Since ¢/,(s) = O(s®) + O(s/n?) as s — 0 and O(§;) =
O(A;) = O(j) we arrive at

[Njn = Ajnl =

g/( 3 )|%‘*Aj|
"\n+1 n+1
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; €]3 j2 j5
Nin =Xl = 0(35)0(57) = 0(35):
Thus, Ayn = A7, + 0(%/n) = ga(A/(n+1)) + 0 /nd). ©
6. Numerical experiments

6.1. Inner eigenvalues

The choice j, = |[y/n] is the critical case because it is neither extreme nor strictly
inner. Theorem 2.2 provides us only with a second order asymptotics. Let us nevertheless
try the third order asymptotics of Theorem 2.3 with the function ¢, given there. Thus,
form=1,2,3 and j > j, = [\/n], let )\fg(m) be the m-term approximation.

)\INN(m) — Qk(Uj,n)
7,m ! <7’L +1 k*

As for the errors, we consider the individual absolute error

AEINN(m) — |>\j,n . )\INN(m)"

J,n 2,1

which according to Theorem 2.2 is O(j3/n*) for m = 1 and O(j2/n*) for m = 2,
while Theorem 2.3 suggests that it should be O(j/n*) for m = 3. We also consider the
individual normalized errors

NEINN(l) 7AEINN(1) n_ NEINN(Q) — AEINN(Q) n- NEINN(3 — AEINN(3 TL_

i3 Jmn Jn ;
J J

<.

and the individual relative errors

INN(m) INN(m)
reme _ Pin = din 71 ARy
” Ry [Ajonl

Finally, we compute the respective maximum errors

AEINN(m - maX{AEINN(m) ] > ]n}’
NERN™ = max{NESS™: 5 > ),

REINN(m) . maX{REINN )I J = ]n}>

Figs. 5 and 6, and Table 2 show the data.

Fig. 6 tells us that the approximation )\Ijljs(m) is indeed good for the eigenvalues with
j = jn but not acceptable for smaller j. This figure confirms Theorem 2.2 numerically
and reveals that the range of eigenvalues with an asymptotics as in Theorem 2.3 is

probably larger than what we call strictly inner eigenvalues.
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Fig. 5. The individual normalized inner errors NE!-kzl(m) for selected values of j and n = 24914 In each
figure, from left to right j = 8,16, 32,64, 128,256. The left and right figures show the case m = 2 and
m = 3, respectively.

Table 2
The maximum relative, absolute, and normalized errors REg\'(m>, AE'::N(m), and NEI:L'N("”)7 respectively, for

the eigenvalues of T}, (a,), m = 1,2,3, 8 = 3, and different values of n.

n REMM AEMM NEM® - RENNE) AEM®) NEM(@)  RENNG) AENG) NEM®)
16 2.49x1071 2.68x1071 9.23x10' 2.90x1072 4.09x1072 4.31x10' 2.53x10% 1.83x10"% 2.21x10°
32 2.45%x1071 1.33x107% 1.34x10% 2.75x1072 1.10x1072 7.56x10' 3.07x10"% 2.61x107° 4.21x10°
64 1.72x1071 6.63x1072 1.49x10%2 1.35x1072 2.84x107% 9.29x10' 1.68x107* 4.42x107° 9.28x10°
128 1.40x1071 3.31x1072 1.66x10%2 8.83x107% 7.21x10™% 1.16x10%2 1.32x10~* 7.78x10~7 1.90x10!
256 1.03x1071 1.65x1072 1.76x10%2 4.83x1073 1.82x10~% 1.31x10%2 6.26x107° 1.02x1077 2.72x10!
512 7.95x1072 8.25x107% 1.83x10% 2.86x1073 4.56x107° 1.45x10% 3.20x107° 1.29x10% 3.56x10"
1024 5.68x1072 4.13x1073 1.87x10% 1.46x107% 1.14x107° 1.53x10% 1.23x107° 1.62x107° 4.14x10!
2048 4.15x1072 2.06x107% 1.89x10% 7.79x10~% 2.86x107° 1.60x10% 5.02x107° 2.03x107'° 4.64x10*
4096  2.98x1072 1.03x107% 1.91x10% 4.00x10™% 7.15x1077 1.64x10% 1.90x107% 2.55x107 ' 4.99x10!
8192 2.15x1072 5.16x107% 1.92x10% 2.08x10™% 1.79x1077 1.68x10% 7.26x10~7 3.19x107'2 5.27x10'
16384 1.53x1072 2.58x10~% 1.93x10%2 1.05x10~% 4.47x107% 1.70x10%? 2.63x1077 3.98x107 '3 5.46x10*

6.2. Extreme eigenvalues

To employ the results in Theorem 2.1, we need the numbers A;. Table 1 shows the
first 12 of them. Let AE’;LT be the approximation of A;, given by Theorem 2.1, that is,

N g, (L»
n+1

and for the errors consider the individual absolute error
EXT ,__ . \EXT
AEj’n =Ajn )\j’n ,

which according to Theorem 2.1 is O(j°/n®) when n — oo. As above, we also consider
the individual normalized and relative errors,
w ARy

= 6.2
o] (6.2)

EXT ,__ EXT
NEPT .= AE™

Fig. 7 and Table 3 show the data. In Fig. 7 we plotted the relative errors for the first 17
extreme eigenvalues when using the approximation given by Theorem 2.1 and, moreover,
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Fig. 6. The log scale of the relative individual errors RE']‘-\’,‘\;("L), see (6.1), for B = 3, m = 1 (blue), m = 2
(red), and m = 3 (green). The top, middle, and bottom figures correspond to n = 4096, 8192, and 16384,
respectively. In all cases, the dashed vertical line indicates the index j, = [/n]. (For interpretation of the
colors in the figure, the reader is referred to the web version of this article.)
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Table 3
The absolute, relative, and normalized individual extreme errors AEY, RE}, and NE}'], respectively, for
j=1,2,10 with 8 = 3.

n REDT, AEDT NEPT  REST AEST NEST  REDY AEEY NEEY

10,n 10,n 10,n
16 2.27x1071 1.18x107% 1.23x10% 2.18x107! 8.15x107% 5.34x10% 1.02x10~! 6.90x10"! 7.23x10!
32 1.17x1071  4.74x107°  1.59x10% 1.16x107! 3.43x10~% 7.19x10% 8.85x1072 6.88x1072  2.31x10?
64 5.95x1072 1.69x107°% 1.82x10% 5.98x1072 1.24x10~° 8.35x10% 5.38x1072 3.25x107%  3.49x10?

128 3.00x1072 5.65x107%  1.94x10% 3.03x1072 4.19x1077 8.99x10% 2.92x1072 1.20x10™* 4.13x10?
256 1.50x1072 1.83x107°% 2.01x10° 1.53x1072 1.36x107% 9.33x10% 1.51x1072 4.04x107%  4.44x10?
512 7.53x107% 5.80x107'! 2.04x10% 7.65x107°% 4.32x107'° 9.50x10% 7.68x10% 1.31x10°7  4.59x10?
1024 3.77x107% 1.83x107'? 2.06x10° 3.83x107% 1.36x10”'' 9.59x10%2 3.87x107% 4.15x10~° 4.67x10?
2048 1.89x1072% 5.74x107'* 2.07x10% 1.92x107° 4.28x107'% 9.64x10% 1.94x1072% 1.31x107'° 4.71x10?
4096  9.43x107* 1.80x107!° 2.07x10% 9.59x107* 1.34x107* 9.66x10%2 9.73x107* 4.10x107'2 4.72x102
8192 4.72x10™* 5.62x107'7 2.07x10% 4.80x10"* 4.19x107!° 9.67x10% 4.87x107* 1.28x107'% 4.73x10°?
16384 2.36x10~% 1.76x107% 2.07x10% 2.40x10~* 1.31x107'7 9.68x10% 2.44x107* 4.01x107'° 4.74x10?

also when using the approximations provided by Theorems 2.2 and 2.3 (although the
latter two are for inner eigenvalues only). Interestingly, except for the first two or three
eigenvalues, Theorems 2.2 and 2.3 deliver much better approximations than one would
expect. This indicates again that the range of applicability of these two theorems is
probably larger than supposed.

6.3. Comparison with a formula by Parter

When § = 0, our symbol a,, given by (1.11) does not depend on n and coincides with
the symbol studied in [17]. There the authors used a classical theorem of Parter [11],
which states that if a(e'”) = (2 — 2cos(0))? and );,, are the eigenvalues of T}, (a) listed
in non-decreasing order, then for a fixed 7 = 1,2, ...,

Njn = (%)4 + 0(%) as n — oo, (6.3)

where E; is determined by the equation

tan (112 + D+ B3} = (1) tanh ({25 + D+ B,)). (6.4)

Numerical experiments reveal that (6.3) and Theorem 2.1 (with 8 = 0) indeed deliver
comparable results. Here is a proof that (6.3) can in fact be derived from Theorem 2.1.
Take 8 = 0 and note that g,(s) = s* + O(s%) as s — 0. Thus, by Theorem 2.1, we can

write
Ajin = gn(nijl) +O(%) - (nijl)4 +O(%)’

and since 1/(n +3) = 1/(n + 1) + O(1/n?), formula (6.3) is equivalent to

o= (7)) wole) = (i) +olia)
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Fig. 7. For 8 = 3, the black stars are the log scale for the relative individual extreme errors RESX;L, see (6.2),

for j =1,...,17. The red triangles and green dots are the relative individual inner errors RE',-“Z',\;L(m) obtained
with m = 2 and m = 3, respectively. The top, middle, and bottom figures correspond to n = 4096, 8192,
and 16384, respectively. (For interpretation of the colors in the figure, the reader is referred to the web

version of this article.)
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Consequently, to show that the main terms in the two approximations coincide, it remains
to prove that

A=

j (25 + L)m + Ej). (6.5)

DN | =

This can be done as follows. For even j = 2k, equality (6.4) reads tan(u/2) = tanh(u/2)
with v = {(2j + 1)7 + E;}/2. For arbitrary v the identity

2v 2v
1—v2 1402
1402 1—02
1—v2 1402

holds. Taking v = tan(u/2) = tanh(u/2) and using the half-angle identities

) ~ 2tan(u/2) 11— tan®(u/2)
sin(u) = 1+ tan?(u/2)’ cos(u) = 1+ tan?(u/2)’
sinh(u) = 2 tanh(u/2) cosh(u) = 1 + tanh?(u/2)
11— tanh?(u/2)’ 11— tanh?(u/2)’
we obtain
2tanh(u/2)  2tan(u/2)
tan(u/2) = 1 —tanh®(u/2) 1+ tan?(u/2) _ sinh(u) — sin(u)

1 4 tanh®(u/2) 1= tan?(u/2)  cosh(u) — cos(u)’
1 —tanh®(u/2) 1+ tan?(u/2)

Applying the arctan function we arrive at

g — k4 arctan ( sinh(u) — sin(u) >

cosh(u) — cos(u)
for some k € Z. The last equation can be written in terms of 7 as v = 2wk +7(u), that is,
u = Agj. Comparing magnitudes we finally get Aox = A, which proves (6.5) for even j.
The case where j is odd can be disposed of analogously.
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