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Abstract We study the individual behavior of the eigenvalues of the laplacian
matrices of the cyclic graph of order n, where one edge has weight « € C, with
Re(a) > 1, and all the others have weights 1. This paper is a sequel to two previous
ones where we considered Re(a) € [0, 1] and Re(o) < 0. Now, we prove that
for Re(a) > 1 and n > Re(o)/Re(x — 1), one eigenvalue is greater than 4 while
the others belong to [0, 4] and are distributed as the function x +— 4 sinz(x /2).
Additionally, we prove that as n tends to oo, the outlier eigenvalue converges
exponentially to 4 Re(a)? /(2Re(a)—1). We give exact formulas for half of the inner
eigenvalues, while for the others we justify the convergence of Newton’s method and
the fixed-point iteration method. We find asymptotic expansions, as n tends to oo,
both for the eigenvalues belonging to [0, 4] and the outliers. We also compute the
eigenvectors and their norms.
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1 Introduction

For every natural n > 3 and every « in C, we consider the n x n complex laplacian
matrix L, , with the following structure:

[1+@-1 0 0 0 —@&
-1 2-1 0 0 0
0 -1 2-1 0 0
0 0-1 2-1 0
0 0 0-1 2 —1
—o 0 0 ()—ll—l—a_

If « is real, L, , is the laplacian matrix of G ,, where G, 1s the cyclic graph of
order n, where the edge between the vertices 1 and n weighs «, and all other edges
weigh 1. See [15] for the general theory on laplacian matrices. In Fig. 1, we show
the case n = 6. The eigenvalues and eigenvectors of L, , are crucial to solve the
heat and wave equations on G, ,. Moreover, matrices of the form 27, — L, , are
related to counting the paths in a cyclic graph with certain loops [5].

The matrices L, , can be considered as tridiagonal Toeplitz matrices with
perturbations in the corners (1, 1), (1, n), (n, 1) and (n, n). They can also be viewed
as periodic Jacobi matrices. Some matrices of these classes and their applications
were studied in [2—4, 6-8, 10, 11, 14, 16, 17, 19-21].

The present paper is a continuation of [12, 13]. In [12], we proved that for every
a in C the characteristic polynomial of Ly ,, defined by Dy ,(A) := det(Al — Ly ),
equals the characteristic polynomial Dre(),n Of LRe(a),n- This implies that the
eigenvalues of L, , only depend on Re(wr). Therefore, to understand the behavior
of the eigenvalues, it is sufficient to consider the case where « € R and the
corresponding matrices Ly, are real and symmetric. So, for every « in C, the
eigenvalues of L , are real, and we enumerate them as follows:

Aa,n,l =< )hoz,n,Z <...= )Loz,n,n-

Fig. 1 Graph G4 6
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It is a very well-known fact that the eigenvalues of the n x n tridiagonal Toeplitz
matrix, with values —1, 2, —1 in the nonzero diagonals, are the numbers g(jr/(n +
1)), j =1,...,n, where g is defined by

g(x) = 4sin2% (x € [0, 7]). (1)

By the Cauchy interlacing theorem (see, e.g., [18, Theorem 4.2]), the eigenvalues
of L, , are also asymptotically distributed by g on [0, 7], as n tends to infinity.
This is also a simple consequence of the theory of generalized locally Toeplitz
sequences [9].

In [12], we studied the individual behavior of the eigenvalues of the matrices L
for o in (0, 1). In that case, we showed that the eigenvalues of L, , belong to [0, 4].
We solved the characteristic equation by numerical methods and derived asymptotic
formulas for all eigenvalues. In [13], we considered the case where o« < 0. In that
scenery, we proved that if n > (o — 1)/« then the minimal eigenvalue A, , 1 goes
out of the interval [0, 4]; moreover, the sequence (Ag,n,1)n> («—1)/« Strictly decreases
and converges exponentially to 4o /(20 — 1).

In this paper, we consider the case where « > 1 (or, more generally, Re(«) > 1).
This means that the interaction between the vertices 1 and n is stronger than the
interactions between the other neighbors in the cycle.

It turns out that, if n is even or if n is odd and satisfies n > «/(« — 1), then the
maximal eigenvalue A, , , 1s greater than 4, while the others belong to the interval
[0, 4] and behave similarly to the eigenvalues of L, , when 0 < o < 1, as discussed
in [12].

We use the phrase “inner eigenvalues” for the eigenvalues belonging to the
clustering set [0, 4], and “outlier eigenvalue” for the one that does not belong to
this set. See also our general definition of outlier eigenvalue in [13].

We show that if « > 1, then the sequence of outlier eigenvalues (Ay . n)n>3
converges exponentially to the number Q, = 4a?/(20c — 1). The major difference
to the previous paper [13] is that the sequence of the outliers approaches the limit
value from both directions:

SIgNhan — Qo) = (1) (n > — 1) . 2
The main results of this paper are stated in Sect. 2, while the majority of the
content is dedicated to the corresponding proofs: we represent the characteristic
polynomial in convenient forms and show the localization of the eigenvalues
(Sect. 3), we study the asymptotic behavior of the inner eigenvalues and guarantee
their computation with the Newton method (Sect. 4), then we focus our attention on
the last eigenvalue Ay, , (Sect.5) and analyze its asymptotic behavior separately
for both odd (Sect. 6) and even values of n (Sect. 7). Finally, we calculate the norms
of the eigenvectors (Sect. 8) and show some numerical experiments (Sect. 9).
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2 Main Results

As will be stated in Proposition 3.1, for every o € C we have that Dy , = DRe(a),n-
So, unless specified otherwise, we consider o > 1.

We begin our analysis with the localization of the eigenvalues. For this purpose,
define

_a—l

Ay = : (3)
o
q 4o , q 4 @
=, ie., = —.
T 2 —1 S QY
Notice that 0 < »y < 1 and €2, > 4. Also, forevery j in {1, ..., n}, we put
(J—Dm
dy,j = ——. &)
n
Theorem 2.1 (Localization of Eigenvalues) Letn > 3. Then Ay ,,1 = 0. For every

jwith2 <j<n-—1,

8 (dn,j) < Aa,n,j < g (dn,j—i—l) (J odd),

Aan,j =8 (dn,j—H) (j even).

Furthermore, the localization of Ay . n depends on n:

(1) ifn < }z(;l and n is odd, then g(dp ) < Aqnn < g(w) =4;
(2) ifn = %(;1 and n is odd, then Ay n n = 4;

(3) ifnisodd and n > }{a_l, then4 < g pn.n < Qu;

(4) if nis even, then Qy < Agpn < 4+ 2.

According to Theorem 2.1, the eigenvalues A, , ; with even indices j do not
depend of «. This theorem also implies that the eigenvalues are asymptotically
distributed as the function g on [0, 7 ]:

i #{jef(l,....n}: Aoy <u} p(xel0,7]: gx) <u})
m = .

n— oo n T

(6)

Here, i is the Lebesgue measure.

Statements (3) and (4) of Theorem 2.1 mean that for n large enough, we have
two different localizations of the largest eigenvalue A, , , depending of the parity
of n.

If n is odd, then the outlier eigenvalues of L, , and L1_ , are related by Ay, n =
4 — X1—a.n,1 (Proposition 6.1). Therefore, in the analysis of Ay , , for odd n, we can
proceed very similarly to [12].
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However, for even values of n, the equation for A, , , has a quite different form,
see Theorem 2.2.

Motivated by Theorem 2.1, we use g defined by (1) as a change of variable in the
characteristic equation when Ay 5, ; € [0, 4] and set

~—1

Zan,j — 8 (}\a,n,j)’ )

where g: [0, 7] — [0, 4] is a restriction of g.
To state the main equation for inner eigenvalues, we define the function
Na: [0, 7] — R by

X . oa—1 X
Ne(x) := 2 arctan (%a tan 5) , 1e., ng(x)=2arctan ( tan 5) . (8)
o

Since x, is positive, n, is positive, strictly increasing and takes values on [0, 7 ].

Theorem 2.2 (Main Equation for Inner Eigenvalues) Let j be odd with3 < j <
n — 1. Then the number zy . j is the unique solution in [0, 7] of the equation

x = dyj + 1) ©)

n

The same Eq. (9) also holds for zy 5 n, if n is odd and n < %;1.

Now, we need a suitable change of variable associated to Ay, ,. Thus, define
g+:10,00) — [4, 00) by

g+(x) ;=24 2cosh(x) = 4 cosh? % = 4 + 4 sinh? % (10)
Let also
Ny = max{3, [, '] +1}. (11)

So,if n > 41iseven orn > N, is odd, then we use (10) as a change of variable and
put

Sa,n — gll()&a,n,n)- (12)

In Fig. 2 we have glued together g and x +— g4 (x — ) into one spline.
Theorem 2.1 says that for every n > N, Ay n.n 18 In a neighborhood of €2, thus
we define

we = g5 (Qg) = loga — 1). (13)
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Fig. 2 Plot of g (blue), plot of x + g4(x — m) (green), points zy, ; and sS4 ,, and the
corresponding values of Ay, j, for « = 3/2 and n = 8. The red labels on the horizontal axis
are jm/n

To get the main equation for the outlier eigenvalue, we define the real-valued
functions ¥ , by

2arctanh (xy tanh %), ifn > 3, nisodd, x € [0, +00),
1,//oe,n(x) =

2 arctanh (%a coth %) , ifn >4, niseven, x € [wy, +00).
(14)

For every n > 3 and every x > wy,
nx X Wy
Xy coth > < Xy coth 5 < x, coth > =1,

hence ¥ , is well defined. The two cases in (14) can be joined by elevating
tanh(nx /2) to the power (—1)"*1.
Theorem 2.3 (Main Equation for the Outlier Eigenvalue) If n is odd and n >

2y U then Sa.n 1S the unique solution in (0, wy) of the equation

X = Yo,n(x). (15)

If n is even, then sy j, is the unique solution in (wy, +00) of the Eq. (15).

To get asymptotic expansions for the inner eigenvalues, we introduce the function
Agn:[0,7] — Rby

' ' / 1 2
Aan(x) = g(x) + 8 ()C):a(X) 4+ ¢ ()1 () (x) + 38" (X) e (x) |

n2
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Then, for all n > Ny and all odd j with 3 < j < n — 1, we define A*Y™" by

a,n,j

Do P = N (dn, ). (16)

a,n,j

Theorem 2.4 (Asymptotic Expansion of Inner Eigenvalues) There exists
Ci(a) > 0 such that for every n > Ny,

asympt| _ Ci(a)
on,j | — :

max |Agpn,; — A (17)
3<j<n-1

jodd

n3

To state the asymptotic expansion for Ay, ,, we introduce the following num-
bers:

1602 (o — 1)? 643 (a — 1)3
Bat = ———— Pani=m
Qa —1) Qa —1) (18)
B3 = 320%(1 — a)?(20? — 20 + 1)
@3 Qo — 1)? ‘
Equivalently,
1652 642 3232 (%2 + 1)
_ ’ S S =_——_** - 19
IBO{,I (1 _ %0%)2 :806,2 (1 _ %(%)3 ,305,3 (1 _ %3)3 ( )
Now, we define k?,s,%?;lpt by
)\‘Zs’z;rj;lpt — Qo{ + (_l)nﬁa,le_nwa + ﬂo{,Zne_zna)a + ﬁa,3e_2nwa- (20)

Of course, e "“ can also be written as 1/2a — 1)".

Theorem 2.5 (Asymptotic Expansion of the Last Eigenvalue) As n — oo, the
extreme eigenvalue Ay, n Of Ly, converges exponentially to Qy. More precisely,
there exists Co () > 0 such that for every n > N,

Aann — Aapttl < Caa)n?e3n, (21)

So, in the case when o > 1 and n is large enough, the maximal eigenvalue goes
out of [0, 4] and converges rapidly to the number €2, > 4. While, the rest behaves
asymptotically as the function g on [0, ' ]. The “right spectral gap” Ay n.n —Aan.n—1
converges to 2, — 4.

Our last analysis focuses on the eigenvectors and their norms. Similarly to
the situation with the eigenvalues, we have to separate the case A = 0, the
“trigonometric case” (0 < A < 4), and the “hyperbolic case” (. > 4).
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Theorem 2.6 (Eigenvectors for Re(«) > 1) Leta € CwithRe(x) > 1 andn > 3.
Then, Ly , has the following eigenvectors.

1 [1,...., 11" isan eigenvector associated to the eigenvalue Ay .1 = O.
2. Forevery j,2 < j <n — 1, the vector vy, j = [Ua,n,j,k]Z=1 with the following
components is an eigenvector associated t0 Ay j:

Va,n,jk = 8iN(kzgn, j) — (I =0) sin((k—Dzap, j) +a sin((n—k)zg,n,j).  (22)

The same formula (22) also works for j = n, if n is odd and n < %ﬁel( @)

3. Ifnis odd and n > %I;el(a), or n is even, then the vector vy ., = [vom,n,k]zz1
with the following components is an eigenvector associated to Ay p n:

Vo = (=D [(=1)"@ sinh((n — k)sa.n) + (1 — @) sinh((k — 1)s0,n)

+ sinh(ksa’n)] .
(23)

Finally, to present the asymptotic behavior of the norms of the eigenvectors given
by (22), we need the following auxiliar function: for every x in [0, 7 ], we define

1 — Re(a) Re(x) le|* — Re(a)

Vg (x) = ————g(x) + ——g(MRe(a) (X)) + 7

> 5 g(X — MRe(w) (X)).

(24)

Theorem 2.7 (Norms of Eigenvectors for Re(«) > 1) Let o € C with Re(x) > 1
and n > NRe(a)-

1. If jisevenand?2 < j <n — 1, then

LT
Ve, jll2 = la — 1|+/2n sin by (25)

2. Ifjisoddand3 < j <n — 1, thenasn — 00

1
”v(x,n,j”2 =4/ Va(dn,j)n + Oq (ﬁ) ) (26)

with Oy (1//n) uniformly on j.
3. Asn — 09,

||
2/2Re(@)(Re(a) — 1)

e"Re@ L 0y (n). (27)

”Uoz,n,n |l =

In numerical computation of the eigenvectors, it is convenient to divide the
expressions given in Theorem 2.6 by the norms’ approximations from Theorem 2.7.
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3 The Characteristic Polynomial and Eigenvalues’
Localization

Recall that we denote the characteristic polynomial det(Al — Ly ) by Dy ,(X).
Aditionally, »y, w, are defined by (3), (13).

For every m > 0, let T;, and U,, the m-th degree Chebyshev polynomials of the
first and second kind, respectively.

By cofactor expansion, it is easy to prove the following proposition.

Proposition 3.1 (Characteristic Polynomial of L, , for Complex «) Forn > 3
and o € C,

A—2
Dy pn(A) = (A —2Re(a))U,—1 (—)

2
(A’ _ 2) n+1
—2Re(@)U,—» 5 +2(=1) Re(a). (28)
Equivalently,
A—2 A =2
Dot,n()\') = U, (T) +2(1 — Re(x))U, -1 (T)
(29)

+ (1 —2Re(a))U,—2 (T) +2(—1)" 1 Re(a).

The next proposition is similar to [12, Proposition 14], but here we use the change
of variable A = ¢Z instead of A = 4 — 2.
For n > 3 define

U,_1(t/2), 1ifniseven,
pn(t) =1 " / o (30)
T,(t/2), if n is odd,

o (1 —a)5T, (5) + a#Un_l (5). ifniseven, a1
9o, =
o (=) iUny (L) +aT, (%), if n is odd.
Proposition 3.2 For every « in R, everyn > 3 and every t in C,
Do, (1%) = 4pu(t)qan (1) (32)

Proof Letw = (1> —2)/2, i.e., t> = 2w + 2. Then, (28) takes the following form:

Dan@w+2) =2 (W + 1 = @)Uyt ) —aUp— w) + (~)"*la) . (33)
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Let n = 2m. We apply Uzy—2(w) = —Upp (w) + 2wUzy,—1(w) on (33), obtaining
Dy omQRw +2) = Z(aUZm(w) +(w+1—a—2aw)Uy,_1(w) — a).

Now, we use the identities

Uzm—1(w) = 2Up—1(w) Ty (w),
U (W) = 20U -1 (w) Ty (w) 4 2T2(w) — 1,
Upn (W) — Uz (w) + 1 = 2w? — HU2_ | (w),

deriving
Do omCw +2) = 4w + DUpn-1 (w)((l — )Ty (w) + a(w — DUy (w))-

Considering the relations

t t? -2 t )
Tom 5 =Tn > > U2m+1 5 =tUy > s
we obtain that the characteristic polynomial is the product of the polynomials (30)

and (31).
If n = 2m + 1, the analysis is similar. O

Remark 3.3 If » > 3 is odd, then the polynomial g4, coincides with the
polynomial g1, written in [13].

We will apply the following elementary identities:

(n+1)x
.oX n nx .X n COS —5— )
T, (sm —) =(—=1)2cos—, U, <sm —> =(—-1)2——=— (n1iseven),
2 2 2 cos 5
(34)
X il X x wt sin UEDE
T, (sm —) =(=1)72 sin—, U, (sm —) =(=1) 2 ——=— (nisodd).
2 2 2 oS 5
(35)

Then, using the change of variable t = 2 sin(x/2) in (30) and (31) yields

X (—1)3t! Sin—z, if n is even,
Pn (2 sin —) = 2 (36)
(=1) 7 sin’", if nis odd.
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Cx (-1 %((1—a)sin%cos%—l—acos%sin%), if n is even,
9a.n <2 Sin 5) = (_1)% B - nx rooonx ‘ .
cos T ((1 — &) sin Scos B +acosysin), ifnisodd.
(37)
So, (32) becomes
4sin 3 sin & sin &
Dyn(g(x)) = ()" —2— 2 ((1 —@)cos X 4o 2 cos f) .
oS 5 2 sin 5 2
(38)
After the change of variable = 2 cosh(x/2), formula (32) transforms to
x sinh 5 nx sinh 5 sinh =
Dy n(g+(x)) = 4cosh 5 sinh%“ (1 — @) cosh > + QW
(n is even),
X nx sinh %* cosh & )
Dy n(g+(x)) = 4cosh 5 cosh > ((1 — ) sinh% cosh% ) (n is odd).
(39)

Proposition 3.4 (Trivial Eigenvalues of L, ,) For every n > 3 and every even j
withQ < j <n — 1, the number g(jm/n) is an eigenvalue of L ;.

Proof These eigenvalues come from the factor p, in the decomposition (32).
Indeed, the change of variable A = (2sin(x/ 2))2 yields the factor p, (2sin(x/2)).
According to (36), this expression vanishes for x = 2k /n, where k is an integer
and0) <k <(m-—1)/2. O

Lemma 3.5 [fn is even, then lim;_, { 5o qu.n(t) = +00.

Proof From the recurrent definition of Chebyshev polynomials, the leading term of
T, (t/2) is (1/2)¢", and the leading term of U,,_;(¢/2) is t"~!. Therefore, by (31), the
leading term of g, (1) is (1/4)t"*1. So, the leading coefficient is strictly positive,
which implies the result. O

For every j with 1 < j < n, we define

(j—Dm jm
I”J = (T’ 7 = (dn,j’ dn,j+1)- (40)

Proof of Theorem 2.1 For 1 < j < n — 1, the proof is similar to the proof of [12,
Theorem 1]. In particular, for odd j, we use Proposition 3.4.
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1. If n is odd and satisfies n < 1 then, using (37), it is easy to see that
qa.n(2sin(x/2)) changes of sign in I, ,,. Indeed, g4 , (2 sin(d, ,/2)) = —1, and

mn%m<mm§)=—ma—ay+m=4a—nm—xjy

X—>T

2. If n is odd and satisfies n = x;l, then gy, (2) = (1 —a)n + o, hence A = 4 1s
an eigenvalue of L ;.

3. Ifn > 3isodd and n > »x, !, then g4, (¢) takes values of opposite signs at the
ends of the interval [2, rq + 1, 11 where ry = /20 — 1:

r‘%—l—lr_” >0

Gon@) =0 —a)n+a <0, Gunlrg +r;")= >

Then,

1 2
4 <Agpn < (ra + —) = Qq.

4. For every even n > 4, g4, changes its sign in the interval [ry + r} 1 +00).
Indeed, lim;—, 450 g, n (t) = +00 by Lemma 3.5, whereas

1
%ﬂm+§5=—ﬂ&+h@ﬁkwj“ﬂ<a

Moreover, by the Gershgorin disks theorem (see, e.g., [18, Theorem 2.1]), the
eigenvalues are bounded from above by 4 + 2«. Thus,

1 2
Qy = (roz + _) < Aann = 4 + 2a.

Ty

Items 1, 2, and 3 could also be derived from [13, Lemmas 3.3, 3.4], taking into
account Remark 3.3. O

4 Inner Eigenvalues

In this section we deal with the inner eigenvalues. The proofs of the upcoming
propositions are very similar, if not identical, to the proofs given in [12, 13]. Recall
that »,, 1, are defined by (3), (8).

Proof of Theorem 2.2 1f ) € (0, 4), we use the change of variable A = g(x), with
x € (0, 7). So, Dy, (g(x)) transforms into (38). Equivalently, we apply (32) with
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0 z3 z5 z7 T 0 z3 z5 z7 T

Fig. 3 Plot of 5y (blue) and the left-hand side of (42) (green) for « = 3/2,n = 8 (left) and ¢ = 4,
n = 9 (right)

t = 2sin(x/2). Then, Dy ,(g(x)) = 0 reduces to gy ,(2sin(x/2)) = 0, which is
equivalent to

nx X
tan7 = X, tan 5 41)

In particular, for odd j with 3 < j < n — 1, the solution z4 ,, ; belonging to I, ;
satisfies (41). O

Equation (9) from Theorem 2.2 can be rewritten in the form

nx — (j = D = g (x). (42)

Figure 3 shows n, and the left-hand side of (42) for a couple of examples.
The first two derivatives of n, are

2,

1) = A (T — ) cos) )
s
ﬁg(x) _ 2t (1 — 2) sin(x) (44

(1422 + (1 — x2) cos(x))?

Proposition 4.1 and Theorem 4.2 follow directly from the properties of 1, similarly
to [12, Propositions 21 and 22].
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Proposition 4.1 Each derivative of ny is a bounded function on (0, ). In particu-
lar,

-2

_ X —
sup |, (x)| = x; !, sup |nl(x)| < =

O<x<m O<x<m 2

Recall that N, is defined by (11), and that for every j, the numbers d,, ;, z,, ; are
defined by (5) and (7), respectively.

Theorem 4.2 Letn > Ny, j be odd, 3 < j < n — 1. Then, the function x >
dj + no(x)/n is a contraction on cl(Iy ;), and its fixed point is Zq . .

In [12, Proposition 24], we proved some simple facts about the convergence of
Newton’s method for convex functions. Now we are going to state without proofs
some similar facts for concave functions (see also [12, Remark 27]). Assume that
a,b € Rwitha < b; f is differentiable and ' > 0 on [a, b]; there exists ¢ in [a, b]
such that f(c) = 0; y(o) is a point in [a, b] and the sequence (y(m));’f:() is defined
(when possible) by the recurrence relation

mt)y _ oy S (™) 45

y =y : (45)
£ (™)

Proposition 4.3 (Linear Convergence of Newton’s Method for Concave Func-

tions) If f is concave on [a, b], a < y© < ¢, then y"™ belongs to [a, c] for every

m > 0, the sequence (y(m))fno=0 increases and converges to ¢, with

C—y(m)f(b—a) (1 f/(b)> .

_ 46
@) (46)

For every n > 4 and every j odd with 3 < j < n, we define hy , j: cl(ly, ;) —
R by

hon,j(x) =nx — (j — D — 1a(x).

Theorem 4.4 (Convergence of Newton’s Method Applied to /1, , ;) Letn > Ny,

jbeodd 3 <j<n-—1and yéoi),l = dy, j. Define the sequence (y(%)j o by the
recursive formula

) (m—1)
m . meny _ e ()

yavn!j = yoz,n,j h/ <y(m_])>
o,n,j

a,n,j

(m = 1). (47)
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Then (y; n) J)oo o is well defined and converges 10 24 p, j, and the convergence is at

least linear-

(m) T }{a_z —1 "
Zan,j = Yoo, j =< ; —%_1}1 _1 . (48)
o

Moreover, if n > 2N, then the convergence is quadratic, and

-2
(m) T JTXO{
an,j = Yan,j = . ( 22 ) . (49)
Proof Formulas (43) and (44) for n,, and n; imply that A, nj > 0and hy o, ;<0
on cl(Zy, j). Moreover, y( ) nj = dnj < Zamj < dy,j+1. So, the assumptions of

Proposition 4.3 are satisfied. Here are rough estimates of the derivatives of iy, ; at
the extremes of 1, ;:

1
o{n](o) anj(dl’l_]) an’](dn,]+1)Zh&,n,‘](ﬂ):n__'

n—xqy=~nh

Therefore,

anj(dnj+1) n—x, x 2 —1

anj(dnj) N n—xy n%,{l—l

and we obtain (48).
Finally, if n > 2N, then
0max |ha n,j (0] b4 0max 1m0 ()]

T2 —1) wxy

= = o= 2
n 20m1n |han](x)| 2 (n— max |, ()] dn(n — xy ) 2n
0<x<m o

77,'

which implies the quadratic convergence with upper estimate (49); see, e.g., [1,
Sect. 2.2] or [12, Proposition 26]. O

Proposition 4.5 There exists C1(a) > 0 such that for every n > 3 and every j odd
with3 <j<n-—1,

No (dn,j) + Na (dnaj) 77(/35 (d”vj)

Zo,n,j = dn, i +
J J n I’l2

+ ra,n,j )

Ci(®)
n3

where |rq | <

Proof of Theorem 2.4 Substituting (4.5) into g and using Taylor expansion of g
around d,,, j, we obtain the asymptotic expansion (16) with error bound (17). O
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5 Transformation of the Characteristic Equation for the Last
Eigenvalue

Recall that »xy, Ny, w, are defined by (3), (11), (13), respectively.

Proof of Theorem 2.3 1If A, € (4,00), we make the change of variable A =
g+(x) with x € (0,00). In other words, we use (32) with r = 2cosh(x/2).
Then, p,(2cosh(x/2)) # 0, and equation Dy ,(g+(x)) = 0 is equivalent to
qa.n(2cosh(x/2)) = 0, which takes the following form:

nx 1 X .

tanh — = —tanh — (n is odd), (50)
2 Xy 2
nx X .

tanh - = %y coth 5 (n is even). (51)

By Theorem 2.1, if n is odd and n > x,, then (50) has a unique solution on (0, wy).
Ifnisevenand n > 4, then (51) has a unique solution on (wy, 00). We apply arctanh
to both sides of the Egs. (50) and (51), and rewrite them as (15). O

6 Last Eigenvalue with Odd »

In this section, we suppose that n is odd and n > N, and we study the behavior of
Aa.n.n and sy , which are related by (12), i.e., Ag.n.n = 8+ (Sa.n)-

The main idea of this section is to exploit the symmetry between the last
eigenvalue of L, , and the first eigenvalue of Li_q ,. Since @ > 1, the “dual”
parameter ' = 1 — « satisfies &’ < 0, and the matrices L, , with o' < 0 were
studied in [13].

As we showed in [13, proof of Theorem 2.2], A, ,1 can be computed as
8— (8o’ n) where g_(x) == —4 sinh? (x /2) and sy, is the unique solution of

= ’ .
a Xy la

Proposition 6.1 Let n be odd such thatn > Ny. Then Ay =4 — A—a.n.1-

Proof Let o' := 1 — a. Notice that x, = x; I Therefore, Egs. (50) and (52)
coincide. They have the same solutions:

Sen = Sa - (53)
Finally,

4 — Aa/,n,l =4 — g—(Sa/,n) = g+(sa/,n) = g+(Sa,n) = Aa,n.n-
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Let n be odd, and recall that v, , is defined by (14); another useful representation
1S

Y. (x) = arctanh (%1_ _la tanh %) .

It follows that v, , equals the function ¢1_ , given in [13, (2.6)]. Therefore, the
properties of (14) and (56) are the ones developed in [13, Propostions 5.1 and 5.3].
In particular, the first two derivatives of v, are

X) = ,
w (1 — x2) cosh(nx) + 1 + x2
21234 (1 — x2) sinh(nx)
Van () = = 2a - VR (55)
((1 — »2) cosh(nx) + 1 + x2)
Define
2 YY) 2 1) — _ 1)
Ly,n = — arccosh M = —arccosh na(e — 1) — (@ -1 .
n 1 - o n 200 — 1

Proposition 6.2 Let n be odd such that n > Ny. Then v, has the following
properties.

wn > 0and Yy < 0on0,+400).
VenLan) = 1; moreover, Y, , > 1 0n [0, £y) and Yy, , < 1 0n (Lg,n, +00).
limy s 400 Yo,n(X) = wq.

Sq.n IS the unique fixed point of Y., in (0, 400).

Yan(x) > x for every x in (0, £y ,].

Ea,n < Wa,n(ﬁa,n) < Sa,n-

AR W~

For every odd n > N, we define f, ,: [0, +00) — R by
Jan(x) :=x — Yy n(x) = x — 2arctanh (%a tanh %) . (56)

Figure 4 shows f, ;.
The following theorem contains more detailed information than its analog [13,
Theorem 5.4].

Theorem 6.3 (Convergence of Newton’s Method Applied to f, , for Odd n) Let
n > Ny and n be odd. Then the sequence (ygﬁ,));’fzo defined by

Jan (y(%_l)>
Van = Qur Vi =i - S (7Y men

/

o,n a,n
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la,n San /
1

0 I Iwa

Fig. 4 Plotof f; , (blue) and tangent line to the graph of f, , at £ , (red), forae = 3/2andn =7

takes values in [Sq. 5, wy] and converges to sy . The convergence is at least linear:
Moreover, if n is odd and large enough, then the convergence is quadratic, i.e.,
there exists Qg in (0, 1/2) such that for every m > 1,

0 <y —sqn < w02 (57)

Proof By Proposition 6.2, f, , > 0and f;, > 0 on [Yq,(€an), @] So, [13,

Proposition 4.3] implies that the points y‘%) belong to the segment [y, (bg.n), ©ul
(which is contained in [sy 5, @y ]), and the convergence is at least linear.

It is easy to see that for n large enough, the dependence n — £, , is decreasing.
Let no be such a number that £, , < €4, for every n > ny.

Take by := €4, n,- Then for every n > ny,

bon < by < Sqn < Wgy.

Let J, = [by, wy]. Since 1//(;’,1([9“) — 0 and sup,_ v’ — 0asn — 00, we
choose n1 such that for every n > ny,

1
w(;’n(bol) < 5! Suplwg’nl <
Jo

20y
Then, for n > n and for every x in J,,
1 / / ! 1
E < a,n(ba) S fo{,n(x)’ |fa,n(x)| < 26() ’
o

and

sup | fo |

Jo 1
= —b B -,
Qu.n = (g — by) 21?f|fo/[,n| <5
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In fact, Q. , tends rapidly to O as n tends to oo, but we have not found simple
estimates. O

Define

A5t o (1 + 23)
= =9 58
yl,O{ _ %2 V2,oz (1 _ %(%)2 ( )
Theorem 6.4 (Asymptotic Expansion of s, , Where n Is Odd) As n is odd and
tends to infinity,

San = Wg — Yi.g€ " — ylz’ane_zm"“ + page” O 4 O (nPe 30, (59)

Proof Leta’ .= 1 — «.In [13, Theorem 5.9], we proved that

—2nwys + yz’a/e—Zna)a/ 4+ O(nze—?ma)a/),

Sa’.n = Wq! — yl,d’e_nwa/ - ylzoz’ne

where
wy = log(l — 20‘/) =logRa — 1) = wq, Vi, = V1« Vo = V2,a-
Now the result follows from (53). O

The asymptotic expansion of Ay , , Will be derived at the end of Sect. 7.

7 Last Eigenvalue for Even n

In this section, we study the behavior of the last eigenvalue Ay , , supposing that
n is even and n > 4. More precisely, we analyze the behavior of s, ,, defined by
Aa.n.n = 8+ (Sa.n). Thus, in this section we suppose that 7 is even.

Define 7y := g, ! (4 + 2a) = 2arcsinh(y/a/2 ). By Theorem 2.1, part 4, s, is
the unique solution of (51) in (wy, ry)-

Recall that ¥, , is defined by (14):

Wan(x) = 2arctanh (}za coth %) (x > wg).
Note that for x > wy,

nx X Wy
%y coth — < x4 coth — < x, coth— =1,
2 2 2
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therefore v, , 1s well defined. A straightforward computation gives

2nxy
(1 — »2) cosh(nx) — 1 — x2’

Vo n(X) = — (60)

21254 (1 — x2) sinh(nx)
((1 — x2)cosh(nx) — 1 —x2)%

Yo p(x) = (61)

Proposition 7.1 Let n be even such that n > 4. Then v, has the following
properties.

1.y, <0and ¥, > 0 on [wy, +00). So, Yy is a strictly decreasing convex
function.

2. limy— 00 Yo, (X) = @q.

3. Sa.n 1S the unique fixed point of Yo, and wy < Sg.n < 7.

Proof For every x > w,, due to the increasing property of cosh and the condition
n>4,

1—|—}f§
1 — 2

o

(1 — x2) cosh(nx) > (1 — x2) cosh(wy) = (1 — x2) =1+

Hence, the denominators of the fractions in the right-hand sides of (60) and (61) are
strictly positive, and we get statement 1.
By definition of @, and »x,,

] — ¢ @a 1_; -1
tanh% =7 e_w = 20‘1_1 = ¢
te®  ld gy«

= Xg. (62)

This equality implies statement 2. Finally, statement 3 is consequence of Theo-
rems 2.1 and 2.3. O

We define f, ,: [wg, 00) = R,
nx
Jan(x) :=x — Yy n(x) = x — 2arctanh (%a coth 7) . (63)
We use the same notation f, , for two different functions, depending on the parity

of n. Figure 5 shows fy ..

Proposition 7.2 For every even n withn > 4, f,, > land f/, < 0 on [wy, ry]-
Moreover, sy p, is its only root in (wy, ).

Proof Follows from Proposition 7.1. O
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0 } |
/ o

Fig. 5 Plot of f, , (blue), fora = 6/5andn =4

Theorem 7.3 (Convergence of Newton’s Method Applied to f, , for Even n)
Let n > N be even. Then the sequence (yé’fi?);o:o defined by

Jon (yéﬁ—l))
e W m=

/
o,n

o,n
takes values in [wy, So.n] and converges to sy p.

Moreover, if n is even and large enough, then the convergence is quadratic, i.e.,
there exists Qg in (0, 1) such that for every m > 1,

0< Sa,n — Wo = Ty Qg:tn_l- (64)

Proof By Propositions 7.2 and 4.3, the sequence (yg?fq))mg takes values in
[wq, So.n] and converges at least linearly. Define

sup | fy !
[wg,74]
= (rg — W e ——
Qa,n (ra a) 2 inf |fo/[7n|
[wy,ra]

It follows from (61) that supy,,. ,.11fy | = 0asn — oo. Therefore, there exists ng
such that Oy, < 1/2, for every n > ng. In fact, Q_, tends rapidly to O as n tends
to oo, but we have not found simple estimates. O

Lemma 7.4 Let m, n be even such thatn > m > 4. Then sq m > Sq.n-

Proof Recall that sy , and s, are the solutions of (15), respectively for n and m.
In this lemma, we prefer to deal with the equivalent Eq. (51). Then

ns S ms, S a—1 ns Ky
tanh —" tanh -2 > tanh —" tanh —= — = tanh —=" tanh —_,
2 2 2 2 o 2 2
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This implies s4,m > Sq,n, Since x +— tanh % tanh % is a strictly increasing function
on [wy, 00). O

Proposition 7.5 Let n be even such that n > 4. Then

0< San — Wg = C3 (a)e—na)a’ (65)

(44+2a)a

where C3(a) = ==

Proof By the mean value theorem applied to x — coth(x/2) on [wqy, S¢.n], there
exists & € (wy, Sa.n) such that

Sa.n Wy 1
coth—— —coth— = ———— (54, — ,
2 2 2sinh?E Gon = )

i.e.,

Sa.n — Wy = 2 sinh2 % (COth % — coth Sogn) .

Now we apply the increasing property of sinh, identity (62), and the fact that s, ,
satisfies (51):

2 sinh? %
San — @ < 2sinh? 2 (coth Do _ coth s“’") = 2 (1 — tanh ns""”)
, 2 2 2 Xa 2

2 rg 2 rg
- 4 cosh” 3 S < 4 cosh” 3 10 _ g+ (rg) 1

Xy X Hy

The last expression simplifies to C3(a)e™"%x, O
Recall that y; o and y» , are defined by (58).
Lemma 7.6 (Asymptotic Expansion of v, 1) As t tends to infinity,

Vo1 (1) = 0o + y1ae” +y20¢ 2 + 0. (66)
Proof The proof is analogous to the proof of [13, Lemma 5.8]. Since coth(7/2) =
I+e!
l—e 1>

1
Yo 1(t) = o(e”?), where o (u):=2arctanh (%a I + u) .

—Uu

We start with the Taylor—Maclaurin expansion of the rational function u +— (1 +
u)/(1 — u) around O:

14+u 2u

=142u+2u’>+ 0®Wd).
1—u —u
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Then, we apply the Taylor expansion of arctanh around »x,:

y X y2

1—%2+(1—x§)2

o

+00%).

arctanh(x, + y) = arctanh(x,) +

In the last expansion, we substitute y = 2y (4 + u? + O(u?)) and use the relation
O(y) = O(u):

o (u) = 2arctanh (xa + 20 (u + u* + 0(u3))>

4
= 2arctanh(x,) + N o (u +u® + O(u3)>

8%2 2 3.\ 2 3
+m<u+u + O )) o).

Simplifying and taking into account that tanh(w,/2) = x,, we obtain the Taylor—
Maclaurin expansion of ¢ around 0:

o(u) =wy + y1,qu + yz,auz + O(u3).

Finally, we put u = ¢~ and obtain (66). O

Theorem 7.7 (Asymptotic Expansion of s, ,) As n is even and tends to infinity,
San = Wq + Yi.ge " — yﬁane_znw“ + prge 2% 4 O(nPe ), (67)
Proof The proof is analogous to the proof of [13, Theorem 5.9].
By formula (65) from Proposition 7.5, we have an asymptotic expansion of sy ,
with one exact term:
San = Wy + O(e7"), (68)

Therefore,

oS — e—nwa—i-O(ne_”w"‘) = "% (] 4+ O(ne ")) = ¢ " 4 O(ne‘zn“’“).

(69)
This also implies a rough upper bound for ™"«

e M = Qe "), (70)
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The main idea of the following proof is to combine (68) with (15) and Lemma 7.6.
We apply the asymptotic expansion (66) with two exact terms and with ns, , instead
of t:

San = Ve (San) = Va1 (15a.n) = @ + y1,a€”"" + O (e72n),
We simplify this expression using (69) and (70):
San = O + Vi.g€ "% + O(ne” %) 4 O (e~ 21)
= wy + V1. " 4+ O (ne 2x).
Now, we use this expansion to improve (69):

—NSg.n —na)ae—yl,ane_”“’“—i—O(nze_z”a’“)

e =e
= ¢ "% (1 — ylﬂne_z”")"‘ + O(nze_znw“))
= "% — yy yne 1% 4 O (n?e” ),
Next, we combine this expansion with (66):

- ) -3
Sa,n = l//oz,n (Soz,n) = 1,/foz,l(nsoz,n) = Wy + Y1,a€ Pan 4 V2,a€ Man 4 O(e nsa,n)

= 0o + V1, (e_”‘”“ — Y1ane " + 0(n26_3”‘”“))
2 2 -3 2 3
+ 24 (e_”w“ — y1qne "+ O(nce” ”“)“)) + O (e "),

Simplifying this expression we get (67). O
In the next corollary, we join the asymptotic expansions (59) and (67).

Corollary 7.8 As n tends to infinity,
San = Wy +(— l)nyl,ae_nwa - Vlz,ocne_znwa + VZ,ae_znwa + 0(n26—3nwa). (71)

Proof If n is odd, then (59) equals (71). If n is even, then (67) equals (71). O
Proof of Theorem 2.5 We expand g, by Taylor formula around wy:

7
w,
g4 ( oz)xz

g+ (g +X) = g4+ (wg) + gl ()X + +0(x%).
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Then we substitute the expansion (71) of sy , and simplify:

Aann = 8+ (soz,n)

= 8+ (wa + (=D y1ae " =yl gne 2 4y qem P O(nze_3”“’a))

nw, —2nwy

“ — y{ o8l (wa)ne

2 v
Vi o8+ (@)
+ <)/a’2gg_(a)a) + M) e—2na)u +0 (HZe—Snwa> .

= g+(wa) + (_1)’1)/1,01311-(0)01)6_

2

Recall that g4 (wy) = 2. Hence, we obtain (20) and (21), with the following
coefficients:

1
Bal = &4 (@) V1.as Ba2 = =8 (@a)Viqs Bu3 = 84 (@) Va2 + Egi(wa)yﬁa.

Calculate the derivatives of g at wy:

do(l — @) . Ay
1 -2  1—2x2

8y (wg) = 2sinh(wy) =

2Qa* =20+ 1) 2062+ 1)

20 — 1 1=

gi{.(a)a) = 2cosh(wy) =

Combining with formulas (58), we write By 1, Ba.2, and By.3 as (18) or (19). O

8 Norm of Eigenvectors

We recall that, due to Proposition 3.1, Ay n,j = ARe(a),n,j for every a in C, every
n > 3 and every 1 < j < n. Nevertheless, it turns out that if Im(«) # O, then
the eigenvectors associated to Ly , usually have complex components. So, in this
section we suppose that « is a complex number such that Re(a) > 1. To simplify
subindices, we put

Ko = XRe(a)s Na ‘= NRe(a) ®a = WRe(x)> $2a = LRe(a)s
Na = NRe(w)> Ra,n,j ~— ZRe(a),n,j» Sa,n = SRe(a),n-

Proof of Theorem 2.6 Formulas (22), (23) are consequences of [12, Proposition 8].
O
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Recall that v, is defined by (24). For every x in [0, ], we define

|Ol 2 2

_2 | g(x) cos(ny(x)) + %g(na(x)) cos(x)

2
—R
n || e(a)
2

§u(x) =

(&(x) + g(na(x)) — g(x + ng(x))) .

Proposition 8.1 (Exact Formulas for the Inner Eigenvectors) Let n > 3 and
2<j=<n—L11If]iseven, then ||vy,n,;ll2 is given by (25). If j is odd, then

sin(ng (Zoz,n,j))
Sin(Za,n,j)

”Ua,n,j ||% = NVy (Zoz,n,j) + §u (Za,n,j)- (72)

Proof These formulas are similar to [12, (66), (69)] and are proved in the same
manner. O

We will use several identities for hyperbolic functions:

sinh(x) = sinh(y) = 2 sinh <%) cosh (x :; y) , (73)
2 sinh(x) sinh(y) = cosh(x + y) — cosh(x — y), (74)
2 sinh?(x) = cosh(2x) — 1, (75)

sinh(nx) cosh((n + x + y)

n
h(2k =
Z cosh(Zkx + ) sinh(x)

k=1

(76)

For every n > N,, define

Aa.nn (SInh(2nsy ;)
uij(e, n) = — . — —n],
2 2 sinh(sq, )
| 2]a|? cosh? ("_1% w(a, n), ifn iseven,
@ m = (= D P
2|a|“ sinh — w(a, n), ifnisodd,
(. 1) —4 Re(a) cosh % cosh L‘z’” cosh s‘g” w(a, n), ifniseven,
uze,n) = _
—4Re(a) sinh L= sinh %1 cosh %y (o, 1), if n is odd,

where w(ar, n) == e 4 (—1yrtly,

Proposition 8.2 (Exact Formula for the Norm of the Last Eigenvector) Lern >
Ngy. Then

IWarnn |13 = w1 (e, n) + ua(a, n) + uz(a, n). (77)
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Proof Let n be even. Then, from (23) and (73),

Vo k = (—DF (@sinh((n — k)sqn) + (1 — @) sinh((k — 1)sg,,) + sinh(ksq,»))
= (=¥ (sinh((k — 1)s¢,n) + sinh(ksq,»)
+@ (sinh((n — k)Sa,n) — sinh((k—1)sa,n)))

(2k - 1)Sa,n So,n
——————cosh

= (=¥ (2 sinh

1—2k -1
+2a sinh (n+ )San cosh —(n )Sa’”) .
2 2
Taking the squared absolute value and applying (74) and (75), yields

2k — 1
|v01,n,n,k|2 = 4-COSI’12 S(XT’n sjnh2 w

2
—1 1 -2k
+ 4ol cosh? LT DSan o (1 F . )San
—1
+ 8 Re(a) cosh w osh SO;” X
. n+1-— 2k)sa,n . 2k — l)soz,n
X sinh 3 sinh 7 ,

i.e., after a simplification,

A
Wanmil® = 2 (cosh(2ksg.n — Sen) — 1)

D)Sa,n

+ 2|oz|2 cosh? (n_T(costhsa,n —(m+Dsqgn)—1)

(n — 1)Sa,n Sa,n
cosh
2 2

2
X (cosh ns;n — cosh <2ksa,n _ ; Sa,n)) .

+ 4 Re(a) cosh X

Formula (77) is obtained summing the previous expression over k, considering the
identity (76) in each term.
The proof is similar for odd n. O
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Lemma 8.3 As n tends to infinity,

Re(a) no
9 = ¢ O na)a 9
ui(o, n) I(Re(@) — 1)@ + O(ne"*#)
o (o, n) = |05|2 o2 + O(ne"®=),
8Re(a)(Re(a) — 1)
Re(w) e
) = ———————— “ + O(ne'*).
us(o, n) I(Re(@) — 1)e + O(ne"™ )
Proof Proceed similarly to the proof of [13, Lemma 6.3]. O

Proof of Theorem 2.7 Formulas (26), (25) follow similarly to the proofs of [13,
(2.20), (2.21)]. To prove (27), we apply Proposition 8.2 and Lemma 8.3. Finally, we
take the square root and obtain (25). O

Remark 8.4 Using Theorems 2.6 and 2.7, it is possible to show that for n large
enough, the inner components of the normalized eigenvector vy, /|| Va.n.nll2 are
very small:

1

Vannk = Oa(e—ka)a + e—(n—l—l—k)wa) — 0a(e_ min{k,n—i—l—k}wa).
lVa,n,nll2

Figure 6 shows the components of the normalized eigenvectors vy n.n/||Va.n.nll2
for some o and n, and Fig. 7 shows the logarithms of the absolute values of their
components.

N
|

Fig. 6 Components of the eigenvectors 2" for o = % n = 31 (left) and n = 32 (right)

lva.n.nll2




Eigenvalues of the Laplacian Matrices of Cycles with One Overweighted Edge 243

16 31 16 32
O 1 1 ; 0 1 1 ;
[ ] [ ] [ ] [ ]
—2 4 ° ° —2 4 ° °
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
—4 ° ° —4 ° °
[ ] [ ] [ ] [ ]
_6- .. .. _6- .. ..
[ ] [ ] [ ] [ ]
—81 ®e o —8 °e o
.. .l .. ..
~10- .. —10- 00e®
Fig. 7 Values of log |wy, n.n.k| Where wy nn = va"""'"nz, fora = %, n = 31 (left) and n = 32
a,n,n

(right). On the left picture, we skip the component with k = 16 because w3, 31,31,16 is very close
to zero

9 Numerical Tests

With the help of SageMath, we have verified numerically (for many values of
parameters) the representations (32), (39), (38) for the characteristic polynomial,
and all the other exact formulas appearing in this paper.

We introduce the following notation for different approximations of the eigen-
values and eigenvectors.

. kiez ; are the eigenvalues computed with machine precision (* 16 decimal

digits), using a general eigenvalue algorithm from Sagemath.

All other computations are performed with 3322 binary digits (= 1000 decimal
digits).

. zol\im j is the numerical solution of the equation &y, j(x) = 0 computed by

Newton’s method, see Theorem 4.4.
e Similarly, sg, , 18 the solution of fy ,(x) = 0 computed by Newton’s method, see
Theorems 6.3 and 7.3.
N

. )\S’n’j is computed as g(za’mj) or g(dy,j) or g4 (sg{n), depending on the case.

. Agljlecjls similar to Ag, 0. but now we solve the corresponding equations by the
bisection method.

* Using zglsnecj we compute vy, ,,; by (22) and normalize it.

* Using sgfffc

. )‘Z?;I,I;Pt is the approximation given by (16) and (21).

we compute vy .1 by (23) and normalize it.

We have constructed a large series of examples including all rational values « in
(1, 5] with denominators < 4 and all n with 3 < n < 256. In all these examples, we
have obtained

bi
max || Ly nVa,n,j — )Latsne,cjva,n,jHZ <1

0—994’ max |)\gen _ )Lbisec | < 10—13’
I<j<n

1<j<n a,n,j a,n,j



