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Abstract We study the individual behavior of the eigenvalues of the laplacian 
matrices of the cyclic graph of order n, where one edge has weight α ∈ C., with 
Re(α) > 1., and all the others have weights 1. This paper is a sequel to two previous 
ones where we considered Re(α) ∈ [0, 1]. and Re(α) < 0.. Now, we prove that 
for Re(α) > 1. and n > Re(α)/Re(α − 1)., one eigenvalue is greater than 4 while 
the others belong to [0, 4]. and are distributed as the function x #→ 4 sin2(x/2).. 
Additionally, we prove that as n tends to ∞., the outlier eigenvalue converges 
exponentially to 4 Re(α)2/(2 Re(α)−1).. We give exact formulas for half of the inner 
eigenvalues, while for the others we justify the convergence of Newton’s method and 
the fixed-point iteration method. We find asymptotic expansions, as n tends to ∞., 
both for the eigenvalues belonging to [0, 4]. and the outliers. We also compute the 
eigenvectors and their norms. 
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1 Introduction 

For every natural n ≥ 3. and every α . in C., we consider the n × n. complex laplacian 
matrix Lα,n . with the following structure: 

. Lα,6 =





1 + α −1 0 0 0 −α

−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−α 0 0 0 −1 1 + α





.

If α . is real, Lα,n . is the laplacian matrix of Gα,n ., where Gα,n . is the cyclic graph of 
order n, where the edge between the vertices 1 and n weighs α ., and all other edges 
weigh 1. See [15] for the general theory on laplacian matrices. In Fig. 1, we show  
the case n = 6.. The eigenvalues and eigenvectors of Lα,n . are crucial to solve the 
heat and wave equations on Gα,n .. Moreover, matrices of the form 2In − Lα,n . are 
related to counting the paths in a cyclic graph with certain loops [5]. 

The matrices Lα,n . can be considered as tridiagonal Toeplitz matrices with 
perturbations in the corners (1, 1)., (1, n)., (n, 1). and (n, n).. They can also be viewed 
as periodic Jacobi matrices. Some matrices of these classes and their applications 
were studied in [2–4, 6–8, 10, 11, 14, 16, 17, 19–21]. 

The present paper is a continuation of [12, 13]. In [12], we proved that for every 
α . in C. the characteristic polynomial of Lα,n ., defined by Dα,n(λ) := det(λI −Lα,n)., 
equals the characteristic polynomial DRe(α),n . of LRe(α),n .. This implies that the 
eigenvalues of Lα,n . only depend on Re(α).. Therefore, to understand the behavior 
of the eigenvalues, it is sufficient to consider the case where α ∈ R. and the 
corresponding matrices Lα,n . are real and symmetric. So, for every α . in C., the  
eigenvalues of Lα,n . are real, and we enumerate them as follows: 

. λα,n,1 ≤ λα,n,2 ≤ . . . ≤ λα,n,n.

1 

23 

4 

5 6 

1 

1 

1 

1 

1 

Fig. 1 Graph Gα,6 .
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It is a very well-known fact that the eigenvalues of the n× n. tridiagonal Toeplitz 
matrix, with values −1, 2,−1. in the nonzero diagonals, are the numbers g(jπ/(n+
1))., j = 1, . . . , n., where g is defined by

.g(x) := 4 sin2 x

2
(x ∈ [0,π ]). (1) 

By the Cauchy interlacing theorem (see, e.g., [18, Theorem 4.2]), the eigenvalues 
of Lα,n . are also asymptotically distributed by g on [0,π ]., as  n tends to infinity. 
This is also a simple consequence of the theory of generalized locally Toeplitz 
sequences [9]. 

In [12], we studied the individual behavior of the eigenvalues of the matrices Lα,n . 

for α . in (0, 1).. In that case, we showed that the eigenvalues of Lα,n . belong to [0, 4].. 
We solved the characteristic equation by numerical methods and derived asymptotic 
formulas for all eigenvalues. In [13], we considered the case where α < 0.. In that 
scenery, we proved that if n > (α − 1)/α . then the minimal eigenvalue λα,n,1 . goes 
out of the interval [0, 4].; moreover, the sequence (λα,n,1)n>(α−1)/α . strictly decreases 
and converges exponentially to 4α2/(2α − 1).. 

In this paper, we consider the case where α > 1. (or, more generally, Re(α) > 1.). 
This means that the interaction between the vertices 1 and n is stronger than the 
interactions between the other neighbors in the c ycle.

It turns out that, if n is even or if n is odd and satisfies n > α/(α − 1)., then the 
maximal eigenvalue λα,n,n . is greater than 4, while the others belong to the interval 
[0, 4]. and behave similarly to the eigenvalues of Lα,n . when 0 < α < 1., as discussed 
in [12]. 

We use the phrase “inner eigenvalues” for the eigenvalues belonging to the 
clustering set [0, 4]., and “outlier eigenvalue” for the one that does not belong to 
this set. See also our general definition of outlier eigenvalue in [13]. 

We show that if α > 1., then the sequence of outlier eigenvalues (λα,n,n)n≥3 . 

converges exponentially to the number $α := 4α2/(2α − 1).. The major difference 
to the previous paper [13] is that the sequence of the outliers approaches the limit 
value from both directions: 

. sign(λα,n,n − $α) = (−1)n
(
n >

α

α − 1

)
. (2) 

The main results of this paper are stated in Sect. 2, while the majority of the 
content is dedicated to the corresponding proofs: we represent the characteristic 
polynomial in convenient forms and show the localization of the eigenvalues 
(Sect. 3), we study the asymptotic behavior of the inner eigenvalues and guarantee 
their computation with the Newton method (Sect. 4), then we focus our attention on 
the last eigenvalue λα,n,n . (Sect. 5) and analyze its asymptotic behavior separately 
for both odd (Sect. 6) and even values of n (Sect. 7). Finally, we calculate the norms 
of the eigenvectors (Sect. 8) and show some numerical experiments (Sect. 9).
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2 Main Results 

As will be stated in Proposition 3.1, for every α ∈ C. we have that Dα,n = DRe(α),n .. 
So, unless specified otherwise, we consider α > 1.. 

We begin our analysis with the localization of the eigenvalues. For this purpose, 
define 

.%α := α − 1
α

, (3) 

.$α := 4α2

2α − 1
, i.e., $α = 4

1 − %2
α

. (4) 

Notice that 0 < %α < 1. and $α > 4.. Also, for every  j in {1, . . . , n}., we put 

.dn,j := (j − 1)π
n

. (5) 

Theorem 2.1 (Localization of Eigenvalues) Let n ≥ 3.. Then λα,n,1 = 0.. For every 
j with 2 ≤ j ≤ n − 1., 

. g
(
dn,j

)
< λα,n,j < g

(
dn,j+1

)
(j odd),

λα,n,j = g
(
dn,j+1

)
(j even).

Furthermore, the localization of λα,n,n . depends on n: 

(1) if n < %−1
α . and n is odd, then g(dn,n) < λα,n,n < g(π) = 4.; 

(2) if n = %−1
α . and n is odd, then λα,n,n = 4.; 

(3) if n is odd and n > %−1
α ., then 4 < λα,n,n < $α .; 

(4) if n is even, then $α < λα,n,n ≤ 4 + 2α .. 

According to Theorem 2.1, the eigenvalues λα,n,j . with even indices j do not 
depend of α .. This theorem also implies that the eigenvalues are asymptotically 
distributed as the function g on [0,π ].: 

. lim
n→∞

#
{
j ∈ {1, . . . , n} : λα,n,j ≤ u

}

n
= µ({x ∈ [0,π ] : g(x) ≤ u})

π
. (6) 

Here, µ. is the Lebesgue measure. 
Statements (3) and (4) of Theorem 2.1 mean that for n large enough, we have 

two different localizations of the largest eigenvalue λα,n,n . depending of the parity 
of n. 

If n is odd, then the outlier eigenvalues of Lα,n .and L1−α,n .are related by λα,n,n =
4 −λ1−α,n,1 . (Proposition 6.1). Therefore, in the analysis of λα,n,n . for odd n, we can 
proceed very similarly to [12].
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However, for even values of n, the equation for λα,n,n . has a quite different form, 
see Theorem 2.2. 

Motivated by Theorem 2.1, we use  g defined by (1) as a change of variable in the 
characteristic equation when λα,n,j ∈ [0, 4]. and set 

.zα,n,j := g̃−1(λα,n,j ), (7) 

where g̃ : [0,π ] → [0, 4]. is a restriction of g. 
To state the main equation for inner eigenvalues, we define the function 

ηα : [0,π ] → R. by 

.ηα(x) := 2 arctan
(
%α tan

x

2

)
, i.e., ηα(x) = 2 arctan

(
α − 1

α
tan

x

2

)
. (8) 

Since %α . is positive, ηα . is positive, strictly increasing and takes values on [0,π ].. 
Theorem 2.2 (Main Equation for Inner Eigenvalues) Let j be odd with 3 ≤ j ≤
n − 1.. Then the number zα,n,j . is the unique solution in [0,π ]. of the equation 

.x = dn,j +
ηα(x)

n
. (9) 

The same Eq. (9) also holds for zα,n,n .,  if  n is odd and n < %−1
α .. 

Now, we need a suitable change of variable associated to λα,n,n .. Thus, define 
g+ : [0,∞) → [4,∞). by 

.g+(x) := 2 + 2 cosh(x) = 4 cosh2 x

2
= 4 + 4 sinh2 x

2
. (10) 

Let also 

.Nα := max{3, )%−1
α * + 1}. (11) 

So, if n ≥ 4. is even or n ≥ Nα . is odd, then we use (10) as a change of variable and 
put 

.sα,n := g−1
+ (λα,n,n). (12) 

In Fig. 2 we have glued together g and x #→ g+(x − π). into one spline. 
Theorem 2.1 says that for every n ≥ Nα ., λα,n,n . is in a neighborhood of $α ., thus 

we define 

.ωα := g−1
+ ($α) = log(2α − 1). (13)
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Fig. 2 Plot of g (blue), plot of x #→ g+(x − π). (green), points zα,n,j . and sα,n ., and the  
corresponding values of λα,n,j ., for α = 3/2. and n = 8.. The red labels on the horizontal axis 
are jπ/n. 

To get the main equation for the outlier eigenvalue, we define the real-valued 
functions (α,n . by 

. (α,n(x) :=
{

2 arctanh
(
%α tanh nx

2

)
, if n ≥ 3, n is odd, x ∈ [0,+∞),

2 arctanh
(
%α coth nx

2

)
, if n ≥ 4, n is even, x ∈ [ωα,+∞).

(14) 

For every n ≥ 3. and every x ≥ ωα ., 

. %α coth
nx

2
< %α coth

x

2
≤ %α coth

ωα

2
= 1,

hence (α,n . is well defined. The two cases in (14) can be joined by elevating 
tanh(nx/2). to the power (−1)n+1 .. 

Theorem 2.3 (Main Equation for the Outlier Eigenvalue) If n is odd and n >

%−1
α ., then sα,n . is the unique solution in (0,ωα). of the equation 

.x = (α,n(x). (15) 

If n is even, then sα,n . is the unique solution in (ωα,+∞). of the Eq. (15). 

To get asymptotic expansions for the inner eigenvalues, we introduce the function 
)α,n : [0,π ] → R. by 

.)α,n(x) := g(x)+ g+(x)ηα(x)

n
+ g+(x)ηα(x)η

+
α(x)+ 1

2g
++(x)ηα(x)

2

n2 .
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Then, for all n ≥ Nα . and all odd j with 3 ≤ j ≤ n − 1., we define λ
asympt
α,n,j . by 

.λ
asympt
α,n,j := )α,n(dn,j ). (16) 

Theorem 2.4 (Asymptotic Expansion of Inner Eigenvalues) There exists 
C1(α) > 0. such that for every n ≥ Nα ., 

. max
3≤j≤n−1

j odd

∣∣∣λα,n,j − λ
asympt
α,n,j

∣∣∣ ≤ C1(α)

n3 . (17) 

To state the asymptotic expansion for λα,n,n ., we introduce the following num-
bers: 

.

βα,1 := 16α2(α − 1)2

(2α − 1)2 , βα,2 := −64α3(α − 1)3

(2α − 1)3 ,

βα,3 := 32α2(1 − α)2(2α2 − 2α + 1)
(2α − 1)3 .

(18) 

Equivalently, 

.βα,1 = 16%2
α

(1 − %2
α)

2 , βα,2 = − 64%3
α

(1 − %2
α)

3 , βα,3 = 32%2
α(%

2
α + 1)

(1 − %2
α)

3 . (19) 

Now, we define λ
asympt
α,n,n . by 

.λ
asympt
α,n,n := $α + (−1)nβα,1e

−nωα + βα,2ne
−2nωα + βα,3e

−2nωα . (20) 

Of course, e−nωα . can also be written as 1/(2α − 1)n .. 

Theorem 2.5 (Asymptotic Expansion of the Last Eigenvalue) As n → ∞.,  the  
extreme eigenvalue λα,n,n . of Lα,n . converges exponentially to $α .. More precisely, 
there exists C2(α) > 0. such that for every n ≥ Nα ., 

.

∣∣∣λα,n,n − λ
asympt
α,n,n

∣∣∣ ≤ C2(α)n
2e−3nωα . (21) 

So, in the case when α > 1. and n is large enough, the maximal eigenvalue goes 
out of [0, 4]. and converges rapidly to the number $α > 4.. While, the rest behaves 
asymptotically as the function g on [0,π ].. The “right spectral gap” λα,n,n−λα,n,n−1 . 

converges to $α − 4.. 
Our last analysis focuses on the eigenvectors and their norms. Similarly to 

the situation with the eigenvalues, we have to separate the case λ = 0., the  
“trigonometric case” (0 < λ ≤ 4.), and the “hyperbolic case” (λ > 4.).
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Theorem 2.6 (Eigenvectors for Re(α) > 1.) Let α ∈ C.with Re(α) > 1.and n ≥ 3.. 
Then, Lα,n . has the following eigenvectors. 

1. [1,  .  .  .  , 1], . is an eigenvector associated to the eigenvalue λα,n,1 = 0.. 
2. For every j , 2 ≤ j ≤ n − 1., the vector vα,n,j = [vα,n,j,k]nk=1 . with the following 

components is an eigenvector associated to λα,n,j .: 

.vα,n,j,k := sin(kzα,n,j )−(1−α) sin((k−1)zα,n,j )+α sin((n−k)zα,n,j ). (22) 

The same formula (22) also works for j = n.,  if  n is odd and n ≤ %−1
Re(α) .. 

3. If n is odd and n > %−1
Re(α) .,  or  n is even, then the vector vα,n,n = [vα,n,n,k]nk=1 . 

with the following components is an eigenvector associated to λα,n,n .: 

. 
vα,n,n,k := (−1)k

[
(−1)nα sinh((n − k)sα,n)+ (1 − α) sinh((k − 1)sα,n)

+ sinh(ksα,n)
]
.

(23) 

Finally, to present the asymptotic behavior of the norms of the eigenvectors given 
by (22), we need the following auxiliar function: for every x in [0,π ]., we define 

. να(x) :=
1 − Re(α)

2
g(x)+ Re(α)

2
g(ηRe(α)(x))+

|α|2 − Re(α)
2

g(x − ηRe(α)(x)).

(24) 

Theorem 2.7 (Norms of Eigenvectors for Re(α) > 1.) Let α ∈ C.with Re(α) > 1. 

and n ≥ NRe(α) .. 

1. If j is even and 2 ≤ j ≤ n − 1., then 

.‖vα,n,j‖2 = |α − 1|
√

2n sin
jπ

2n
. (25) 

2. If j is odd and 3 ≤ j ≤ n − 1., then as n → ∞. 

.‖vα,n,j‖2 =
√

να(dn,j )n+Oα

(
1√
n

)
, (26) 

with Oα

(
1/

√
n
)
. uniformly on j . 

3. As n → ∞., 

.‖vα,n,n‖2 = |α|
2
√

2 Re(α)(Re(α) − 1)
enωRe(α) +Oα(n). (27) 

In numerical computation of the eigenvectors, it is convenient to divide the 
expressions given in Theorem 2.6 by the norms’ approximations from Theorem 2.7.
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3 The Characteristic Polynomial and Eigenvalues’ 
Localization 

Recall that we denote the characteristic polynomial det(λI − Lα,n). by Dα,n(λ).. 
Aditionally, %α ., ωα . are defined by (3), (13). 

For every m ≥ 0., let  Tm . and Um . the m-th degree Chebyshev polynomials of the 
first and second kind, respectively. 

By cofactor expansion, it is easy to prove the following proposition. 

Proposition 3.1 (Characteristic Polynomial of Lα,n . for Complex α .) For n ≥ 3. 

and α ∈ C., 

. Dα,n(λ) = (λ − 2 Re(α))Un−1

(
λ − 2

2

)

− 2 Re(α)Un−2

(
λ − 2

2

)
+ 2(−1)n+1 Re(α). (28) 

Equivalently, 

.

Dα,n(λ) = Un

(
λ − 2

2

)
+ 2(1 − Re(α))Un−1

(
λ − 2

2

)

+ (1 − 2 Re(α))Un−2

(
λ − 2

2

)
+ 2(−1)n+1 Re(α).

(29) 

The next proposition is similar to [12, Proposition 14], but here we use the change 
of variable λ = t2 . instead of λ = 4 − t2 .. 

For n ≥ 3. define 

.pn(t) :=
{
Un−1(t/2), if n is even,

Tn(t/2), if n is odd,
. (30) 

qα,n(t) :=
{
(1 − α) t 2Tn

(
t 
2

)
+ α t2−4 

4 Un−1
(
t 
2

)
, if n is even, 

(1 − α) t 2Un−1
(
t 
2

)
+ αTn

(
t
2

)
, if n is odd.

(31) 

Proposition 3.2 For every α . in R., every n ≥ 3. and every t in C., 

.Dα,n(t
2) = 4pn(t)qα,n(t). (32) 

Proof Let w = (t2 − 2)/2., i.e., t2 = 2w + 2.. Then, (28) takes the following form: 

.Dα,n(2w + 2) = 2
(
(w + 1 − α)Un−1 (w) − αUn−2 (w)+ (−1)n+1α

)
. (33)
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Let n = 2m.. We apply U2m−2(w) = −U2m(w)+ 2wU2m−1(w). on (33), obtaining 

. Dα,2m(2w + 2) = 2
(
αU2m(w)+ (w + 1 − α − 2αw)U2m−1(w) − α

)
.

Now, we use the identities 

. U2m−1(w) = 2Um−1(w)Tm(w),

U2m(w) = 2wUm−1(w)Tm(w)+ 2T 2
m(w) − 1,

U2m(w) − U2m−1(w)+ 1 = 2(w2 − 1)U2
m−1(w),

deriving 

. Dα,2m(2w + 2) = 4(w + 1)Um−1(w)
(
(1 − α)Tm(w)+ α(w − 1)Um−1(w)

)
.

Considering the relations 

. T2m

(
t

2

)
= Tm

(
t2 − 2

2

)
, U2m+1

(
t

2

)
= tUm

(
t2 − 2

2

)
,

we obtain that the characteristic polynomial is the product of the polynomials (30) 
and (31). 

If n = 2m+ 1., the analysis is similar. /0
Remark 3.3 If n ≥ 3. is odd, then the polynomial qα,n . coincides with the 
polynomial q1−α,n . written in [13]. 

We will apply the following elementary identities: 

. Tn

(
sin

x

2

)
= (−1)

n
2 cos

nx

2
, Un

(
sin

x

2

)
= (−1)

n
2

cos (n+1)x
2

cos x
2

(n is even),

(34) 

. Tn

(
sin

x

2

)
= (−1)

n−1
2 sin

nx

2
, Un

(
sin

x

2

)
= (−1)

n−1
2

sin (n+1)x
2

cos x
2

(n is odd).

(35) 

Then, using the change of variable t = 2 sin(x/2). in (30) and (31) yields 

.pn

(
2 sin

x

2

)
=





(−1)

n
2 +1 sin nx

2
cos x

2
, if n is even,

(−1)
n−1

2 sin nx
2 , if n is odd.

. (36)
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qα,n

(
2 sin  

x 
2

)
= 


 

 
(−1) 

n 
2
(
(1 − α) sin x 

2 cos nx 
2 + α cos x 

2 sin nx 
2

)
, if n is even, 

(−1) 
n−1 

2 

cos x 
2

(
(1 − α) sin x 

2 cos nx 
2 + α cos x

2 sin nx
2

)
, if n is odd.

(37) 

So, (32) becomes 

. Dα,n(g(x)) = (−1)n+1 4 sin x
2 sin nx

2

cos x
2

(
(1 − α) cos

nx

2
+ α

sin nx
2

sin x
2

cos
x

2

)
.

(38) 

After the change of variable t = 2 cosh(x/2)., formula  (32) transforms to 

. 

Dα,n(g+(x)) = 4 cosh
x

2

sinh nx
2

sinh x
2

(
(1 − α) cosh

nx

2
+ α

sinh x
2 sinh nx

2

cosh x
2

)

(n is even),

Dα,n(g+(x)) = 4 cosh
x

2
cosh

nx

2

(
(1 − α)

sinh nx
2

sinh x
2

+ α
cosh nx

2

cosh x
2

)
(n is odd).

(39) 

Proposition 3.4 (Trivial Eigenvalues of Lα,n .) For every n ≥ 3. and every even j 
with 0 ≤ j ≤ n − 1., the number g(jπ/n). is an eigenvalue of Lα,n .. 

Proof These eigenvalues come from the factor pn . in the decomposition (32). 
Indeed, the change of variable λ = (2 sin(x/2))2 . yields the factor pn (2 sin(x/2)).. 
According to (36), this expression vanishes for x = 2kπ/n., where k is an integer 
and 0 ≤ k ≤ (n − 1)/2.. /0
Lemma 3.5 If n is even, then limt→+∞ qα,n(t) = +∞.. 

Proof From the recurrent definition of Chebyshev polynomials, the leading term of 
Tn(t/2). is (1/2)tn ., and the leading term of Un−1(t/2). is tn−1 .. Therefore, by (31), the  
leading term of qα,n(t). is (1/4)tn+1 .. So, the leading coefficient is strictly positive, 
which implies the result. /0

For every j with 1 ≤ j ≤ n., we define 

.In,j :=
(
(j − 1)π

n
,
jπ

n

)
= (dn,j , dn,j+1). (40) 

Proof of Theorem 2.1 For 1 ≤ j ≤ n − 1., the proof is similar to the proof of [12, 
Theorem 1]. In particular, for odd j , we use Proposition 3.4.
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1. If n is odd and satisfies n < %−1
α ., then, using (37), it is easy to see that 

qα,n(2 sin(x/2)). changes of sign in In,n .. Indeed, qα,n(2 sin(dn,n/2)) = −1., and 

. lim
x→π−

qα,n

(
2 sin

x

2

)
= −(n(1 − α)+ α) = (α − 1)(n − %−1

α ).

2. If n is odd and satisfies n = %−1
α ., then qα,n(2) = (1 − α)n + α ., hence λ = 4. is 

an eigenvalue of Lα,n .. 
3. If n ≥ 3. is odd and n > %−1

α ., then qα,n(t). takes values of opposite signs at the 
ends of the interval [2, rα + r−1

α ]. where rα :=
√

2α − 1.: 

. qα,n(2) = (1 − α)n+ α < 0, qα,n(rα + r−1
α ) = r2

α + 1
2

r−n
α > 0.

Then, 

. 4 < λα,n,n <

(
rα + 1

rα

)2

= $α.

4. For every even n ≥ 4., qα,n . changes its sign in the interval [rα + r−1
α ,+∞).. 

Indeed, limt→+∞ qα,n(t) = +∞. by Lemma 3.5, whereas 

. qα,n(rα + r−1
α ) = −1

4
(r2

α + 1)
(
rn+1
α + r−(n+1)

α

)
< 0.

Moreover, by the Gershgorin disks theorem (see, e.g., [18, Theorem 2.1]), the 
eigenvalues are bounded from above by 4 + 2α .. Thus, 

. $α =
(
rα + 1

rα

)2

≤ λα,n,n ≤ 4 + 2α.

Items 1, 2, and 3 could also be derived from [13, Lemmas 3.3, 3.4], taking into 
account Remark 3.3. /0

4 Inner Eigenvalues 

In this section we deal with the inner eigenvalues. The proofs of the upcoming 
propositions are very similar, if not identical, to the proofs given in [12, 13]. Recall 
that %α ., ηα . are defined by (3), (8). 

Proof of Theorem 2.2 If λ ∈ (0, 4)., we use the change of variable λ = g(x)., with 
x ∈ (0,π).. So, Dα,n(g(x)). transforms into (38). Equivalently, we apply (32) with
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π 

π 

0 z3 z5 z7 π 

π 

0 z3 z5 z7 

Fig. 3 Plot of ηα . (blue) and the left-hand side of (42) (green) for α = 3/2., n = 8. (left) and α = 4., 
n = 9. (right) 

t = 2 sin(x/2).. Then, Dα,n(g(x)) = 0. reduces to qα,n(2 sin(x/2)) = 0., which is 
equivalent to 

. tan
nx

2
= %α tan

x

2
. (41) 

In particular, for odd j with 3 ≤ j ≤ n − 1., the solution zα,n,j . belonging to In,j . 

satisfies (41). /0
Equation (9) from Theorem 2.2 can be rewritten in the form 

.nx − (j − 1)π = ηα(x). (42) 

Figure 3 shows ηα . and the left-hand side of (42) for a couple of examples. 
The first two derivatives of ηα . are 

.η+
α(x) =

2%α

1 + %2
α + (1 − %2

α) cos(x)
, . (43) 

η++
α(x) =

2%α(1 − %2 
α) sin(x) 

(1 + %2 
α + (1 − %2 

α) cos(x))2 . (44) 

Proposition 4.1 and Theorem 4.2 follow directly from the properties of ηα ., similarly 
to [12, Propositions 21 and 22].
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Proposition 4.1 Each derivative of ηα . is a bounded function on (0,π).. In particu-
lar, 

. sup
0<x<π

|η+
α(x)| = %−1

α , sup
0<x<π

|η++
α(x)| ≤ %−2

α − 1
2

.

Recall that Nα . is defined by (11), and that for every j , the numbers dn,j ., zn,j . are 
defined by (5) and (7), respectively. 

Theorem 4.2 Let n ≥ Nα ., j be odd, 3 ≤ j ≤ n − 1.. Then, the function x #→
dj + ηα(x)/n. is a contraction on cl(In,j )., and its fixed point is zα,n,j .. 

In [12, Proposition 24], we proved some simple facts about the convergence of 
Newton’s method for convex functions. Now we are going to state without proofs 
some similar facts for concave functions (see also [12, Remark 27]). Assume that 
a, b ∈ R. with a < b.; f is differentiable and f + > 0. on [a, b].; there exists c in [a, b]. 
such that f (c) = 0.; y(0) . is a point in [a, b]. and the sequence (y(m))∞m=0 . is defined 
(when possible) by the recurrence relation 

.y(m+1) = y(m) − f
(
y(m)

)

f + (y(m)
) . (45) 

Proposition 4.3 (Linear Convergence of Newton’s Method for Concave Func-
tions) If f is concave on [a, b]., a ≤ y(0) ≤ c., then y(m) . belongs to [a, c]. for every 
m ≥ 0., the sequence (y(m))∞m=0 . increases and converges to c, with 

.c − y(m) ≤ (b − a)

(
1 − f +(b)

f +(a)

)m

. (46) 

For every n ≥ 4. and every j odd with 3 ≤ j ≤ n., we define hα,n,j : cl(In,j ) →
R. by 

. hα,n,j (x) := nx − (j − 1)π − ηα(x).

Theorem 4.4 (Convergence of Newton’s Method Applied to hα,n,j .) Let n ≥ Nα ., 
j be odd, 3 ≤ j ≤ n − 1. and y

(0)
α,n,j = dn,j .. Define the sequence (y

(m)
α,n,j )

∞
m=0 . by the 

recursive formula 

.y
(m)
α,n,j := y

(m−1)
α,n,j −

hα,n,j

(
y
(m−1)
α,n,j

)

h+
α,n,j

(
y
(m−1)
α,n,j

) (m ≥ 1). (47)
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Then (y
(m)
α,n,j )

∞
m=0 . is well defined and converges to zα,n,j ., and the convergence is at 

least linear: 

.zα,n,j − y
(m)
α,n,j ≤ π

n

(
%−2

α − 1

%−1
α n − 1

)m

. (48) 

Moreover, if n ≥ 2Nα ., then the convergence is quadratic, and 

.zα,n,j − y
(m)
α,n,j ≤ π

n

(
π%−2

α

2n2

)2m−1

. (49) 

Proof Formulas (43) and (44) for η+
α . and η++

α . imply that h+
α,n,j > 0. and h++

α,n,j < 0. 

on cl(In,j ).. Moreover, y(0)α,n,j = dn,j < zα,n,j < dn,j+1 .. So, the assumptions of 
Proposition 4.3 are satisfied. Here are rough estimates of the derivatives of hα,n,j . at 
the extremes of In,j .: 

. n − %α = h+
α,n,j (0) ≥ h+

α,n,j (dn,j ) ≥ h+
α,n,j (dn,j+1) ≥ h+

α,n,j (π) = n − 1
%α

.

Therefore, 

. 1 −
h+

α,n,j (dn,j+1)

h+
α,n,j (dn,j )

≤ 1 − n − %−1
α

n − %α
= %−2

α − 1

n%−1
α − 1

,

and we obtain (48). 
Finally, if n ≥ 2Nα ., then 

. 
π

n
·

max
0≤x≤π

|h++
α,n,j (x)|

2 min
0≤x≤π

|h+
α,n,j (x)|

≤
π max

0≤x≤π
|η++

α(x)|

2n
(
n − max

0≤x≤π
|η+

α(x)|
) ≤ π(%−2

α − 1)

4n(n − %−1
α )

≤ π%−2
α

2n2 < 1,

which implies the quadratic convergence with upper estimate (49); see, e.g., [1, 
Sect. 2.2] or [12, Proposition 26]. /0
Proposition 4.5 There exists C1(α) > 0. such that for every n ≥ 3. and every j odd 
with 3 ≤ j ≤ n − 1., 

. zα,n,j = dn,j +
ηα

(
dn,j

)

n
+ ηα

(
dn,j

)
η+

α

(
dn,j

)

n2 + rα,n,j ,

where |rα,n,j | ≤ C1(α)
n3 .. 

Proof of Theorem 2.4 Substituting (4.5) into g and using Taylor expansion of g 
around dn,j ., we obtain the asymptotic expansion (16) with error bound (17). /0
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5 Transformation of the Characteristic Equation for the Last 
Eigenvalue 

Recall that %α ., Nα ., ωα . are defined by (3), (11), (13), respectively. 

Proof of Theorem 2.3 If λ ∈ (4,∞)., we make the change of variable λ =
g+(x). with x ∈ (0,∞).. In other words, we use (32) with t = 2 cosh(x/2).. 
Then, pn(2 cosh(x/2)) 1= 0., and equation Dα,n(g+(x)) = 0. is equivalent to 
qα,n(2 cosh(x/2)) = 0., which takes the following form: 

. tanh
nx

2
= 1

%α
tanh

x

2
(n is odd), . (50) 

tanh 
nx 
2 

= %α coth 
x 
2 

(n is even). (51) 

By Theorem 2.1, if  n is odd and n > %α ., then (50) has a unique solution on (0,ωα).. 
If n is even and n ≥ 4., then (51) has a unique solution on (ωα,∞).. We apply arctanh. 

to both sides of the Eqs. (50) and (51), and rewrite them as (15). /0

6 Last Eigenvalue with Odd n 

In this section, we suppose that n is odd and n ≥ Nα ., and we study the behavior of 
λα,n,n . and sα,n . which are related by (12), i.e., λα,n,n = g+(sα,n).. 

The main idea of this section is to exploit the symmetry between the last 
eigenvalue of Lα,n . and the first eigenvalue of L1−α,n .. Since α > 1., the “dual” 
parameter α+ := 1 − α . satisfies α+ < 0., and the matrices Lα+,n . with α+ < 0. were 
studied in [13]. 

As we showed in [13, proof of Theorem 2.2], λα+,n,1 . can be computed as 
g−(sα+,n). where g−(x) := −4 sinh2(x/2). and sα+,n . is the unique solution of 

. tanh
(nx

2

)
= %α+ tanh

(x
2

)
. (52) 

Proposition 6.1 Let n be odd such that n ≥ Nα .. Then λα,n,n = 4 − λ1−α,n,1 .. 

Proof Let α+ := 1 − α .. Notice that %α+ = %−1
α .. Therefore, Eqs. (50) and (52) 

coincide. They have the same solutions: 

.sα,n = sα+,n. (53) 

Finally, 

.4 − λα+,n,1 = 4 − g−(sα+,n) = g+(sα+,n) = g+(sα,n) = λα,n,n.

/0
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Let n be odd, and recall that (α,n . is defined by (14); another useful representation 
is 

. (α,n(x) := arctanh
(
%−1

1−α tanh
nx

2

)
.

It follows that (α,n . equals the function ,1−α,n . given in [13, (2.6)]. Therefore, the 
properties of (14) and (56) are the ones developed in [13, Propostions 5.1 and 5.3]. 
In particular, the first two derivatives of (α,n . are 

.( +
α,n(x) =

2n%α

(1 − %2
α) cosh(nx)+ 1 + %2

α

, . (54) 

( ++
α,n(x) = − 2n2%α(1 − %2 

α) sinh(nx) 
((1 − %2 

α) cosh(nx) + 1 + %2
α)

2 . (55) 

Define 

. -α,n := 2
n

arccosh

√
n%α − %2

α

1 − %2
α

= 2
n

arccosh

√
nα(α − 1) − (α − 1)2

2α − 1
.

Proposition 6.2 Let n be odd such that n ≥ Nα .. Then (α,n . has the following 
properties. 

1. ( +
α,n > 0. and ( ++

α,n < 0. on [0,+∞).. 
2. ( +

α,n(-α,n) = 1.; moreover, ( +
α,n > 1. on [0, -α,n). and ( +

α,n < 1. on (-α,n,+∞).. 
3. limx→+∞ (α,n(x) = ωα .. 
4. sα,n . is the unique fixed point of (α,n . in (0,+∞).. 
5. (α,n(x) > x . for every x in (0, -α,n].. 
6. -α,n <  (α,n(-α,n) < sα,n .. 

For every odd n ≥ Nα ., we define fα,n : [0,+∞) → R. by 

.fα,n(x) := x − (α,n(x) = x − 2 arctanh
(
%α tanh

nx

2

)
. (56) 

Figure 4 shows fα,n .. 
The following theorem contains more detailed information than its analog [13, 

Theorem 5.4]. 

Theorem 6.3 (Convergence of Newton’s Method Applied to fα,n . for Odd n) Let 
n ≥ Nα . and n be odd. Then the sequence (y(m)

α,n )
∞
m=0 . defined by 

.y(0)α,n := ωα, y(m)
α,n := y(m−1)

α,n −
fα,n

(
y
(m−1)
α,n

)

f +
α,n

(
y
(m−1)
α,n

) (m ≥ 1),
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ωα0 

sα,nlα,n 

Fig. 4 Plot of fα,n . (blue) and tangent line to the graph of fα,n . at -α,n . (red), for α = 3/2. and n = 7. 

takes values in [sα,n,ωα]. and converges to sα,n .. The convergence is at least linear. 
Moreover, if n is odd and large enough, then the convergence is quadratic, i.e., 

there exists Qα,n . in (0, 1/2). such that for every m ≥ 1., 

.0 ≤ y(m)
α,n − sα,n ≤ ωαQ

2m−1
α,n . (57) 

Proof By Proposition 6.2, f +
α,n > 0. and f ++

α,n > 0. on [(α,n(-α,n),ωα].. So, [13, 

Proposition 4.3] implies that the points y(m)
α,n . belong to the segment [(α,n(-α,n),ωα]. 

(which is contained in [sα,n,ωα].), and the convergence is at least linear. 
It is easy to see that for n large enough, the dependence n #→ -α,n . is decreasing. 

Let n0 . be such a number that -α,n ≤ -α,n0 . for every n ≥ n0 .. 
Take bα := -α,n0 .. Then for every n > n0 ., 

. -α,n < bα < sα,n < ωα.

Let Jα := [bα,ωα].. Since ( +
α,n(bα) → 0. and supJα

|( ++| → 0. as n → ∞., we  
choose n1 . such that for every n > n1 ., 

. ( +
α,n(bα) <

1
2
, sup

Jα

|( ++
α,n| <

1
2ωα

.

Then, for n > n1 . and for every x in Jα ., 

. 
1
2
< f +

α,n(bα) ≤ f +
α,n(x), |f ++

α,n(x)| <
1

2ωα
,

and 

.Qα,n := (ωα − bα) ·
sup
Jα

|f ++
α,n|

2 inf
Jα

|f +
α,n|

<
1
2
.
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In fact, Qα,n . tends rapidly to 0 as n tends to ∞., but we have not found simple 
estimates. /0

Define 

..1,α := 4%α

1 − %2
α

, .2,α := 4%α(1 + %2
α)

(1 − %2
α)

2 . (58) 

Theorem 6.4 (Asymptotic Expansion of sα,n . Where n Is Odd) As n is odd and 
tends to infinity,

.sα,n = ωα − .1,αe
−nωα − . 2

1,αne
−2nωα + .2,αe

−2nωα +O(n2e−3nωα ). (59) 

Proof Let α+ := 1 − α .. In [13, Theorem 5.9], we proved that 

. sα+,n = ωα+ − .1,α+e−nωα+ − . 2
1,α+ne

−2nωα+ + .2,α+e−2nωα+ +O(n2e−3nωα+ ),

where 

. ωα+ = log(1 − 2α+) = log(2α − 1) = ωα, .1,α+ = .1,α, .2,α+ = .2,α.

Now the result follows from (53). /0
The asymptotic expansion of λα,n,n . will be derived at the end of Sect. 7. 

7 Last Eigenvalue for Even n 

In this section, we study the behavior of the last eigenvalue λα,n,n . supposing that 
n is even and n ≥ 4.. More precisely, we analyze the behavior of sα,n ., defined by 
λα,n,n = g+(sα,n).. Thus, in this section we suppose that n is ev en.

Define rα := g+−1(4 + 2α) = 2 arcsinh(
√

α/2 ).. By Theorem 2.1, part 4, sα,n . is 
the unique solution of (51) in (ωα, rα).. 

Recall that (α,n . is defined by (14): 

. (α,n(x) = 2 arctanh
(
%α coth

nx

2

)
(x ≥ ωα).

Note that for x ≥ ωα ., 

.%α coth
nx

2
< %α coth

x

2
≤ %α coth

ωα

2
= 1,
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therefore (α,n . is well defined. A straightforward computation gives 

.( +
α,n(x) = − 2n%α

(1 − %2
α) cosh(nx) − 1 − %2

α

, . (60) 

( ++
α,n(x) =

2n2%α(1 − %2 
α) sinh(nx) 

((1 − %2 
α) cosh(nx) − 1 − %2

α)
2 . (61) 

Proposition 7.1 Let n be even such that n ≥ 4.. Then (α,n . has the following 
properties. 

1. ( +
α,n < 0. and ( ++

α,n > 0. on [ωα,+∞).. So, (α,n . is a strictly decreasing convex 
function. 

2. limx→∞ (α,n(x) = ωα .. 
3. sα,n . is the unique fixed point of (α,n . and ωα < sα,n < rα .. 

Proof For every x ≥ ωα ., due to the increasing property of cosh. and the condition 
n ≥ 4., 

. (1 − %2
α) cosh(nx) > (1 − %2

α) cosh(ωα) = (1 − %2
α)

1 + %2
α

1 − %2
α

= 1 + %2
α.

Hence, the denominators of the fractions in the right-hand sides of (60) and (61) are 
strictly positive, and we get statement 1. 

By definition of ωα . and %α ., 

. tanh
ωα

2
= 1 − e−ωα

1 + e−ωα
=

1 − 1
2α−1

1 + 1
2α−1

= α − 1
α

= %α. (62) 

This equality implies statement 2. Finally, statement 3 is consequence of Theo-
rems 2.1 and 2.3. /0

We define fα,n : [ωα,∞) → R., 

.fα,n(x) := x − (α,n(x) = x − 2 arctanh
(
%α coth

nx

2

)
. (63) 

We use the same notation fα,n . for two different functions, depending on the parity 
of n. Figure 5 shows fα,n .. 

Proposition 7.2 For every even n with n ≥ 4., f +
α,n > 1. and f ++

α,n < 0. on [ωα, rα].. 
Moreover, sα,n . is its only root in (ωα, rα).. 

Proof Follows from Proposition 7.1. /0
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ωα rα 
0 

sα,n 

Fig. 5 Plot of fα,n . (blue), for α = 6/5. and n = 4. 

Theorem 7.3 (Convergence of Newton’s Method Applied to fα,n . for Even n) 
Let n ≥ Nα . be even. Then the sequence (y(m)

α,n )
∞
m=0 . defined by 

. y(0)α,n := ωα, y(m)
α,n := y(m−1)

α,n −
fα,n

(
y
(m−1)
α,n

)

f +
α,n

(
y
(m−1)
α,n

) (m ≥ 1),

takes values in [ωα, sα,n]. and converges to sα,n .. 
Moreover, if n is even and large enough, then the convergence is quadratic, i.e., 

there exists Qα,n . in (0, 1). such that for every m ≥ 1., 

.0 ≤ sα,n − ωα ≤ rαQ
2m−1
α,n . (64) 

Proof By Propositions 7.2 and 4.3, the sequence (y
(m)
α,n )m≥1 . takes values in 

[ωα, sα,n]. and converges at least linearly. Define 

. Qα,n := (rα − ωα) ·
sup

[ωα,rα]
|f ++

α,n|

2 inf
[ωα,rα]

|f +
α,n|

.

It follows from (61) that sup[ωα,rα] |f ++
α,n| → 0. as n → ∞.. Therefore, there exists n0 . 

such that Qα,n < 1/2., for every n ≥ n0 .. In fact, Qα,n . tends rapidly to 0 as n tends 
to ∞., but we have not found simple estimates. /0
Lemma 7.4 Let m, n. be even such that n > m ≥ 4.. Then sα,m > sα,n .. 

Proof Recall that sα,n . and sα,m . are the solutions of (15), respectively for n and m. 
In this lemma, we prefer to deal with the equivalent Eq. (51). Then 

. tanh
nsα,m

2
tanh

sα,m

2
> tanh

msα,m

2
tanh

sα,m

2
= α − 1

α
= tanh

nsα,n

2
tanh

sα,n

2
.
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This implies sα,m > sα,n ., since x #→ tanh nx
2 tanh x

2 . is a strictly increasing function 
on [ωα,∞).. /0
Proposition 7.5 Let n be even such that n ≥ 4.. Then 

.0 ≤ sα,n − ωα ≤ C3(α)e
−nωα , (65) 

where C3(α) = (4+2α)α
α−1 .. 

Proof By the mean value theorem applied to x #→ coth(x/2). on [ωα, sα,n]., there 
exists / ∈ (ωα, sα,n). such that 

. coth
sα,n

2
− coth

ωα

2
= − 1

2 sinh2 /
2

(sα,n − ωα),

i.e., 

. sα,n − ωα = 2 sinh2 /

2

(
coth

ωα

2
− coth

sα,n

2

)
.

Now we apply the increasing property of sinh., identity (62), and the fact that sα,n . 
satisfies (51): 

. sα,n − ωα ≤ 2 sinh2 rα

2

(
coth

ωα

2
− coth

sα,n

2

)
= 2 sinh2 rα

2

%α

(
1 − tanh

nsα,n

2

)

≤ 4 cosh2 rα
2

%α
e−nsα,n ≤ 4 cosh2 rα

2

%α
e−nωα = g+(rα)

%α
e−nωα .

The last expression simplifies to C3(α)e
−nωα .. /0

Recall that .1,α . and .2,α . are defined by (58). 

Lemma 7.6 (Asymptotic Expansion of (α,1 .) As t tends to infinity ,

.(α,1(t) = ωα + .1,αe
−t + .2,αe

−2t +O(e−3t ). (66) 

Proof The proof is analogous to the proof of [13, Lemma 5.8]. Since coth(t/2) =
1+e−t

1−e−t ., 

. (α,1(t) = σ (e−t ), where σ (u) := 2 arctanh
(

%α
1 + u

1 − u

)
.

We start with the Taylor–Maclaurin expansion of the rational function u #→ (1 +
u)/(1 − u). around 0: 

.
1 + u

1 − u
= 1 + 2u

1 − u
= 1 + 2u+ 2u2 +O(u3).
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Then, we apply the Taylor expansion of arctanh. around %α .: 

. arctanh(%α + y) = arctanh(%α)+
y

1 − %2
α

+ %α y
2

(1 − %2
α)

2 +O(y3).

In the last expansion, we substitute y = 2%α(u+ u2 +O(u3)). and use the relation 
O(y) = O(u).: 

. σ (u) = 2 arctanh
(
%α + 2%α(u+ u2 +O(u3))

)

= 2 arctanh(%α)+
4%α

1 − %2
α

(
u+ u2 +O(u3)

)

+ 8%3
α

(1 − %2
α)

2

(
u+ u2 +O(u3)

)2
+O(u3).

Simplifying and taking into account that tanh(ωα/2) = %α ., we obtain the Taylor– 
Maclaurin expansion of σ . around 0: 

. σ (u) = ωα + .1,αu+ .2,αu
2 +O(u3).

Finally, we put u = e−t . and obtain (66). /0
Theorem 7.7 (Asymptotic Expansion of sα,n .) As n is even and tends to infinity ,

.sα,n = ωα + .1,αe
−nωα − . 2

1,αne
−2nωα + .2,αe

−2nωα +O(n2e−3nωα ). (67) 

Proof The proof is analogous to the proof of [13, Theorem 5.9]. 
By formula (65) from Proposition 7.5, we have an asymptotic expansion of sα,n . 

with one exact term: 

.sα,n = ωα +O(e−nωα ). (68) 

Therefore, 

. e−nsα,n = e−nωα+O(ne−nωα ) = e−nωα (1 +O(ne−nωα )) = e−nωα +O(ne−2nωα ).

(69) 

This also implies a rough upper bound for e−nsα,n .: 

.e−nsα,n = O(e−nωα ). (70)
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The main idea of the following proof is to combine (68) with (15) and Lemma 7.6. 
We apply the asymptotic expansion (66) with two exact terms and with nsα,n . instead 
of t : 

. sα,n = (α,n(sα,n) = (α,1(nsα,n) = ωα + .1,αe
−nsα,n +O(e−2nsα,n ).

We simplify this expression using (69) and (70): 

. sα,n = ωα + .1,αe
−nωα +O(ne−2nωα )+O(e−2nωα )

= ωα + .1,αe
−nωα +O(ne−2nωα ).

Now, we use this expansion to improve (69): 

. e−nsα,n = e−nωαe−.1,αne
−nωα+O(n2e−2nωα )

= e−nωα

(
1 − .1,αne

−2nωα +O(n2e−2nωα )
)

= e−nωα − .1,αne
−2nωα +O(n2e−3nωα ).

Next, we combine this expansion with (66): 

. sα,n = (α,n(sα,n) = (α,1(nsα,n) = ωα + .1,αe
−nsα,n + .2,αe

−2nsα,n +O(e−3nsα,n )

= ωα + .1,α

(
e−nωα − .1,αne

−2nωα +O(n2e−3nωα )
)

+ .2,α

(
e−nωα − .1,αne

−2nωα +O(n2e−3nωα )
)2

+O(e−3nωα ).

Simplifying this expression we get (67). /0
In the next corollary, we join the asymptotic expansions (59) and (67). 

Corollary 7.8 As n tends to infinity ,

.sα,n = ωα+(−1)n.1,αe
−nωα −. 2

1,αne
−2nωα +.2,αe

−2nωα +O(n2e−3nωα ). (71) 

Proof If n is odd, then (59) equals (71). If  n is even, then (67) equals (71). /0
Proof of Theorem 2.5 We expand g+ . by Taylor formula around ωα .: 

.g+(ωα + x) = g+(ωα)+ g+
+(ωα)x + g++

+(ωα)

2
x2 +O(x3).
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Then we substitute the expansion (71) of sα,n . and simplify: 

. λα,n,n = g+(sα,n)

= g+
(
ωα + (−1)n.1,αe

−nωα − . 2
1,αne

−2nωα + .2,αe
−2nωα +O(n2e−3nωα )

)

= g+(ωα)+ (−1)n.1,αg
+
+(ωα)e

−nωα − . 2
1,αg

+
+(ωα)ne

−2nωα

+
(

.α,2g
+
+(ωα)+

. 2
1,αg

++
+(ωα)

2

)

e−2nωα +O
(
n2e−3nωα

)
.

Recall that g+(ωα) = $α .. Hence, we obtain (20) and (21), with the following 
coefficients: 

. βα,1 = g+
+(ωα).1,α, βα,2 = −g+

+(ωα).
2
1,α, βα,3 = g+

+(ωα).α,2 +
1
2
g++
+(ωα).

2
1,α.

Calculate the derivatives of g+ . at ωα .: 

. g+
+(ωα) = 2 sinh(ωα) =

4α(1 − α)

1 − 2α
= 4%α

1 − %2
α

,

g++
+(ωα) = 2 cosh(ωα) =

2(2α2 − 2α + 1)
2α − 1

= 2(%2
α + 1)

1 − %2
α

.

Combining with formulas (58), we write βα,1 ., βα,2 ., and βα,3 . as (18) or (19). /0

8 Norm of Eigenvectors 

We recall that, due to Proposition 3.1, λα,n,j = λRe(α),n,j . for every α . in C., every  
n ≥ 3. and every 1 ≤ j ≤ n.. Nevertheless, it turns out that if Im(α) 1= 0., then 
the eigenvectors associated to Lα,n . usually have complex components. So, in this 
section we suppose that α . is a complex number such that Re(α) > 1.. To simplify 
subindices, we put 

. %α := %Re(α), Nα := NRe(α), ωα := ωRe(α), $α := $Re(α),

. ηα := ηRe(α), zα,n,j := zRe(α),n,j , sα,n := sRe(α),n.

Proof of Theorem 2.6 Formulas (22), (23) are consequences of [12, Proposition 8].
/0
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Recall that να . is defined by (24). For every x in [0,π ]., we define 

. 

/α(x) :=
|α − 1|2

2
g(x) cos(ηα(x))+

|α|2
2

g(ηα(x)) cos(x)

+ |α|2 − Re(α)
2

(g(x)+ g(ηα(x)) − g(x + ηα(x))) .

Proposition 8.1 (Exact Formulas for the Inner Eigenvectors) Let n ≥ 3. and 
2 ≤ j ≤ n − 1..  If  j is even, then ‖vα,n,j‖2 . is given by (25).  If  j is odd, then

.‖vα,n,j‖2
2 = nνα(zα,n,j )+

sin(ηα(zα,n,j ))

sin(zα,n,j )
/α(zα,n,j ). (72) 

Proof These formulas are similar to [12, (66), (69)] and are proved in the same 
manner. /0

We will use several identities for hyperbolic functions: 

. sinh(x)± sinh(y) = 2 sinh
(
x ± y

2

)
cosh

(
x ∓ y

2

)
, . (73) 

2 sinh(x) sinh(y) = cosh(x + y) − cosh(x − y), . (74) 

2 sinh2(x) = cosh(2x) − 1, . (75) 

n∑

k=1 

cosh(2kx + y) = 
sinh(nx) cosh((n+ 1)x + y)

sinh(x)
. (76) 

For every n ≥ Nα ., define 

. u1(α, n) :=
λα,n,n

2

(
sinh(2nsα,n)
2 sinh(sα,n)

− n

)
,

u2(α, n) :=
{

2|α|2 cosh2 (n−1)sα,n
2 w(α, n), if n is even,

2|α|2 sinh2 (n−1)sα,n
2 w(α, n), if n is odd,

u3(α, n) :=
{

−4 Re(α) cosh (n−1)sα,n
2 cosh nsα,n

2 cosh sα,n
2 w(α, n), if n is even,

−4 Re(α) sinh (n−1)sα,n
2 sinh nsα,n

2 cosh sα,n
2 w(α, n), if n is odd,

where w(α, n) := sinh(nsα,n)
sinh(sα,n)

+ (−1)n+1n.. 

Proposition 8.2 (Exact Formula for the Norm of the Last Eigenvector) Let n ≥
Nα .. Then 

.‖vα,n,n‖2
2 = u1(α, n)+ u2(α, n)+ u3(α, n). (77)
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Proof Let n be even. Then, from (23) and (73), 

. vα,n,n,k = (−1)k
(
α sinh((n − k)sα,n)+ (1 − α) sinh((k − 1)sα,n)+ sinh(ksα,n)

)

= (−1)k
(
sinh((k − 1)sα,n)+ sinh(ksα,n)

+α
(
sinh((n − k)sα,n) − sinh((k−1)sα,n)

))

= (−1)k
(

2 sinh
(2k − 1)sα,n

2
cosh

sα,n

2

+2α sinh
(n+ 1 − 2k)sα,n

2
cosh

(n − 1)sα,n
2

)
.

Taking the squared absolute value and applying (74) and (75), yields 

. |vα,n,n,k|2 = 4 cosh2 sα,n

2
sinh2 (2k − 1)sα,n

2

+ 4|α|2 cosh2 (n − 1)sα,n
2

sinh2 (n+ 1 − 2k)sα,n
2

+ 8 Re(α) cosh
(n − 1)sα,n

2
cosh

sα,n

2
×

× sinh
(n+ 1 − 2k)sα,n

2
sinh

(2k − 1)sα,n
2

,

i.e., after a simplification, 

. |vα,n,n,k|2 = λα,n,n

2
(cosh(2ksα,n − sα,n) − 1)

+ 2|α|2 cosh2 (n − 1)sα,n
2

(cosh(2ksα,n − (n+ 1)sα,n) − 1)

+ 4 Re(α) cosh
(n − 1)sα,n

2
cosh

sα,n

2
×

×
(

cosh
nsα,n

2
− cosh

(
2ksα,n − n+ 2

2
sα,n

))
.

Formula (77) is obtained summing the previous expression over k, considering the 
identity (76) in each term. 

The proof is similar for odd n. /0
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Lemma 8.3 As n tends to infinity ,

. u1(α, n) =
Re(α)

4(Re(α) − 1)
e2nωα +O(nenωα ),

u2(α, n) =
|α|2

8 Re(α)(Re(α) − 1)
e2nωα +O(nenωα ),

u3(α, n) = − Re(α)
4(Re(α) − 1)

e2nωα +O(nenωα ).

Proof Proceed similarly to the proof of [13, Lemma 6.3]. /0
Proof of Theorem 2.7 Formulas (26), (25) follow similarly to the proofs of [13, 
(2.20), (2.21)]. To prove (27), we apply Proposition 8.2 and Lemma 8.3. Finally, we 
take the square root and obtain (25). /0
Remark 8.4 Using Theorems 2.6 and 2.7, it is possible to show that for n large 
enough, the inner components of the normalized eigenvector vα,n,n/‖vα,n,n‖2 . are 
very small: 

. 
1

‖vα,n,n‖2
vα,n,n,k = Oα(e

−kωα + e−(n+1−k)ωα ) = Oα(e
− min{k,n+1−k}ωα ).

Figure 6 shows the components of the normalized eigenvectors vα,n,n/‖vα,n,n‖2 . 

for some α . and n, and Fig. 7 shows the logarithms of the absolute values of their 
components. 

1 31 

1 
2 

0 
1 32 

1 
2 

00 

Fig. 6 Components of the eigenvectors vα,n,n

‖vα,n,n‖2
. for α = 3

2 ., n = 31. (left) and n = 32. (right)
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1 16 31 
0 

−2 

−4 

−6 

−8 

−10 

1 16 32 
0 

−2 

−4 

−6 

−8 

−10 

Fig. 7 Values of log |wα,n,n,k |. where wα,n,n := vα,n,n

‖vα,n,n‖2
., for  α = 3

2 ., n = 31. (left) and n = 32. 
(right). On the left picture, we skip the component with k = 16. because w3/2,31,31,16 . is very close 
to zero 

9 Numerical Tests 

With the help of SageMath, we have verified numerically (for many values of 
parameters) the representations (32), (39), (38) for the characteristic polynomial, 
and all the other exact formulas appearing in this paper. 

We introduce the following notation for different approximations of the eigen-
values and eigenvectors.

• λ
gen 
α,n,j . are the eigenvalues computed with machine precision ( ≈. 16 decimal 

digits), using a general eigenvalue algorithm from Sagemath. 

All other computations are performed with 3322 binary digits (≈ 1000. decimal 
digits).

• zN 
α,n,j . is the numerical solution of the equation hα,n,j (x) = 0. computed by 

Newton’s method, see Theorem 4.4.
• Similarly, sN

α,n . is the solution of fα,n(x) = 0. computed by Newton’s method, see 
Theorems 6.3 and 7.3.

• λN 
α,n,j . is computed as g(zN

α,n,j ). or g(dn,j ). or g+(sN
α,n)., depending on the case.

• λbisec 
α,n,j . is similar to λN

α,n,j ., but now we solve the corresponding equations by the 
bisection method.

• Using zbisec
α,n,j . we compute vα,n,j . by (22) and normalize it.

• Using sbisec
α,n . we compute vα,n,1 . by (23) and normalize it.

• λ
asympt 
α,n,j . is the approximation given by (16) and (21). 

We have constructed a large series of examples including all rational values α . in 
(1, 5]. with denominators ≤ 4. and all n with 3 ≤ n ≤ 256.. In all these examples, we 
have obtained 

. max
1≤j≤n

‖Lα,nvα,n,j − λbisec
α,n,j vα,n,j‖2 < 10−994, max

1≤j≤n
|λgen

α,n,j − λbisec
α,n,j | < 10−13,


