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The difficulty of the problem is that not only the order of 
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Our main results are third order asymptotic formulas for the 
eigenvalues in the case k � 2. These results reveal some basic 
phenomena one should expect when considering the problem 
in full generality.
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1. Introduction

Independently of whether we really need them or not, the eigenvalues of a Hermitian 
matrix are something we want to know. Central finite differences over the uniform grid 
with stepsize h = 1/(n + 1) for the differential operators −d2/dx2 and d4/dx4 on the 
interval (0, 1) with appropriate boundary conditions lead to the symmetric tridiagonal 
and pentadiagonal n × n Toeplitz matrices
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively. More generally, for the operator (−1)kd2k/dx2k we obtain the symmetric 
n × n Toeplitz matrix whose first row is

1
h2k

( (
2k
k

)
, −

(
2k

k − 1

)
,

(
2k

k − 2

)
, . . . , (−1)k

(
2k
0

)
, 0, . . . , 0

)
(1.1)

(n − k − 1 zeros). This is a banded matrix, and the so-called symbol associated with a 
banded symmetric Toeplitz matrix having the first row (c0, c1, c2, . . . , ck, 0, . . . , 0) is the 
function on the complex unit circle T defined by

a(t) = c0 +
k∑

�=1

ck(t� + t−�) = c0 + 2
k∑

�=1

ck cos(�σ), t = eiσ ∈ T .

The n ×n Toeplitz matrix with the symbol a is denoted by Tn(a). In the case where the 
first row is (1.1) we get

h2ka(t) =
(

2k
k

)
+

k∑
�=1

(−1)�
(

2k
k − �

)
(t−� + t�) = (−1/t)k(1 − t)2k

= (1 − 1/t)k(1 − t)k = (2 − t− 1/t)k = (2 − 2 cos(σ))k.

Thus, discretizing the operator (−1)kd2k/dx2k gives us the Toeplitz matrix

1
Tn((2 − 2 cos(σ))k), (1.2)
h2k
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and for the operator 
∑μ

k=0(−1)kαkdx2k/dx2k with positive numbers αk the resulting 
matrix is

Tn

( μ∑
k=0

αk

h2k (2 − 2 cos(σ))k
)

= α0I + αμ

h2μTn

( μ∑
k=1

αk

αμ
h2μ−2k(2 − 2 cos(σ))k

)
. (1.3)

What can be said about the eigenvalues of Toeplitz matrices we encounter in (1.2)
and (1.3)? Clearly, this is eventually the question on the eigenvalues of the Toeplitz 
matrices Tn(an) with

an(eiσ) = (2 − 2 cos(σ))μ + β1

(n + 1)2 (2 − 2 cos(σ))μ−1

+ · · · + βμ−1

(n + 1)2μ−2 (2 − 2 cos(σ)) (1.4)

with real numbers β1, . . . , βμ−1 � 0. The difficulty is that not only the order of the 
matrix Tn(an) depends on n but also the symbol an.

For σ ∈ R, put gn(σ) = an( eiσ). The function gn is strictly monotonically increasing 
on [0, π] from 0 to its maximum Mn. It results that the eigenvalues of Tn(an) all belong 
to the open interval (0, Mn), and Theorem 4 of [1] tells us that the eigenvalues are all 
simple. Thus, we may label and order them as follows:

λ1(Tn(an)) < λ2(Tn(an)) < . . . < λn(Tn(an)).

The collective behavior of the eigenvalues of “pure” Hermitian Toeplitz matrices is 
described by Szegő’s classical limit theorem [2]. See the books [3–5]. In the case of order 
dependent symbols such as (1.4) we may have recourse to the theory of GLT sequences 
(Generalized Locally Toeplitz sequences), which has its origin in the work of Tilli [6]
and was developed to a powerful machinery by Serra-Capizzano and his students and 
colleagues in a series of papers. We refer to the book [7] by Garoni and Serra-Capizzano. 
For the order dependent symbol (1.4), GLT theory gives

lim
n→∞

n∑
j=1

F (λj(Tn(an)))
n

= 1
2π

π∫
−π

F ((2 − 2 cos(σ))μ)dσ = 1
π

π∫
0

F ((2 − 2 cos(σ))μ)dσ

for every continuous function F on R; see [8, Theorem 1.2] and [9,10] for more details. 
(Note that F ((2 − 2 cos(σ))μ) is an even function.) Thus, the collective distribution of 
the eigenvalues of Tn(an) is independent of the constant β1, . . . , βμ−1 in (1.4). We also 
see that the eigenvalues of Tn(an) eventually fill the segment [0, 4μ] densely and are 
distributed like the values of the function (2 − 2 cos(σ))μ for σ ∈ (0, π). In other terms, 
as n → ∞, the fraction of the eigenvalues in some interval (c, d) converges to the fraction 
of the σ ∈ (0, π) for which (2 − 2 cos(σ))μ ∈ (c, d).
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This paper is devoted to the asymptotic behavior of individual eigenvalues. Let first 
β1 = · · · = βμ−1 = 0, that is, consider a( eiσ) = (2 − 2 cos(σ))μ. In that case the symbol 
is independent of n. For μ = 1, the eigenvalues are known exactly:

λj(Tn(2 − 2 cos(σ))) = 2 − 2 cos
( πj

n + 1

)
(j = 1, . . . , n). (1.5)

We obtain in particular that

λ1(Tn(2 − 2 cos(σ))) = 2 − 2
(

1 − 1
2

π2

(n + 1)2 + O
( 1
n4

))
= π2

(n + 1)2 (1 + o(1)) (1.6)

as n → ∞. For general μ we have

λ1(Tn((2 − 2 cos(σ))μ) = cμ
(n + 1)2μ (1 + o(1)) as n → ∞ (1.7)

with certain constants cμ. This was proved by Parter [11,12]. From (1.6) we infer that 
c1 = π2, Parter showed that c2 = 500.5467 . . . is the fourth power of the smallest positi-
ve x satisfying cos(x) = 1/ cosh(x), and in [13] it was observed that c3 = (2π)6 ≈ 61529
and that cμ grows astronomically fast as μ → ∞:

cμ =
√

8πμ
(4μ

e

)2μ
(

1 + O
( 1
√
μ

))
as μ → ∞.

See also the second author’s contribution to the article [14].
Toeplitz matrices Tn with nonnegative symbols that do not vanish identically are 

positive definite, i.e., (Tnf, f) > 0 for all nonzero f ∈ Cn. This implies that the smallest 
eigenvalue of the matrix given by (1.4) is larger than or equal to the smallest eigenvalue 
of Tn((2 − 2 cos(σ))μ) and thus, for sufficiently large n,

λ1(Tn(an)) � λ1(Tn((2 − 2 cos(σ))μ)) � cμ
2(n + 1)2μ . (1.8)

Finally, one can show that the largest eigenvalue λn(Tn(an)) of Tn(an) converges to the 
maximum of (2 − 2 cos(σ))μ, that is, λn(Tn(an)) → 4μ as n → ∞.

Parter [11,12] and Widom [15] studied not only the smallest and largest eigenvalues 
of Tn((2 − 2 cos(σ))μ) but also the so-called extreme eigenvalues. They established in 
particular analogues of (1.7) for λj(Tn((2 −2 cos(σ))μ) and 4μ−λn−j+1(Tn((2 −2 cos(σ))μ)
if j ∈ {1, 2, 3, . . .} is a fixed number. See also pages 256 to 259 of [16].

By asymptotic formulas for the individual eigenvalues of the Toeplitz matrices with 
the symbol (1.4) we mean formulas of the type

λj(Tn(an)) =
m∑ qk(πj/(n + 1))

(n + 1)k + O
( 1
nm+1

)
as n → ∞, (1.9)
k=0
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which should hold uniformly for all indexes j in some prescribed sets Sn, for example, 
Sn = {1, 2, . . . , 100} or Sn = {�√n�, . . . , n}, and in which q0, . . . , qk are functions de-
pending only on μ, β0, . . . , βm−1. Unfortunately, we are unable to master the task of 
proving such formulas in full generality. We therefore restrict ourselves to the case μ = 2
and small m, with the conviction and hope that this case may prepare the ground for 
understanding more general situations.

If μ = 1 (and hence no betas appear), formula (1.5) says that λj(Tn(a)) = g(πj/(n +
1)) with g(σ) = a( eiσ). Thus, in this case (1.9) holds with q0(σ) = g(σ), qk(σ) = 0 for 
all k � 1, and for arbitrarily large m.

Let us consider the case μ = 2 and β1 = 0. In that case formulas of the type (1.9)
were derived in [17,18]. We want to mention a delicacy of the matter. Namely, in [18] it 
is shown that there do not exist continuous functions q0, . . . , q4 : [0, π] → R and numbers 
C > 0, N ∈ N such that

∣∣∣∣λj(Tn(2 − 2 cos(σ))2) −
4∑

k=0

qk(πj/(n + 1))
(n + 1)k

∣∣∣∣ � C

(n + 1)5

for every n � N and every j ∈ {1, . . . , n}. On the other hand, it is proved there that for 
an arbitrary integer m � 0 there are continuous functions q0, . . . , qm : [0, π] → R and a 
number Cm > 0 such that

∣∣∣∣λj(Tn(2 − 2 cos(σ))2) −
m∑

k=0

qk(πj/(n + 2))
(n + 2)k

∣∣∣∣ � Cm

(n + 2)m+1 (1.10)

whenever n � 1 and m
2 log(n) � j � n and that there is a constant C > 0 such that, 

with the same q0, q1, q2, q3,

∣∣∣∣λj(Tn(2 − 2 cos(σ))2) −
3∑

k=0

qk(πj/(n + 2))
(n + 2)k

∣∣∣∣ � C

(n + 2)4

for all n � 1 and all j ∈ {1, . . . , n}.
Formula (1.10) concerns what we call inner eigenvalues. For the extreme eigenvalues, 

it was established in [17,18] that, for every fixed j = 1, 2, . . .,

λj(Tn(2 − 2 cos(σ))2) =
Λ4
j

(n + 2)4 + O
( 1
n6

)
=

Λ4
j

(n + 1)4 −
4Λ4

j

(n + 1)5 + O
( 1
n6

)

with certain constants Λj that are solutions of explicitly given nonlinear equations.
Last but not least, we want to emphasize that individual eigenvalue asymptotics for 

Toeplitz matrices with certain order dependent symbols have also been studied in [8,19]. 
The symbols treated in paper [19] are of the form

|σ|2 + 1 |σ|2−1/n + 1 |σ|2−2/n + · · · + 1 |σ|2−(n−1)/n.

n1/n n2/n n(n−1)/n
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Such matrix sequences arise in the numerical approximation of distributed-order frac-
tional differential equations. Paper [8] deals with symbols c(σ) + βnd(σ) where βn is 
1/(n + 1) or 1/(n + 1)1/(n+1) and both c and d are so-called simple-loop symbols. These 
are smooth real functions which move strictly monotonically from the minimum to the 
maximum and then strictly monotonically back from the maximum to the minimum with 
nonzero second derivatives at the minimum and the maximum. As the second derivative 
of (2 − 2 cos(σ))2 vanishes at the minimum, this is not a simple-loop symbol. Moreover, 
paper [8] contains numerical experiments for the symbol (1.4) with μ = 2. The numerical 
data obtained there anticipate part of the results we will rigorously prove here.

Throughout the following we let β � 0 and

an(eiσ) = gn(σ) := (2 − 2 cos(σ))2 + β

(n + 1)2 (2 − 2 cos(σ)). (1.11)

The main results on the asymptotic behavior of the individual eigenvalues of Tn(an)
will be stated in Section 2. Our proofs of these results occupy much space. The starting 
point is the representation of λj,n in the form λj,n = gn(sj,n) and the derivation of a 
manageable equation for sj,n. This is done in Section 3. In Section 4 we prepare the 
proofs, which will then be given in Section 5. Section 6 contains some selected numerical 
experiments.

2. Main results

Let an( eiσ) = gn(σ) be the symbol (1.11). Thus, we are dealing with the n × n

pentadiagonal symmetric Toeplitz matrix with 6 + 2β/(n + 1)2 on the main diagonal, 
−4 −β/(n +1)2 on the two neighboring diagonals, and 1 on the two next-neighbors. We 
abbreviate λj(Tn(an)) to λj,n. We already know that

0 < λ1,n < λ2,n < . . . < λn,n (2.1)

for all n, that λ1,n � c2/(2(n + 1)4) for all sufficiently large n (recall (1.8)), and that 
λn,n → 16 as n → ∞.

We consider λj,n as n → ∞. This includes that j may also depend on n, that is, 
we actually study sequences of the form λjn,n. If jn/

√
n → 0, we speak of extreme 

eigenvalues. For example, we have this case for λj,n (j � 1 fixed) or λ�log(n)�,n. If 
all we know is that jn → ∞, we say that we are concerned with inner eigenvalues. 
Notice that with this terminology λ�log(n)�,n counts as both extreme and inner. If even 
jn/

√
n → ∞, we refer to λjn,n as strictly inner eigenvalues. For instance, the central 

eigenvalue λ�n/2�,n and the upper eigenvalues λn−k,n (k � 0 fixed) are strictly inner 
eigenvalues. The eigenvalues λ�√n�,n are inner but neither extreme nor strictly inner. 
Herewith our main results.
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Table 1
The solutions Λj of x = πj + η̂(x) for β = 3 and j = 1, . . . , 12 obtained in Mathematica 
v.14 with 50 precision digits.

j Λj

1 4.6615957921253250704770283809852175762404777989570329941397516124742
2 7.8294357550286280464178485224978660178640330119617839862874945103994
3 10.9833219742053586857558636944919324013825126356233870292544720164376
4 14.1297083866674503605432431142412867774937568040962386988935124151196
5 17.2737576759361830668285878591532490830030757604197293039667440327106
6 20.4167666752780333653448447261680646408376114269524511082439997941392
7 23.5592496662074388344504002956960693389393620185033287471112478472193
8 26.7014380862110537101045668827905284566037755080621804941835825906322
9 29.8434488417154735629659308097877516397130369383543849499314490373543
10 32.9853461256939590010781633627961538946284882867448068757571468688292
11 36.1271675617397123740954961433504885555276833628962867845017802482102
12 39.2689363835010789993399482697496623249078649039256071620370774499135

Theorem 2.1. (Extreme eigenvalues) For each fixed j the equation

x = πj + η̂(x)

with

η̂(x) := 2 arctan
(
x(x2 + β)−1/2 sinh

√
x2 + β − sin(x)

cosh
√

x2 + β − cos(x)

)

possesses a unique solution x ∈ R. Denote this solution by Λj. If {jn} is a sequence 
satisfying jn/

√
n → 0, then

λj,n = gn

( Λj

n + 1

)
+ R̂j,n

for all n and j � jn, where |R̂j,n| � Cj5/n5 with some constant C independent of j

and n.

We remark that gn(Λj/(n + 1)) is of the order j4/n4.
A key point in the previous theorem is that we arrived at an equation not depending 

on n, namely x = πj+ η̂(x). This technique is reminiscent of the one used in the classical 
works [11,12,15,20], where the values Λj came from the eigenvalues of a certain integral 
operator. More recently, a similar approach was used in [21].

The equation x = πj + η̂(x) can easily and almost instantly be solved with any 
equation solver, for instance FindRoot in Mathematica v.14. See Table 1. Notice that, 
for instance, if jn = �log10(n)�, then the first 12 values of Λj are sufficient to go up to 
n = 1012.



M. Bogoya et al. / Linear Algebra and its Applications 706 (2025) 24–54 31
Theorem 2.2. (Inner eigenvalues) For s, σ ∈ (0, π), put

ηinn(s) := 2 arctan
(

sin(s)
2 − 2 cos(s) +

√
1 − cos(s)

√
3 − cos(s)

)
(2.2)

and

q0(σ) := 4(1 − cos(σ))2, q1(σ) := 8 sin(σ)(1 − cos(σ))ηinn(σ).

Let {jn} be a sequence converging to infinity. Then, with σj,n := πj/(n + 1),

λj,n = q0(σj,n) + q1(σj,n)
n + 1 + Lj,n

for all n and j � jn. We have Lj,n = O(j2/n4) as n → ∞ uniformly in j � jn, which 
means that there is a constant C independent of j and n such that |Lj,n| � Cj2/n4 for 
all j � jn.

Theorem 2.3. (Strictly inner eigenvalues) Let ηinn, q0, q1, σj,n be as in the previous 
theorem. In addition, put

q2(σ) := 2(1 − cos(σ)){β + 4 sin(σ)ηinn(σ)η′
inn

(σ) + 2η2
inn

(σ)(1 + 2 cos(σ))}.

Let {jn} be a sequence satisfying jn/
√
n → ∞. We have

λj,n = q0(σj,n) + q1(σj,n)
n + 1 + q2(σj,n)

(n + 1)2 + Kj,n

for all n and j � jn. Given such a sequence {jn}, there is a constant C independent of j
and n such that |Kj,n| � Cj/n4 for all j � jn.

When β = 0, the symbol in (1.11) coincides with the one studied in [17]. We here want 
in particular to understand the influence of the parameter β on the expansion of λj,n. 
For the inner eigenvalues, the previous two theorems tell us that β is only affecting the 
term with denominator (n + 1)2, and hence we can say that its influence is relatively 
small in this case. However, for the extreme eigenvalues, Theorem 2.1 reveals that β is 
affecting Λj directly; see Fig. 1. Consequently, its influence is stronger in this case.

3. The equations behind the main results

Recall that we order the eigenvalues of λj,n of Tn(an) as in (2.1). These lie all in 
(0, Mn) with Mn = 16 + 4β/(n + 1)2. The strict monotony of gn : (0, π) → (0, Mn)
implies that the equation λj,n = gn(sj,n) has a unique solution sj,n ∈ (0, π) and that
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Fig. 1. The variation of the parameter Λj in Theorem 2.1, with respect to β ∈ [0, 16] for j = 1 (left) and 
j = 2 (right).

s1,n < s2,n < . . . < sn,n.

Our goal is to obtain asymptotic expansions for the “abscissas” sj,n. These will then give 
the desired asymptotics for the eigenvalues λj,n. We therefore start with studying the 
equation λ = gn(s).

We define the auxiliary function bn : [0, 2π] × [0, π] → R by

bn(eiσ, s) := gn(σ) − gn(s)
cos(s) − cos(σ) .

As the following lemma shows, this function is much nicer than it appears at the first 
glance.

Lemma 3.1. We have

bn(t, s) = −2t−1 + 4 + 2γ2
n(s) − 2t

with γn(s) =
√

4 sin2(s/2) + β/(n + 1)2.

Proof. Taking t = eiσ we obtain

bn(t, s) = − gn(σ) − gn(s)
cos(σ) − cos(s)

= − (2 − 2 cos(σ))2 − (2 − 2 cos(s))2

cos(σ) − cos(s) − β

(n + 1)2 ·
(2 − 2 cos(σ)) − (2 − 2 cos(s))

cos(σ) − cos(s)

= 4(2 − cos(σ) − cos(s)) + 2β
(n + 1)2 ,

and it remains to notice that cos(σ) = (t + t−1)/2 and 2 − 2 cos(s) = 4 sin2(s/2). �
Thus, bn( eiσ, s) = b0 − 4 cos(σ) with a constant b0 � 4 (depending on s and n). 

This implies that, for each s, the symmetric tridiagonal Toeplitz matrix Tm(bn(·, s)) is 
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invertible for every m and n; see, e.g., [16, Sections 2.2 or 10.1]. The inverse of Tm(bn(·, s))
will be denoted by T−1

m (bn(·, s)). We consider Tn+2(bn(·, s)) and think of this matrix as 
acting on the linear space of polynomials c0 + c1t + · · ·+ cn+1t

n+1 (t ∈ T ) in the natural 
fashion. Let χk(t) := tk. Then

Θn(t, s) := [T−1
n+2(bn(·, s))χ0](t), (3.1)

is a well-defined polynomial of the above form for each s and n. We may write

Θn(t, s) = θ0(s) + θ1(s)t + · · · + θn+1(s)tn+1, (3.2)

where the coefficients θ0(s), . . . , θn+1(s) are the entries of the first column of the matrix 
T−1
n+2(bn(·, s)), which is real.

Theorem 3.2. A number λ = gn(s) is an eigenvalue of Tn(an) if and only if there is a 
j ∈ Z such that

(n + 1)s = πj + Hn(s),

where Hn(s) := 2 arg Θn( eis, s).

Proof. Let Pm : L2(T ) → L2(T ) be the projection defined by

Pm

∞∑
k=−∞

fkt
k :=

m−1∑
k=0

fkt
k

and recall that we may identify the range of Pm with Cm. We are looking for the values 
λ ∈ (0, Mn) for which Tn(an)X = λX has non-zero solutions X ∈ PnL

2(T ). Using 
λ = gn(s) and switching to the variable s, the previous equation becomes

Tn(an − gn(s))X = 0, (3.3)

which can be written in polynomial language as

Pn(an − gn(s))X = Pnbn(·, s)p(·, s)X = 0,

where p(t, s) = p( eiσ, s) := cos(s) − cos(σ) = −t−1/2 + cos(s) − t/2. Equivalently

(Pn+1 − P1)bn(·, s)χ1p(·, s)X = 0. (3.4)

The function X is a polynomial of degree n − 1 in the variable t, and hence we can write 
X(t) = x0 + x1t + · · · + xn−1t

n−1. The product bn(t, s)χ1(t)p(t, s)X(t) equals

x0t
−1 + (x1 − βnx0) + · · · + (xn−2 − βnxn−1)tn+1 + xn−1t

n+2, (3.5)
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where βn := 4 + β/(n + 1)2. Indeed, we have bn(t, s) = −2t−1 + 4 + 2γ2
n(s) − 2t and 

γ2
n(s) = 4 sin2(s/2) + β/(n + 1)2 = 2 − 2 cos(s) + β/(n + 1)2 by Lemma 3.1, and hence 

bn(t, s)χ1(t)p(t, s)X(t) equals

−2
(
1 − (2 + γ2

n(s))t + t2
)(

− 1
2t + cos(s) − 1

2 t
)(

x0 + x1t + · · · + xn−1t
n−1)

=
(
1 − (βn − 2 cos(s))t + t2

)(1
t
− 2 cos(s) + t

)(
x0 + x1t + · · · + xn−1t

n−1)
= x0

t
+

{
− 2 cos(s)x0 + x1 − (βn − 2 cos(s))x0

}
+ · · ·

+
{
− (βn − 2 cos(s))xn−1 − 2 cos(s)xn−1 + xn−2

}
tn+1 + xn−1t

n+2

= x0

t
+ x1 − βnx0 + · · · + (xn−2 − βnxn−1)tn+1 + xn−1t

n+2.

Equation (3.4) tells us that the coefficients of tk with k = 1, . . . , n in (3.5) are zero. We 
so arrive at the equation

bn(t, s)χ1(t)p(t, s)X(t) = x0t
−1 +(x1−βnx0)+(xn−2−βnxn−1)tn+1 +xn−1t

n+2. (3.6)

We are now ready to solve (3.3) for X. Take

Y := Pn+2bn(·, s)χ1p(·, s)X.

Since Pn+2χ1p(·, s)X = χ1p(·, s)X, we get Y = Tn+2(bn(·, s))χ1p(·, s)X or equivalently, 
T−1
n+2(bn(·, s))Y = χ1p(·, s)X. In addition, (3.6) implies that Y (t) = y0 + yn+1t

n+1 with 
y0 = x1 − βnx0 and yn+1 = xn−2 − βnxn−1. This gives

T−1
n+2(bn(·, s))Y = y0[T−1

n+2(bn(·, s))χ0](t) + yn+1[T−1
n+2(bn(·, s))χn+1](t).

Therefore

tp(t, s)X(t) = y0[T−1
n+2(bn(·, s))χ0](t) + yn+1[T−1

n+2(bn(·, s))χn+1](t). (3.7)

We now employ the previous expression to derive a relationship between s and the 
function Θn given by (3.1) which does not involve the coefficients y0 and yn+1. Consider 
the flip operator Wn given by

Wn

n−1∑
k=0

fkt
k :=

n−1∑
k=0

fn−1−kt
k.

Using the well-known identity Wn+2Tn+2(bn(·, s))Wn+2 = Tn+2(b̃n(·, s)), where ̃bn(t, s) :=
bn(t−1, s), we easily obtain

[T−1
n+2(bn(·, s))χn+1](t) = tn+1Θn(t−1, s).
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Hence (3.7) can be written as

tp(t, s)X(t) = y0Θn(t, s) + yn+1t
n+1Θn(t−1, s),

which combined with p( eis, s) = p( e−is, s) = 0 yields

0 = y0Θn(eis, s) + yn+1ei(n+1)sΘn(e−is, s),

0 = y0Θn(e−is, s) + yn+1e−i(n+1)sΘn(eis, s).

The previous linear system has non-trivial solutions if and only if its determinant is zero, 
that is,

ei(n+1)s = ± Θn(eis, s)
Θn(e−is, s) .

Finally, the theorem is a direct consequence of the previous equation together with the 
equality Θn(t, s) = Θn(t−1, s), which follows from (3.2). �

Theorem 3.2 provides us with an implicit and exact equation for the eigenvalues of 
Tn(an). However, the term Hn(s) is difficult to handle, and hence we expand it to obtain 
a simpler expression. It turns out that such an expansion depends on the collective 
behavior of n and s. We will take the argument of Θn( eis, s) in (−π, π], will denote 
by s = s∗j,n the solution of (n + 1)s = πj + Hn(s), and Theorem 5.1 will show that 
s∗j,n coincides with the sj,n introduced above. (Note that in Theorem 3.2 the choice of 
the argument is not yet specified.) Getting the asymptotics of s∗j,n requires asymptotic 
analysis of Hn(s) in the cases sn → ∞ and s2n → 0, which will eventually lead to the 
following two theorems.

Theorem 3.3. (Inner and strictly inner eigenvalues) Denote by sj,n the numbers given 
by gn(sj,n) = λj,n. Let ηinn(s) be the function (2.2), put

p0(σ) := σ, p1(σ) := ηinn(σ), p2(σ) := ηinn(σ)η′
inn

(σ),

and abbreviate πj/(n + 1) to σj,n.
(i) If j = jn → ∞, then

(n + 1)sj,n = πj + ηinn(sj,n) + Ej,n

and there is a constant C independent of n such that |Ejn,n| � C/j2
n for all sufficiently 

large n.
(ii) If j = jn → ∞, we have

sj,n = p0(σj,n) + p1(σj,n) + Fj,n

n + 1
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where |Fjn,n| � C/n2 for all sufficiently large n with a constant C independent on n.
(iii) If even j/

√
n = jn/

√
n → ∞, then

sj,n = p0(σj,n) + p1(σj,n)
n + 1 + p2(σj,n)

(n + 1)2 + Gj,n

and there is a constant C independent of n such that |Gjn,n| � C/(j2
nn) whenever jn/

√
n

is large enough.

Theorem 3.4. (Extreme eigenvalues) If j/
√
n = jn/

√
n → 0 as n → ∞, then the numbers 

sj,n given by gn(sj,n) = λj,n satisfy

(n + 1)sj,n = πj + ηext(sj,n) + Rj,n

where

ηext(s) := 2 arctan
((

1 + β
(n+1)2s2

)−1/2 sinh
√

(n + 1)2s2 + β − sin((n + 1)s)

cosh
√

(n + 1)2s2 + β − cos((n + 1)s)

)

and there is a constant C independent of n such that |Rjn,n| � Cj2
n/n whenever jn/

√
n

is sufficiently small.

We are now going to prove Theorems 3.3, 3.4 and subsequently we will prove Theo-
rems 2.1, 2.2, 2.3. The proofs require some technical preliminaries. These are the subject 
of the following section.

4. Technical matters

According to (3.1), Θn(t, s) is the solution of

Tn+2(bn(·, s))Θn(·, s) = χ0,

that is, Pn+2bn(t, s)Pn+2Θn(t, s) = Pn+2bn(t, s)Θn(t, s) = 1. In addition, Lemma 3.1
and (3.2) tell us that bn(t, s)Θn(t, s) is the polynomial −2θ0(s)t−1 + · · · − 2θn+1(s)tn+2. 
Consequently, we may actually write

bn(t, s)Θn(t, s) = −u0(s)t−1 + 1 − un+2(s)tn+2,

where u0(s) = 2θ0(s) and un+2(s) = 2θn+1(s). Since bn is bounded away from zero, we 
can solve the previous equation for Θn, obtaining

Θn(t, s) = −u0(s)t−1 + 1 − un+2(s)tn+2
= −u0(s)t−1 + 1 − un+2(s)tn+2

−1 2 .

bn(t, s) −2t + 4 + 2γn(s) − 2t
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Thus, Hn(s) = 2 arg Θn( eis, s) equals

Hn(s) = 2 arg
(

1 − u0(s)e−is − un+2(s)ei(n+2)s

bn(t, s)

)
. (4.1)

Notice now that Θn(t, s) is a polynomial of degree n +2 in the variable t. This implies 
that the zeros of the denominator above must be zeros of the numerator also. Since the 
zeros of the denominator are

t1,2 = 1 + 1
2γ

2
n(s) ± γn(s)

√
1 + 1

4γ
2
n(s), (4.2)

we arrive at the system

t−1
1 u0(s) + tn+2

1 un+2(s) = 1,

t−1
2 u0(s) + tn+2

2 un+2(s) = 1,

which, by Cramer’s rule together with the equality t1t2 = 1, gives

u0(s) = tn+2
1 − tn+2

2
t−1
1 t−1

2 (tn+3
1 − tn+3

2 )
= tn+2

1 − tn+2
2

tn+3
1 − tn+3

2
,

un+2(s) = t−1
2 − t−1

1
t−1
1 t−1

2 (tn+3
1 − tn+3

2 )
= t1 − t2

tn+3
1 − tn+3

2
. (4.3)

We can now simplify (4.1) further. From (4.2) we know that t1 and t2 are real, and 
hence by (4.3), so are u0 and un+2. In addition, Lemma 3.1 tells us that for each s ∈ [0, π], 
the function bn(·, s) is positive. This shows that the real part of the term in parentheses 
in (4.1) is

{1 − u0(s) cos(s) − un+2(s) cos((n + 2)s)}/bn(t, s),

while its imaginary part equals

{u0(s) sin(s) − un+2(s) sin((n + 2)s)}/bn(t, s).

Hence, we may take

Hn(s) = 2 arctan
(

u0(s) sin(s) − un+2(s) sin((n + 2)s)
1 − u0(s) cos(s) − un+2(s) cos((n + 2)s)

)
, (4.4)

and we will work with this choice of the argument throughout the following. See Fig. 2.
Our next goal is to expand Hn in such a way that the main term is independent 

of n. It turns out that such an expansion depends on the joint behavior of n and s. We 
therefore split the task. The following Lemmas 4.2 and 4.3 show the resulting asymptotic 
expressions for Hn in different cases. But first we need the following technical result.
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Fig. 2. The function Hn in (4.4). Left: for n = 50 and β = 0 (blue), β = 10 (red), and β = 100 (gray). 
Right: for β = 10 and n = 10 (blue), n = 20 (red), and n = 40 (gray). (For interpretation of the colors in 
the figure, the reader is referred to the web version of this article.)

Lemma 4.1. As sn → ∞, we have

t1,2 = κ±(s) + O
( 1
sn2

)
,

where t1,2 is given by (4.2) and

κ±(s) := 1 + 2 sin2(s/2) ± 2 sin(s/2)
√

1 + sin2(s/2).

In addition, t2 < 1 − s/8 for all sufficiently large n.

Proof. Note that

t1,2 = 1 + 1
2γ

2
n(s) ± γn(s)

√
1 + 1

4γ
2
n(s)

= 1 + 2 sin2
(s

2

)
+ O

( 1
n2

)
±
√{

4 sin2
(s

2

)
+ O

( 1
n2

)}{
1 + sin2

(s
2

)
+ O

( 1
n2

)}
,

and use 1 + sin2(s/2) � 1 and 4 sin2(s/2) � (4/π2)s2 to get

t1,2 = 1 + 2 sin2
(s

2

)
± 2 sin

(s
2

)√
1 + O

( 1
s2n2

)√
1 + sin2

(s
2

)√
1 + O

( 1
n2

)
+ O

( 1
n2

)

= 1 + 2 sin2
(s

2

)
± 2 sin

(s
2

)√
1 + sin2

(s
2

){
1 + O

( 1
s2n2

)}
+ O

( 1
n2

)

= κ±(s) + O
( 1
sn2

)
,

where κ±(s) = 1 + 2 sin2(s/2) ± 2 sin(s/2)
√

1 + sin2(s/2), proving the first assertion.
To prove the second assertion, take the minus sign above and write

t2 − 1 < −2 sin
(s){√1 + sin2

(s)− sin
(s)} + O

( 1
2

)

2 2 2 sn
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< −2 sin
(s

2

){√
1 + sin2

(s
2

)
+ sin

(s
2

)}−1
+ O

( 1
sn2

)
,

which in combination with 
√

1 + sin2(s/2) + sin(s/2) <
√

2 + 1 < 4 and sin(s/2) > s/π

for s ∈ [0, π], produces

t2 − 1 < −1
2 sin

(s
2

)
+ O

( 1
sn2

)
< − s

2π + O
( 1
sn2

)
.

Since sn → ∞, the error term is arbitrarily small, hence the proof is finished after 
noticing that −s/(2π) < −s/8. �
Lemma 4.2. We have Hn(s) = ηinn(s) + O(1/(s2n2)) as sn → ∞, where ηinn(s) is given 
by (2.2).

Proof. We use (4.4), which is an exact equation for Hn. But first, we need to expand 
the involved terms u0 and un+2. Note that t1t2 = 1 to obtain t2/t1 = t22. From (4.3) we 
can write

u0(s) = 1
t1

· 1 − (t2/t1)n+2

1 − (t2/t1)n+3 = t2 ·
1 − t

2(n+2)
2

1 − t
2(n+3)
2

.

Because s ∈ (0, π], we have γn(s) ∈ (0, 
√

4 + β/2) for every n � 1. Then from basic 
calculus and (4.2), we know that t2 is a decreasing function of γn(s) such that t2 ∈
(9/100, 1) for every n � 1. Consequently, limn→∞ u0(s) = t2, but this is not enough for 
our purposes. We need to obtain an accurate bound for u0(s) −t2 and proceed as follows. 
Notice that log(1 − x) < −x for x ∈ (0, 1). From Lemma 4.1 we know that t2 < 1 − s/8. 
Hence

t
2(n+2)
2 = t42e2n log(t2) = O(e2n log(1−s/8)) = O(e−sn/4),

that is, t2(n+2)
2 = O( e−sn/4).

We are ready to estimate u0. Using that t2 < 1 for every n � 1 and s ∈ (0, π], we can 
write

u0(s) = t2 · {1 + O(e−sn/4)} = t2 + O(e−sn/4). (4.5)

A similar calculation produces

un+2(s) = O(e−sn/8) as sn → ∞, (4.6)

and we have what it is necessary to prove the lemma. Combining (4.5) and (4.6) with (4.4)
we obtain
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Hn(s) = 2 arctan
(

{t2 + O(e−sn/4)} sin(s) −O(e−sn/8)
1 − {t2 + O(e−sn/4)} cos(s) −O(e−sn/8)

)

= 2 arctan
(

t2 sin(s) + O(e−sn/8)
1 − t2 cos(s) + O(e−sn/8)

)

= 2 arctan
(

t2 sin(s)
1 − t2 cos(s) + O

( 1
sesn/8

))

= 2 arctan
(

sin(s)
t1 − cos(s) + O

( 1
sesn/8

))
. (4.7)

From Lemma 4.1 we know that t1 = κ+(s) + O(1/(sn2)) where

κ+(s) = 1 + 2 sin2
(s

2

)
+ 2 sin

(s
2

)√
1 + sin2

(s
2

)
,

= 2 − cos(s) +
√

1 − cos(s)
√

3 − cos(s). (4.8)

Hence, it is easy to see that κ+(s) − cos(s) is bounded away from zero and has order 
O(s). Consequently,

sin(s)
t1 − cos(s) = sin(s)

κ+(s) − cos(s) + O(1/(sn2))

= sin(s){
κ+(s) − cos(s)

}{
1 + O(1/(s2n2))

}
= sin(s)

κ+(s) − cos(s)

{
1 + O

( 1
s2n2

)}

= sin(s)
κ+(s) − cos(s) + O

( 1
s2n2

)
. (4.9)

Finally, combining (4.7) with (4.9), we obtain

Hn(s) = 2 arctan
(

sin(s)
κ+(s) − cos(s) + O

( 1
s2n2

))

= 2 arctan
(

sin(s)
κ+(s) − cos(s)

)
+ O

( 1
s2n2

)
.

This together with (4.8) finishes the proof. �
Lemma 4.3. Assume s � ε/n for some ε > 0. Then Hn(s) = ηext(s) +O(s2n) as s2n → 0
with ηext(s) as in Theorem 3.4.

Proof. The assumption s � ε/n implies 1/n2 = O(s2) and hence

γn(s) =

√
4 sin2

(s
2

)
+ β

(n + 1)2 =
√

s2 + O(s4) + O(s2) = O(s),
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as s → 0. We begin by expanding t1,2. Due to (4.2) we can write

t1,2 = 1 ± γn(s) + 1
2γ

2
n(s) + O(γ3

n(s))

= 1 ± γn(s) + 1
2γ

2
n(s) + O(s3),

as s → 0, which implies that log(t1,2) = ±γn(s) + O(s3). We then have

tn+2
1,2 = t1,2t

n+1
1,2

= t1,2 exp{(n + 1) log(t1,2)}

= {1 ± γn(s) + O(s2)} exp
{
± (n + 1)γn(s) + O(s3n)

}
= {1 ± γn(s) + O(s2)}e±(n+1)γn(s)eO(s3n)

= {1 ± γn(s) + O(s2)}e±(n+1)γn(s)(1 + O(s3n)), (4.10)

as s → 0. A similar calculation produces

tn+3
1,2 = (1 ± 2γn(s))e±(n+1)γn(s) + O(s3n). (4.11)

We now use (4.3) to derive asymptotic expressions for u0 and un+2. By (4.10)
and (4.11), we can write

u0(s) = (1 + γn(s))e(n+1)γn(s) − (1 − γn(s))e−(n+1)γn(s) + O(s3n)
(1 + 2γn(s))e(n+1)γn(s) − (1 − 2γn(s))e−(n+1)γn(s) + O(s3n)

= tanh((n + 1)γn(s)) + γn(s)
tanh((n + 1)γn(s)) + 2γn(s) + O(s3n)

= 1 − γn(s)
tanh((n + 1)γn(s)) + 2γn(s) + O(s3n)

= 1 − γn(s)
tanh((n + 1)γn(s)) + O(s3n).

Similarly, using that

cosh((n + 1)γn(s)) = O(esn), O(s) + O(s3n) = s{O(1) + O(s2n)} = O(s),

and sinh((n + 1)γn(s)) = O( esn), we get

un+2(s) = 2γn(s) + O(s3n)
2 sinh((n + 1)γn(s)) + 4γn(s) cosh((n + 1)γn(s)) + O(s3n)

= γn(s) + O(s3n)

sinh((n + 1)γn(s)) + O(s)
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= γn(s){1 + O(s2n)}
sinh((n + 1)γn(s)){1 + O(s)}

= γn(s)
sinh((n + 1)γn(s)){1 + O(s2n)},

which because of γn(s)/ sinh((n + 1)γn(s)) = O(1/n) = O(s) can be simplified to

un+2(s) = γn(s)
sinh((n + 1)γn(s)) + O(s3n).

Note again that bn(·, s) is positive for each s ∈ (0, π]. Combining the previous expressions 
with (4.1) this time, we obtain

Hn(s) = 2 arg{1 − u0(s)e−is − un+2(s)ei(n+2)s}

= 2 arg{1 − u0(s)(1 − is + O(s2)) − un+2(s)(1 + is + O(s2))ei(n+1)s}

= 2 arg
{

γn(s)
tanh((n + 1)γn(s)) − γn(s) cos((n + 1)s)

sinh((n + 1)γn(s))

+i
(
s− γn(s) sin((n + 1)s)

sinh((n + 1)γn(s))

)
+ O(s3n)

}
.

Since s � γn(s) for sufficiently small s, this can be simplified to

Hn(s) = 2 arctan
( s

γn(s) sinh((n + 1)γn(s)) − sin((n + 1)s) + O(s2n)
cosh((n + 1)γn(s)) − cos((n + 1)s) + O(s2n)

)

= 2 arctan
({

s
γn(s) sinh((n + 1)γn(s)) − sin((n + 1)s)

}
{1 + O(s2n)}{

cosh((n + 1)γn(s)) − cos((n + 1)s)
}
{1 + O(s2n)}

)

= 2 arctan
( s

γn(s) sinh((n + 1)γn(s)) − sin((n + 1)s)
cosh((n + 1)γn(s)) − cos((n + 1)s)

)
+ O(s2n).

Finally, we need to get rid of the term γn(s). Taking into account that

s

γn(s) =
(
1 + β

(n + 1)2s2

)−1/2
+ O(s2)

(n + 1)γn(s) =
√

(n + 1)2s2 + β + O(s2),

we arrive at

Hn(s)=2 arctan
((

1 + β
(n+1)2s2

)−1/2 sinh
√

(n + 1)2s2 + β − sin((n + 1)s)

cosh
√

(n + 1)2s2 + β − cos((n + 1)s)

)
+ O(s2n),

which gives us the lemma. �
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5. Proofs of the main results

We have λj,n = gn(sj,n) with s1,n < s2,n < . . . < sn,n and Theorem 3.2 implies that 
(n + 1)sj,n − πj = Hn(sj,n) for an appropriate choice of the argument in Hn(sj,n) =
2 arg Θ( eisj,n , sj,n). In (4.4) we specified Hn(s) to take values in (−π, π]. The following 
theorem shows that this is the right choice.

Theorem 5.1. Let Hn(s) be given by (4.4). Then the equation (n + 1)s − πj = Hn(s) has 
a unique solution s = s∗j,n for all n and all j ∈ {1, 2, . . . , n}. If n is large enough, we 
have s∗j,n = sj,n for all j ∈ {1, 2, . . . , n}.

Proof. Put Fn(s) := (n + 1)s −Hn(s). Then our equation reads

Fn(s) = πj. (5.1)

From (4.4) we infer that Hn is continuous on [0, π] and that Hn(0) = Hn(π) = 0; recall 
Fig. 2. For 1 � j � n, we have Fn(0) = 0 < jπ and Fn(π) = (n + 1)π > jπ. The 
intermediate value theorem therefore tells us that (5.1) has a solution s∗j,n ∈ (0, π). It is 
obvious that s∗j,n 	= s∗k,n for j 	= k. Thus, we get at least n different solutions as j changes 
from 1 to n. By Theorem 3.2, each solution gives an eigenvalue gn(s∗j,n), and hence there 
cannot be more than n solutions. It follows that s∗j,n is the unique solution to (5.1).

It remains to show that s∗j,n = sj,n. Recall that gn is strictly monotonically increasing 
on [0, π]. Because gn(s∗j,n) is an eigenvalue, we must have s∗j,n = sk,n for some k ∈
{1, . . . , n}. Thus we only need to show the ordering s∗1,n < s∗2,n < . . . < s∗n,n.

From (1.8) with μ = 2 we deduce that λ1,n � C/(n + 1)4 with some constant C for 
all n. Thus, for all j, n we have gn(s∗j,n) � λ1,n � C/(n + 1)4. If K is large enough, then

K
(
(s∗j,n)4 + 1

(n + 1)2 (s∗j,n)2
)

� gn(s∗j,n) � C

(n + 1)4 ,

and writing s∗j,n = τj,n/(n + 1), we get τ4
j,n + τ2

j,n � C/K. This shows that there is a 
constant ε > 0 such that τj,n � ε for all j, n. In summary, s∗j,n � ε/n for all j, n.

Consider the set Ωε := {(s, n) : s ∈ (0, π), n ∈ N, sn � ε}. We want to show that 
there is an n such that Hn(s) ∈ [0, π] for all (s, n) ∈ Ωε with n > N .

Let first sn → ∞ with s ∈ (0, π). From Lemma 4.2 we know that

Hn(s) = ηinn(s) + O
( 1
s2n2

)
,

where ηinn(s) = 2 arctan(sin(s)/{κ+(s) − cos(s)}). Because sin(s)/{κ+(s) − cos(s)} > 0
for s ∈ (0, π), there is a sufficiently large M such that Hn(s) ∈ [0, π] for every (s, n) with 
s ∈ (0, π) and sn > M .
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Fig. 3. The region Ωε for ε = 1/2, M = 2, and δ = 1. The blue, red, and gray curves are the hyperbolas 
n = M/s, n = δ/s2, and n = ε/s, respectively. The light-blue and light-gray shaded regions correspond to 
the (s, n) with sn > M and s2n < δ, respectively. In this case M2/δ = 4. (For interpretation of the colors 
in the figure, the reader is referred to the web version of this article.)

Assume now that s2n → 0 with s > ε/n. Lemma 4.3 shows that

Hn(s) = ηext(s) + O(s2n)

with ηext(s) as in Theorem 3.4. To simplify the calculation, consider the new variable 
x = (n + 1)s and write ηext(s) = η̂(x) with

η̂(x) := 2 arctan
(
x(x2 + β)−1/2 sinh

√
x2 + β − sin(x)

cosh
√

x2 + β − cos(x)

)
. (5.2)

Since cosh(x) > cos(x) for x > 0, the denominator in (5.2) is positive. Because sinh(x)/x
is a strictly increasing function on (0, π) and sinh(x) > sin(x) for x > 0, we obtain

sinh
√
x2 + β√

x2 + β
>

sinh(x)
x

>
sin(x)

x

for x > 0, which implies that the numerator in (5.2) is also positive. Therefore η̂(x) ∈
(0, π) for x > 0, and we conclude that Hn(s) ∈ [0, π] for every (s, n) with s ∈ (0, π) and 
s2n < δ for some sufficiently small δ > 0.

We just proved that Hn(s) ∈ [0, π] for the (s, n) satisfying sn > M or s2n < δ with 
s > ε/n, that is, for the (s, n) ∈ Ωε lying above the hyperbola n = M/s or between 
the hyperbolas n = ε/s and n = δ/s2. This is either the entire Ωε, in which case 
Hn(s) ∈ [0, π] on all of Ωε, or the hyperbolas n = M/s and n = δ/s2 intersect. In the 
latter case, Hn(s) ∈ [0, π] on the (s, n) ∈ Ωε with n > M2/δ. See Fig. 3.

We are now ready to finish the proof. We know that (n + 1)s∗j,n −Hn(s∗j,n) = πj and 
(n + 1)s∗j+1,n −Hn(s∗j+1,n) = π(j + 1). It follows that

s∗j+1,n − s∗j,n =
π + Hn(s∗j+1,n) −Hn(s∗j,n)

,

n + 1
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and since Hn(s∗j+1,n) − Hn(s∗j,n) ∈ [−π, π], we get that s∗j+1,n � s∗j,n. Since they must 
be different, we actually obtain s∗j+1,n > s∗j,n for all sufficiently large n and all j =
1, . . . , n − 1. �
Proof of Theorem 3.3. Theorem 5.1 tells us that (n + 1)sj,n = πj + Hn(sj,n) with 
Hn(sj,n) in (−π, π) (and actually in (0, π)). It follows that nsj,n → ∞ and sj,n � cj/n

with some constant c independent of j and n. We can therefore apply Lemma 4.2 to 
conclude that

(n + 1)sj,n = πj + ηinn(sj,n) + O

(
1

n2s2
j,n

)
= πj + ηinn(sj,n) + O

(
1
j2

)
,

which proves part (i).
To prove parts (ii) and (iii), consider the function Un(s) := (n + 1)s − ηinn(s). Basic 

calculus shows that this is a strictly increasing and infinitely differentiable function on 
(0, π]. Moreover, lims→0+ Un(s) < 2 < πj and Un(π) = (n + 1)π > πj. Hence, the 
intermediate value theorem implies that Un(s) = jπ has a unique solution ŝj,n in (0, π).

Intuitively, the points sj,n and ŝj,n must be “close” to each other. To estimate the 
distance between them, we proceed as follows. We have

(n + 1)sj,n −Hn(sj,n) = πj, (n + 1)ŝj,n − ηinn(ŝj,n) = πj, (5.3)

and hence (n +1)|sj,n−ŝj,n| = |Hn(sj,n) −ηinn(ŝj,n)|. Since Hn(s) = ηinn(s) +O(1/(s2n2))
by Lemma 4.2 and since ηinn(sj,n) − ηinn(ŝj,n) = η′

inn
(ξ)(sj,n − ŝj,n), for some ξ between 

sj,n and ŝj,n, we get

(n + 1)|sj,n − ŝj,n| � M |sj,n − ŝj,n| + O

(
1

s2
j,nn

2

)

with some constant M , which implies that

|sj,n − ŝj,n| = O

(
1

s2
j,nn

3

)
= O

(
1

j2n

)
. (5.4)

To simplify the writing, we now use the abbreviation h = 1/(n + 1). From the second 
equation in (5.3) we obtain that ŝj,n = σj,n + ηinn(ŝj,n)h, where σj,n = πjh, and this 
equation can be solved by iteration as follows. We first write ŝj,n = σj,n + O(h) and 
iterate to get

ŝj,n = σj,n + ηinn{σj,n + O(h)}h
= σj,n + ηinn(σj,n)h + O(h2).

The latter equality together with (5.4) completes the proof of part (ii). A second iteration 
yields
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ŝj,n = σj,n + ηinn{σj,n + ηinn(σj,n)h + O(h2)}h
= σj,n + ηinn(σj,n)h + ηinn(σj,n)η′

inn
(σj,n)h2 + O(h3).

If j/
√
n → ∞, then

O
( 1
j2n

)
+ O(h3) = O

( 1
j2n

)
+ O

( 1
n3

)
= O

( 1
j2n

)
,

which in combination with (5.4) completes the prof of part (iii). (Notice that a third 
iteration is pointless because it will produce a new term of order O(h3).) �
Proof of Theorem 2.2. We have λj,n = gn(sj,n). Thus, with h := 1/(n + 1) the asymp-
totics of Theorem 3.3(ii) gives

λj,n = gn{σj,n + ηinn(σj,n)h + O(1/(j2n)) + O(1/n2)}
= gn(σj,n) + g′n(σj,n){ηinn(σj,n)h + O(1/(j2n)) + O(1/n2)} + O(g′′n(σj,n)/n2),

and as

gn(σj,n) = 4(1 − cos(σj,n))2 + O(j2/n4) = O(j4/n4),

g′n(σj,n) = 2 sin(σj,n){βh2 + 4(1 − cos(σj,n))} = O(j3/n3),

g′′n(σj,n) = 2(βh2 + 4) cos(σj,n) + 8(1 − 2 cos2(σj,n)) = O(j2/n2),

we arrive at the assertion. �
Proof of Theorem 2.3. Proceeding as in the previous proof but this time with the asymp-
totic expansion provided by Theorem 3.3(iii), we obtain

λj,n = gn{σj,n + ηinn(σj,n)h + ηinn(σj,n)η′
inn

(σj,n)h2 + O(h3)}
= gn(σj,n) + g′n(σj,n){ηinn(σj,n)h + ηinn(σj,n)η′

inn
(σj,n)h2}

+g′′n(σj,n)
2 ηinn(σj,n)2h2 + O(g′′′n (σj,n)h3),

which after noticing that g′′′n (σj,n) = 2 sin(σj,n){4 − βh2 − 16 cos(σj,n)} = O(j/n) and 
some straightforward computation gives the assertion. �
Proof of Theorem 3.4. From Theorem 5.1 we infer that there are positive constants ε and 
C such that ε/n � s1,n � sj,n � Cj/n for all sufficiently large n and all j ∈ {1, 2, . . . , n}. 
If j/

√
n → 0, this implies in particular that s2

j,nn = O(j2/n) converges to 0. We can 
therefore have recourse to Lemma 4.3 to obtain that

(n + 1)sj,n = πj + ηext(sj,n) + O(s2
j,nn) = πj + ηext(sj,n) + O(j2/n),
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Fig. 4. Left: The function η̂ for β = 0 (blue), β = 10 (red), and β = 20 (green). Right: The same for η̂′. (For 
interpretation of the colors in the figure, the reader is referred to the web version of this article.)

as desired. �
Proof of Theorem 2.1. We proceed following the idea of [21]. As in the proof of Theo-
rem 5.1, consider the variable xj = (n + 1)sj,n. Theorem 3.4 says

xj = πj + η̂(xj) + O(j2/n). (5.5)

Recall that j � jn and that {jn} is a sequence satisfying jn/
√
n → 0. Consider equa-

tion (5.5) without the error term, that is,

x = πj + η̂(x). (5.6)

One can show that the function η̂ is in C∞, strictly increasing with 0 < η̂′(x) � 1 − δ <

1, and bounded for x � 0. See Fig. 4. Since η̂(0) = 0 and limx→∞ η̂(x) = π/2, the 
intermediate value theorem implies that for each j � 0 the equation (5.6) has a unique 
solution Λj .

Combining (5.5) with (5.6) we obtain

|xj − Λj | � |η̂(xj) − η̂(Λj)| + O(j2/n) = |η̂′(ζj)||xj − Λj | + O(j2/n),

for some ζj between xj and Λj . Since 0 < η̂′(x) � 1 − δ < 1, we conclude that

|xj − Λj | � (1/δ)O(j2/n) = O(j2/n).

Taking into account that xj = (n + 1)sj,n we have λj,n = gn(sj,n) = gn(xj/(n + 1)). Let 
λ∗
j,n = gn(Λj/(n + 1)) and note that

|λj,n − λ∗
j,n| =

∣∣∣gn( xj

n + 1

)
− gn

( Λj

n + 1

)∣∣∣ =
∣∣∣g′n( ξj

n + 1

)∣∣∣ |xj − Λj |
n + 1

for some ξj between xj and Λj . Since g′n(s) = O(s3) + O(s/n2) as s → 0 and O(ξj) =
O(Λj) = O(j) we arrive at
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|λj,n − λ∗
j,n| = O

( ξ3
j

n3

)
O
( j2

n2

)
= O

( j5

n5

)
.

Thus, λj,n = λ∗
j,n + O(j5/n5) = gn(Λj/(n + 1)) + O(j5/n5). �

6. Numerical experiments

6.1. Inner eigenvalues

The choice jn = �√n� is the critical case because it is neither extreme nor strictly 
inner. Theorem 2.2 provides us only with a second order asymptotics. Let us nevertheless 
try the third order asymptotics of Theorem 2.3 with the function q2 given there. Thus, 
for m = 1, 2, 3 and j � jn = �√n�, let λinn(m)

j,n be the m-term approximation.

λ
inn(m)
j,n :=

m−1∑
k=0

qk(σj,n)
(n + 1)k .

As for the errors, we consider the individual absolute error

AEinn(m)
j,n := |λj,n − λ

inn(m)
j,n |,

which according to Theorem 2.2 is O(j3/n4) for m = 1 and O(j2/n4) for m = 2, 
while Theorem 2.3 suggests that it should be O(j/n4) for m = 3. We also consider the 
individual normalized errors

NEinn(1)
j,n := AEinn(1)

j,n

n4

j3 , NEinn(2)
j,n := AEinn(2)

j,n

n4

j2 , NEinn(3)
j,n := AEinn(3)

j,n

n4

j

and the individual relative errors

REinn(m)
j,n :=

|λj,n − λ
inn(m)
j,n |

|λj,n|
=

AEinn(m)
j,n

|λj,n|
. (6.1)

Finally, we compute the respective maximum errors

AEinn(m)
n := max{AEinn(m)

j,n : j � jn},

NEinn(m)
n := max{NEinn(m)

j,n : j � jn},

REinn(m)
n := max{REinn(m)

j,n : j � jn},

Figs. 5 and 6, and Table 2 show the data.
Fig. 6 tells us that the approximation λinn(m)

j,n is indeed good for the eigenvalues with 
j � jn but not acceptable for smaller j. This figure confirms Theorem 2.2 numerically 
and reveals that the range of eigenvalues with an asymptotics as in Theorem 2.3 is 
probably larger than what we call strictly inner eigenvalues.
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Fig. 5. The individual normalized inner errors NEinn(m)
j,n for selected values of j and n = 24–214. In each 

figure, from left to right j = 8, 16, 32, 64, 128, 256. The left and right figures show the case m = 2 and 
m = 3, respectively.

Table 2
The maximum relative, absolute, and normalized errors REinn(m)

n , AEinn(m)
n , and NEinn(m)

n , respectively, for 
the eigenvalues of Tn(an), m = 1, 2, 3, β = 3, and different values of n.

n REinn(1)
n AEinn(1)

n NEinn(1)
n REinn(2)

n AEinn(2)
n NEinn(2)

n REinn(3)
n AEinn(3)

n NEinn(3)
n

16 2.49×10−1 2.68×10−1 9.23×101 2.90×10−2 4.09×10−2 4.31×101 2.53×10−4 1.83×10−4 2.21×100

32 2.45×10−1 1.33×10−1 1.34×102 2.75×10−2 1.10×10−2 7.56×101 3.07×10−4 2.61×10−5 4.21×100

64 1.72×10−1 6.63×10−2 1.49×102 1.35×10−2 2.84×10−3 9.29×101 1.68×10−4 4.42×10−6 9.28×100

128 1.40×10−1 3.31×10−2 1.66×102 8.83×10−3 7.21×10−4 1.16×102 1.32×10−4 7.78×10−7 1.90×101

256 1.03×10−1 1.65×10−2 1.76×102 4.83×10−3 1.82×10−4 1.31×102 6.26×10−5 1.02×10−7 2.72×101

512 7.95×10−2 8.25×10−3 1.83×102 2.86×10−3 4.56×10−5 1.45×102 3.20×10−5 1.29×10−8 3.56×101

1024 5.68×10−2 4.13×10−3 1.87×102 1.46×10−3 1.14×10−5 1.53×102 1.23×10−5 1.62×10−9 4.14×101

2048 4.15×10−2 2.06×10−3 1.89×102 7.79×10−4 2.86×10−6 1.60×102 5.02×10−6 2.03×10−10 4.64×101

4096 2.98×10−2 1.03×10−3 1.91×102 4.00×10−4 7.15×10−7 1.64×102 1.90×10−6 2.55×10−11 4.99×101

8192 2.15×10−2 5.16×10−4 1.92×102 2.08×10−4 1.79×10−7 1.68×102 7.26×10−7 3.19×10−12 5.27×101

16384 1.53×10−2 2.58×10−4 1.93×102 1.05×10−4 4.47×10−8 1.70×102 2.63×10−7 3.98×10−13 5.46×101

6.2. Extreme eigenvalues

To employ the results in Theorem 2.1, we need the numbers Λj. Table 1 shows the 
first 12 of them. Let λext

j,n be the approximation of λj,n given by Theorem 2.1, that is,

λext

j,n := gn

( Λj

n + 1

)
,

and for the errors consider the individual absolute error

AEext

j,n := |λj,n − λext

j,n |,

which according to Theorem 2.1 is O(j5/n5) when n → ∞. As above, we also consider 
the individual normalized and relative errors,

NEext

j,n := AEext

j,n

n5

j5 , REext

j,n :=
AEext

j,n

|λj,n|
. (6.2)

Fig. 7 and Table 3 show the data. In Fig. 7 we plotted the relative errors for the first 17 
extreme eigenvalues when using the approximation given by Theorem 2.1 and, moreover, 
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Fig. 6. The log scale of the relative individual errors REinn(m)
j,n , see (6.1), for β = 3, m = 1 (blue), m = 2

(red), and m = 3 (green). The top, middle, and bottom figures correspond to n = 4096, 8192, and 16384, 
respectively. In all cases, the dashed vertical line indicates the index jn = �√n�. (For interpretation of the 

colors in the figure, the reader is referred to the web version of this article.)
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Table 3
The absolute, relative, and normalized individual extreme errors AEext

j,n, REext

j,n, and NEext

j,n, respectively, for
j = 1, 2, 10 with β = 3.
n REext

1,n AEext

1,n NEext

1,n REext

2,n AEext

2,n NEext

2,n REext

10,n AEext

10,n NEext

10,n

16 2.27×10−1 1.18×10−3 1.23×103 2.18×10−1 8.15×10−3 5.34×102 1.02×10−1 6.90×10−1 7.23×101

32 1.17×10−1 4.74×10−5 1.59×103 1.16×10−1 3.43×10−4 7.19×102 8.85×10−2 6.88×10−2 2.31×102

64 5.95×10−2 1.69×10−6 1.82×103 5.98×10−2 1.24×10−5 8.35×102 5.38×10−2 3.25×10−3 3.49×102

128 3.00×10−2 5.65×10−8 1.94×103 3.03×10−2 4.19×10−7 8.99×102 2.92×10−2 1.20×10−4 4.13×102

256 1.50×10−2 1.83×10−9 2.01×103 1.53×10−2 1.36×10−8 9.33×102 1.51×10−2 4.04×10−6 4.44×102

512 7.53×10−3 5.80×10−11 2.04×103 7.65×10−3 4.32×10−10 9.50×102 7.68×10−3 1.31×10−7 4.59×102

1024 3.77×10−3 1.83×10−12 2.06×103 3.83×10−3 1.36×10−11 9.59×102 3.87×10−3 4.15×10−9 4.67×102

2048 1.89×10−3 5.74×10−14 2.07×103 1.92×10−3 4.28×10−13 9.64×102 1.94×10−3 1.31×10−10 4.71×102

4096 9.43×10−4 1.80×10−15 2.07×103 9.59×10−4 1.34×10−14 9.66×102 9.73×10−4 4.10×10−12 4.72×102

8192 4.72×10−4 5.62×10−17 2.07×103 4.80×10−4 4.19×10−16 9.67×102 4.87×10−4 1.28×10−13 4.73×102

16384 2.36×10−4 1.76×10−18 2.07×103 2.40×10−4 1.31×10−17 9.68×102 2.44×10−4 4.01×10−15 4.74×102

also when using the approximations provided by Theorems 2.2 and 2.3 (although the 
latter two are for inner eigenvalues only). Interestingly, except for the first two or three 
eigenvalues, Theorems 2.2 and 2.3 deliver much better approximations than one would 
expect. This indicates again that the range of applicability of these two theorems is 
probably larger than supposed.

6.3. Comparison with a formula by Parter

When β = 0, our symbol an given by (1.11) does not depend on n and coincides with 
the symbol studied in [17]. There the authors used a classical theorem of Parter [11], 
which states that if a( eiσ) = (2 − 2 cos(σ))2 and λj,n are the eigenvalues of Tn(a) listed 
in non-decreasing order, then for a fixed j = 1, 2, . . .,

λj,n =
( (2j + 1)π + Ej

2(n + 3)

)4
+ o

( 1
n4

)
as n → ∞, (6.3)

where Ej is determined by the equation

tan
(1

4{(2j + 1)π + Ej}
)

= (−1)j tanh
(1

4{(2j + 1)π + Ej}
)
. (6.4)

Numerical experiments reveal that (6.3) and Theorem 2.1 (with β = 0) indeed deliver 
comparable results. Here is a proof that (6.3) can in fact be derived from Theorem 2.1. 
Take β = 0 and note that gn(s) = s4 + O(s6) as s → 0. Thus, by Theorem 2.1, we can 
write

λj,n = gn

( Λj

n + 1

)
+ O

( 1
n5

)
=

( Λj

n + 1

)4
+ O

( 1
n5

)
,

and since 1/(n + 3) = 1/(n + 1) + O(1/n2), formula (6.3) is equivalent to

λj,n =
( Λj

)4
+ O

( 1
5

)
+ o

( 1
4

)
=

( (2j + 1)π + Ej
)4

+ o
( 1

4

)
.

n + 1 n n 2(n + 1) n
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Fig. 7. For β = 3, the black stars are the log scale for the relative individual extreme errors REext

j,n, see (6.2), 
for j = 1, . . . , 17. The red triangles and green dots are the relative individual inner errors REinn(m)

j,n obtained 
with m = 2 and m = 3, respectively. The top, middle, and bottom figures correspond to n = 4096, 8192, 
and 16384, respectively. (For interpretation of the colors in the figure, the reader is referred to the web 

version of this article.)
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Consequently, to show that the main terms in the two approximations coincide, it remains 
to prove that

Λj = 1
2
(
(2j + 1)π + Ej

)
. (6.5)

This can be done as follows. For even j = 2k, equality (6.4) reads tan(u/2) = tanh(u/2)
with u = {(2j + 1)π + Ej}/2. For arbitrary v the identity

v =

2v
1 − v2 − 2v

1 + v2

1 + v2

1 − v2 − 1 − v2

1 + v2

holds. Taking v = tan(u/2) = tanh(u/2) and using the half-angle identities

sin(u) = 2 tan(u/2)
1 + tan2(u/2)

, cos(u) = 1 − tan2(u/2)
1 + tan2(u/2)

,

sinh(u) = 2 tanh(u/2)
1 − tanh2(u/2)

, cosh(u) = 1 + tanh2(u/2)
1 − tanh2(u/2)

,

we obtain

tan(u/2) =

2 tanh(u/2)
1 − tanh2(u/2)

− 2 tan(u/2)
1 + tan2(u/2)

1 + tanh2(u/2)
1 − tanh2(u/2)

− 1 − tan2(u/2)
1 + tan2(u/2)

= sinh(u) − sin(u)
cosh(u) − cos(u) .

Applying the arctan function we arrive at

u

2 = πk + arctan
(

sinh(u) − sin(u)
cosh(u) − cos(u)

)

for some k ∈ Z. The last equation can be written in terms of η̂ as u = 2πk+ η̂(u), that is, 
u = Λ2k. Comparing magnitudes we finally get Λ2k = Λj , which proves (6.5) for even j. 
The case where j is odd can be disposed of analogously.
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