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Abstract—For large non-Hermitian banded Toeplitz matrices, it is well known that their eigenvalues
cluster along a limiting set, which is formed by a finite union of closed analytic arcs. We consider gen-
eral non-Hermitian banded Toeplitz matrices and extend the simple-loop method to obtain individual
asymptotic expansions for eigenvalues approaching simple and non-degenerate points of the limiting
set as the matrix order increases to infinity. We also develop an algorithm to effectively compute these
expansions.
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1. INTRODUCTION

Let a be a function in L°(T), where T = 9 is the boundary of the unit complex disc. We denote by
T,(a) the nx n Toeplitz matrix (a;_, )Z;cl=0,

dy a, a_pti
a a a
a a, . ,
4
- a 4

where g, stands for the kth Fourier coefficient of a, that is
T
a, = 1 J. a(e)e “°do.
2n e

As we can see, the matrix 7,,(a) has constant entries along the main diagonals. The function a is usually
called symbol or generating function.

Due to their wide range of applications, Toeplitz matrices have been a subject of sustained interest for
over a century. In particular, the study of their spectral properties—including spectral distribution, clus-
tering, localization, and the behavior of eigenvalues and eigenvectors—has generated a vast body of litera-
ture. See the brilliant and beautiful paper [1] of E. Tyrtyshnikov for a compendium and unifying results
about spectral distribution, localization, and clustering. Further general and in-depth treatments of
Toeplitz operators and matrices can be found in [2—4].
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Fig. 1. (Left) The range (green curve) and the limiting set (brown curve) for the symbol a(f) = —4 - 3+ 2i)t_3 +

i 10+ 3+ i)t2 +4f +irt. (Right) The e-pseudospectrum of 7, (a). The black points are the eigenvalues of

Ts4(a) while the green to brown curves correspond to € = 1/15, 1/30, ..., 1/90, respectively. This example is called the
“whale” and was treated in [6], where a picture similar to the left one appears on the title page. The limiting set was com-

puted using the algorithm in [7].

The spectral study of Toeplitz matrices naturally divides into two cases: Hermitian and non-Hermitian.
The former case has been extensively studied and, in general, is well understood. But besides a number of
related articles, it is fair to say that the latter case is more complicated and less clear.

The matrix 7,(a) is Hermitian if and only if a is real-valued. Therefore, to study the non-Hermitian
case we need to focus on truly complex-valued symbols.

Let a be a Laurent polynomial, that is,

ay=a, " +a, M+ +a T +at (1.1)

where a; € C for j = —r,...,¢ and a_.a, # 0. The cases r < 0 and ¢ < 0 produce trivial spectra, hence we
assume that r,/ > 1. In 1960 P. Schmidt and F. Spitzer [5] showed that, as n increases to infinity, the spec-

tra sp 7, (a) converge in the Hausdorff metric to a certain limiting set A(a), which is the union of finitely
many analytic arcs, see Fig. 1.

For a symbol a with the form (1.1), the respective matrix 7, (@) has a finite number of non-zero diago-
nals. In such a case we say that it is a banded Toeplitz matrix.

The findings in [5] were among the first to achieve a degree of generality in the non-Hermitian case.
However, they provided no description of how to find those arcs, nor even how many of them A(a) con-
tains. It was only with the work of [8] that the connectedness of A(a) was established.

For a banded Toeplitz matrix, the eigenvector matrix of 7,(a) is, in general, severely ill conditioned.
Hence, the numerical computation of its eigenvalues is a challenging task (see the related discussion in the
introduction of [9]). To see that, consider the well-known € -pseudospectrum of a matrix 4 given by

sp(4) ={re C: H(A - M)"H > 1/},

For small values of €, let’s say € = 1/50, we expect that sp_(A) separates the eigenvalues of 4. But if it is
not, then an reliable numerical calculation of those eigenvalues will require a large number of precision
digits, memory, and processing time. Figure 1 shows the € -pseudospectrum for an iconic example. There
we can see that the eigenvalues near the central part are impossible to approximate using machine preci-
sion. For instance, to obtain those eigenvalues in the software Julia v.1.9.2 for n = 2048 with 16 correct
decimal digits, it was necessary to compute them using 2048-bit BigComplexFloat data type, which is
equivalent to 660 digits of precision. The process took 16 days and consumed 1.8 TB of memory in a super-
computer.
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The study of eigenvalue distributions — understood as the probability density describing their spread
across the complex plane — evolved until the 1996 celebrated paper [1], which marked a culmination of
that research branch.

In 2010, the work [10] considered a class of Hermitian Toeplitz matrices and developed a technique
known as simple-loop method (SLM), providing individual asymptotic expansions for their eigenvalues. In
the Hermitian case, the SLM evolved from treating Laurent polynomials to handling more general sym-

bols in weighted Wiener algebras W with different weights o.. For the non-Hermitian case, the SLM has
so far been limited to banded Toeplitz matrices with a fixed number of non-zero diagonals; see [11, 12] for
a detailed account.

Let Xl,l,...,kn,n be the eigenvalues of 7,(a). Under certain assumptions on the symbol a, the SLM
shows that there exists an integer m > 2 (depending on the smoothness of a) such that
m—1
¢(0;,)
7\%” = ; ”k + En,m(cj,n)a

k=0 (n +1 )
where 6;, = mj/(n +1); the coefficients ¢, :[0,7] — C are functions depending on a that can be com-

puted; and the remainder term £, (G, ,) is of order O(n™) as n — oo uniformly in j =1,...,n. Such
expansions have inspired a number of numerical studies (see, e.g. [13—15]), suggesting broader applica-
bility beyond the original simple-loop setting.

In the present work, we focus on general banded Toeplitz matrices, that is, with symbols having the
form (1.1). Our attention is on the eigenvalues approaching simple and non-degenerate points of the lim-
iting set. Roughly speaking, these correspond to interior points of the analytic arcs forming the limiting
set, and will be described in detail later. We extend SLM to this setting, deriving the respective individual
asymptotic eigenvalue expansions.

The paper is organized as follows. Our main results are presented in Section 2. The technical tools
needed for the proofs appear in Section 3, while the proofs themselves are given in Section 4. In Section 5,
we introduce a numerical algorithm that implements our expansions, and in Section 6, we present several
numerical experiments that illustrate our results.

2. MAIN RESULTS

For a Laurent polynomial a with the form (1.1), the limiting set A(a) of the spectra sp7,(a) can be
defined as

A(a) = liminf spT,(a).
n—yoo

In [5], P. Schmidt and F. Spitzer gave the following interesting description of A(a): a point A € C belongs

to A(a) ifand only if |z,(A)| = |z,,,(A)|, where z,(A),..., z,,,(A) are the roots of the polynomial a”(a(z) — M),
sorted in non-decreasing modulus order. This description served as the theoretical base for the algorithm
developed in [7], which produces points in the limiting set without computing any eigenvalue at all. It was
also employed recently in [9] to obtain individual eigenvalue expansions for a class of tetradiagonal
Toeplitz matrices. We use the same description here.

A point A € A(a) is called simple if |z,_,(A)| < |z, (M) = |z,.1(M)| < |z,.2(V)] but z,(A) # z,,,(A). (In the
particular cases r =1, ¢ = 1, we simply remove the terms z,_,(A), z,.,(A), respectively.) In such a case

there is a unique number @ € (—x, ©]\{0} such that z,,(A)/z,(A) = ¢'®. In the bulk of our calculation we will

need to find the rth root of the polynomial z’(a(z) — a(e"z)) as a function of s, which according to the
implicit function theorem, can be done locally if

d_z _ ieisza.(eisz)
is 4

ds  da'(z)-e’a'(e"7)

exists and is non zero. Hence, we call a simple point A non-degenerate if
a'(z,(\) — e“a'(ez,(\)) # 0,
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and otherwise we call it degenerate. According to Theorem 3.2 in [7], a non-degenerate simple point is a
regular point of A(a), meaning that it has an open neighborhood U < C such that A(a) N U is an analytic
arc (without self-intersection) starting and ending at the boundary of U .

Let A, be a non-degenerate simple point of A(a), and let U — C be a neighborhood of A, such that
)] < .. <z )] <[z, V)] = [z V)] < Jz0W)] < - <z, (2.1)

forevery A € U M A(a). Since A, is a regular point of A(a), we must have a'(z,(A,)) # 0, and, by reducing
U if necessary, we can assume that the same is true for every A € U N A(a).

Since U m A(a) is an analytic arc, the inverse function theorem tells us that each z; is analytic there
also. Hence, we can extend each z; analytically to all of U .

If A runs over the analytic arc U N A(a), the number @(A) satisfying

2N _ o)
z, (M)

isunique and real. Note that by swapping z,(A) with z,,,(A), if necessary, we can assume that ¢(A) € (0, 7).
Naturally, @ becomes an analytic function on U m A(a), and we can extend it analytically to all of U, but
now it will have complex values. We will prove that ¢ have an inverse function y, which is a conformal

map. Finally, consider the function u : ¢U) — z,(U) given by u(s) = z, o Wy(s), which is clearly analytic.
See the following diagram.

U

z(U)

o)
Fix a non-degenerate simple point A, € A(a) and let s, = @(),); consider the set

I, ={se€ C:sy— 0 <R(s) < 85+ B,

3(s)| < M /n},
where M > 0 is a sufficiently large constant and o, > 0 are chosen so that
*so—o>0ands,+p < m;

« for every sufficiently large », u admits an analytic continuation on I1,,, and for every s € I1, " R the
point A = a(u(s)) satisfies (2.1) and a'(u(s)) — ie”a'(e“u(s)) # 0.

For s e I1,, let v,(s) = z,(y(s))/z,(Y(s)) and define 0 : I1,, — C as

r-1 eis _ VJ»(S) r+( 1- VJ»(S)

rL=v,(8) =% e’ — V./(S)

if  rl>2;

J

1+(
1—v,
| | AT T
5e —v(s)

-1 _is

LG T .
L 1-v,9

J
1 if r=(=1.

+

0(s) =

N~

Since A(a) is the limiting set of the spectra sp7,(a), for every sufficiently large n, we will have eigenvalues
of T,(a) in U . The following theorem gives us a recursive equation to calculate them.
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Theorem 2.1. Let a be the Laurent polynomial in (1.1) and let 7\,,],",...,7\,,”’” be the eigenvalues of T,(a)
belonging to U . Then, for every sufficiently large n € N the following statements hold.

(i) The numbers A, ...,
such that A, , = (s; ,)-

k,g’n are pairwise distinct and for each p =1,...,0, there is a numbers; , € 11

n

(ii) Foreach p = 1,...,0, there exist a small neighborhood © iy where s = s Jpn is the unique solution of
(n+r)s+n(s) =21, + R,(s),
withn(s) = ilogO(s) (where the principal branch of the logarithm is taken) and R, is an infinitely differentiable
Sunction over 1, "R = [s, — o, 5, + B, playing the role of a remainder term with order R,(s; ) = O(38") for

Jplt
some &€ (0,1), as n — o uniformly in Jp-

In practice, the neighborhood U can be taken such that it contains all the non-degenerate simple
points of an analytic arc of A(a). Then y will travel through that analytic arc from one end to the other,
and the subsequence (j p)§=1 will have the form j, = p, + p for some fixed number p,. In such a case, the
eigenvalues 7»,‘”,, for p =1,...,0 will be sorted along the respective analytic arc from one end to the other.
We use this approach in Section 6 to sort the eigenvalues and to measure the respective errors.

Theorem 2.2. Under the same hypothesis of Theorem 2.1, as n — o, for every integer m > 1 and every
p =1,...,0 we have the following expansions:

m—1
9,(0;, )
Tl = u jﬂ’nk + Enm(cj n)a
P> g P>
=0 (n+r)
m—1
r/((Gj ,n)
7\‘1,,,/7 = - k + E;Xfm(cjp,n)’
=o(n+r)

where G o = 21, /(n + 1) and the coefficients q, and r, are functions that, in principle, can be determined
explicitly, for instance

Qo) =5, () =), qa(s) = NHM'(5);
n(s) = W(s), 1) =—=yEme), nls) =1/2y"(sM’(s) + ¥ (sMsM'(s);

E,, and EY, are remainder terms satisfying E,n(0; ) = O( 1/n™) and Ern(o; ) = 0( 1/n™), as n — oo
uniformly in j,.
Our numerical experiments show (see Figs. 5, 9, and 12) that, when approaching the singular points of

the limiting set, the accuracy of the expansions in Theorem 2.2 decreases, but remains acceptable if high
precision calculations are not required.

3. TECHNICAL MATTERS

Throughout this section we assume that @ is a Laurent polynomial with the form (1.1), and that
Ao € A(a) is a non-degenerate simple point.

Lemma 3.1. For every sufficiently large n, the function \y is a conformal map of 11, onto its image.

Proof. Since ¢ = a o u, it is clearly analytic. Suppose that there exist s;,s, € I1, "R =[5, — o, s, + P]
such that y(s,) = y(s,). We then have

Z;oW(sy) = z; 0 W(s,),

for j =1,...,r + ¢. Consequently, taking j = r,r + 1 we get

ZoW(s) =2z 0y(s,)  and  z, oW(s) = ez oy(s) = €%z 0 W(s,) = 2. 0 Y(Sy),

i(s

and we arrive at ¢~ = . This happens only if s, — 5, = 2rt, which is impossible, or s, — s, = 0, which
implies s, = s,, as desired. We have proved that v is injective on IT, N R. Finally, for every sufficiently
large n, we can extend the same property to I1,,.
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Remark 3.1. The function y maps the real interval IT, "R = [s, — o, s, + ] into the limiting set A(a);
consequently, it is our spectral symbol (the function in the leading term of the respective eigenvalue expan-

sion). We will construct y as a o z,. Recall that z,(A) satisfies both a(z,(A)) = A and z,,,(A) = e“z.(\) for
some s € (0,2mx].

In principle, the parameter s belongs to (0,2m], but if z* is a solution of a(z) —a(eisz) = 0 with
s € (m,2m], we obtain

a(z*) — a(ei(2nﬂ()z*) — a(e—i“{z*)’
where Y = 21 — s € |0, 7). Thus, z* also solves a(z) — ae™z) = 0.

On the other hand, if z* solves a(z) — a(e"'z) = 0, then a(z*) = a(e"z*) = a(e“z*), which implies that
it is enough to consider values of s in the interval (0, 7].

In 1990, H. Widom [16] proved the following. Let z,,..., z,,, be the roots of the polynomial 7 a(z). If
they are pairwise distinct, then

D,(a) = c,w], (3.1)
J

where D,(a) = det T,(a), the sum runs over all sets J < {1,...,r + ¢} having cardinality |J| = ¢,

l r 1
o, =CD'a]]z o =]]7]1 ,
el jed  jeT RXj — Ry
keJ¢

and J = {1,...,r + ()\J.

Let s be a point in the region IT, where v is analytic and conformal, and take A = y(s). As in the pre-
vious section, let z;(A),...,z,,,(A) be the roots of the polynomial z"(a(z) — A) sorted in non-decreasing
modulus order. Recall that z,,,() = ¢”z,(A).

A point in A(a) is called branch point if at least two of the roots z;(A) (j = 1,...,r + /) coincide. Since
there is a finite number of branch points, by reducing U if necessary, we can assume that there is no branch
points in U N A(a). Consequently, the roots z j(k) are pairwise distinct for all A € U N A(a). For brevity,
write z; instead of z;(A). The following theorem gives an asymptotic expression for D,(a —1).

Theorem 3.2. For every sufficiently large n and A = \y(s) with s € T1,, we have

D,(a—\ i
; € ) - = N + el(nﬂ)sn; +G,(s),
(DJI (zrzr+2 s Zr+(") JjeJ, Zj— % Jjety Zj— g
ke keds

where G, is an analytic function on 11, satisfying G,(s) = O(8") for some & € (0,1), as n — o uniformly in s.

Proof. Applying (3.1) to the symbol a — A = a — y(s), we obtain an expression for D,(a — A) where the
main contribution for » large enough is given by terms with maximum absolute value of ®,. We have here
exactly two terms , , ®,, with this property:

Jo={rr+2,r+3,...,r+/¢, and J,={r+1,...,r+/}.
Let J,,J,,...,J, be the collection of all possible subsets of {1,...,r + ¢} with cardinality /. Obviously,
m = (r + 0)!/(r1¢!). We then have D,(a —\) = Z:zl ¢ 0 .
We, in particular, obtain

ln _n_n+r _n+r n+r ln _n_n+r n+r

— (_1) G2 Zpip oo Zpay

7 n _1 a/Z
Ron e _ (=D "az Lret
[[@-2 [T@-2
jed; JjeJs
keJ{ kelJs
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A simple calculation produces

n no__ ln _n n+r 1 i(n+r)s 1
€0 +¢,,0, = (=1)"a,(2,2,4 - Zp10) H ——*+¢ H S
jel X~ %k jel, Zj T Rk

keJ{ kels

= W, " 1 i(n+r)s 1
= &) (52022 | [[——+<“"]

jed, Xj — Xk jel, Zj — Xk
keJ{ kelJs

Consequently,

m

z no__ n n
ch(D']k - Dn(a - 7\,) _CJ](,OJ] - C-’z('ojz

k=3

! r i(n+r)s 1
=D, (a-N) — 0 (2,242 Zrss) H;_G(HH ’

jen Zj — Lk jel, Zj — Xk
keJ{ keJs
which can be written as
D (a—A\ i
- n( ) - — ; + el(n"")sn; + Gn(S),
O (2242 Zprg) G % T jely %j T X
kedy keJs

where G, (s) = ZZ:3 ¢; @5 /() (2,243 -.-%.+¢) ), Which clearly is an analytic function on IT,,. To find the

order of G, as n — oo, note first that, since the region I, is compact and the roots z,(y(s)) are sorted in
non-decreasing modulus order, the number

(y(s
0= sup{w csell, j=1,...,r— 1}
|z, (W(s))
is strictly positive and smaller than 1.
Additionally, for each s € II, the roots z,;(y(s)) are pairwise distinct, which implies the existence of a
constant vy such that
|CJk| SV

forany kK =1,...,m. Every J, with k > 3 must contain an index j € {1,...,r —1}, then

M <6 for k>3,
oy
and we arrive at
|G”(S)| < (m — 2)'Y6n

T inf{lz,(p(s))| s se Y

which implies G,,(s) = O(8") uniformly in s, proving the theorem.

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.1. We are interested in the eigenvalues of 7, (a) belonging to U , which is equivalent
to solving the equation D,(a —A) = 0 for A € U. Since A(a) is the limiting set of the spectra sp 7,,(a) and
U is a neighborhood of the non-degenerate simple point A, € A(a), we know that sp7,(a) "U # & for
every sufficiently large n. Hence, let &, ,,..., A, , be the eigenvalues of 7,(a) belonging to U.
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From Lemma 3.1 we know that y is a conformal (and hence injective) map from I1, to U . By reducing
U, if necessary, we can assume that for each p =1,..., o, there exists a unique point s Jpn in I, such that

W(s; ,) = A, ,. This gives us the part (i).
We now prove the part (ii). From Theorem 3.3, A = y(s) is an eigenvalue of 7,(«) if and only if
_ 1 i(n+r)s 1
0= ——+e ——+G,(9),
fl‘e_J[. Zj ~ Xk /le_JIz Zj— X
kedi keJs
which we write as

[1G -2

JEJz

i keJ;
e1(n+r)s — 2 -G (S)H(Zj
-2 e
Jed keJs
keJ{

We now simplify the previous quotient of products. Assume first the case » > 2 and ¢ > 2. Let

v,(s) = 7;(W(s))/z,(W(s)). After expanding and simplifying the common terms, the previous relation
becomes

ei(n+r)s — G(S) _ Gn(S)H(Z./ — Zk) = G(S)(l - G~n(S)),

JjeJs
kelds
where
H(e” ~v, <s>>i‘[ (1-v,(s))
0(s) = L= 1 rj+(r+2 G (s) = MH(ZJ, —2).
is e(S jed,
H<1 v [] " -v, (s)) iy

j=r+2

Taking the principal branch of the logarithm we obtain
(n+r)s +ilog6(s) = 2mj —ilog(1—G,(s))
for j € Z, and we are left with finding the order of the last term on the right.
Note that 6 is clearly analytic, and if s € I1, with j < r, then |v,(s)| < 1, while |v,(s)| > 1 for j > r +1.

Thus 0 is bounded away from zero in s € I1, and is also bounded. Therefore, we can choose a continuous

branch of the function 1(s) = ilog8(s) in the region IT,. Moreover, the term ilog(1 — G,(s)) is analytic
there.

A simple calculation shows that

_G.® Qlz,.)" KD
0(s) /1;[2( 1nf{|6(s)| sell)
kels

where K = (m — 2)y8"/inf{|z,(y(s))| : s € I1,}"*, meaning G,(s) = O(3"). Finally, we have
llog(1 - G,(s))| = log(1+0(3")) = O@&").

The uniqueness of the solution s = 5, , on ©; , isa consequence of Lemma 4.1. The cases where r = 1 or
¢ =1, can be proved similarly.
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Take any p € {1,...,0}. Theorem 2.1 tells us, in particular, that 7\.,1),” =Vy(s, ,)isan eigenvalue of 7,,(a),
belonging to U, ifand only if s = s T solves

_&4_@ (4.1)

s=0 ,
n+r n+r

- j/)a"
where ¢ i 2mj,/(n + r). The relation (4.1) is an implicit equation for s, which we will solve using the

Banach fixed-point theorem. The term R, plays the role of a remainder, suggesting the usage of the
reduced equation

s=o, -6 (4.2)
" on+r

We now introduce the necessary objects to prove Theorem 2.2. Consider the functions

” " n+r n+r

Hj* n(S) = Gj n n(S) .
” ™ n+r
Note that if s G and S}i,n are solutions of (4.1) and (4.2), respectively, then we obtain

ij,n(sjp’n) =s;, , and H;‘:’”(sj;yn) = sj;y,,. 4.3)

Jp
Now, we state the following technical lemma.
Lemma 4.1. Foreach p = 1,...,0 and every sufficiently large n, there exists a collection of mutually dis-

Joint neighborhoods ©,; , such thats, , € ©,; ,andboth H, , and H}, , are contractive mapson ©, ,.

The previous lemma is quite similar to Proposition 4.1 in [9], so we omit the proof.

Proof of Theorem 2.2. After Lemma 4.1, the Banach fixed-point theorem tells us that (4.2) has a unique
(k)

b

solution s = S;F,,,n and that we can find it by iteration. Specifically, if %o Jpn then the sequence s
given recursively by sP=H j;’,,(s(k*”) (k > 1), converges to sj; n

Since 7 is analytic on the compact region I1,,, Eq. (4.2) tells us that S}F,,,n =0, .t O(1/mn). Hence, a first
iteration produces
n(cjp n)

G'n 'G'n
n( o )_n( Jps )0(1/,1) =0, n——’+0(1/”2)-
n+r n+r ” n+r

S;i,n = H;'l;,n(cjp,n + O( 1//’1)) = Gj,,,n -

Similarly, a second iteration reads

G; n G; n G; n ' G; n
o= [a, " >+O(L2) o, , -G 0, (C,,)
» v ’ n+r n » n+r (n+r)
" 2 Al
(P G, G, G, (O
_M'(c,,.) ]| N, )+0(sz +0(l3)=o, n_n( T )+n( T )n(zj,,, )+0(L3),
2(n+r) n+r n n i n+r (n+r) n
Continuing this process, for any integer m > 1, we obtain the expansion
m—1
, qk(G',n)
SZ," = Z = k + Er,m(cjp,n)’
k=o(l’l+l‘)

where q,,...,q,,_, and F, , are analytic functions on I1,, and F, ,(s) = O(1/n") uniformly in s € II,,.

Now, we estimate the distance between s i and sj:,,,. From (4.3), we have

o hepa -, .

Jpnt = Sipn ‘

< In'(i)l|

|s

Rn(sjp,n)

n+r Sjn ~ S;!;,n| + |Rn(sjp,n)|,
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for some & in ©, ,- Letting ||n||m = sup{n'(s)| : s € I1,} < =, we arrive at

|Rn(s' ,n)|
1570 = S5l < > = 0(3").
Consequently, for any integer m > 1, we obtain the expansion
m—1
n qk (G )
s; ,=s¥ +00") = —+E (0 )
Jpsht Jps ; (}’l n r) n,m

where E, , is an analytic function on I1, with £, (o, ,) = O(1 /n™) uniformly in j,.

Finally, to obtain the expansion for 7»,”,” =y(s jp’n), it is enough to apply y to the previous expression
using its analyticity and the Taylor theorem.

5. AN ALGORITHM TO CALCULATE THE FUNCTION vy
TOGETHER WITH ITS DOMAIN FOR EACH ANALYTIC ARC IN A(a)

The expansions in Theorem 2.2 can be used to directly calculate any eigenvalue of 7,(a) approaching
a non-degenerate simple point of A(a) for an arbitrarily large #, but first we need , for which we do not
have an explicit expression.

It is required to select the point A, € A(a), which is equivalent to selecting an analytic arc there. Con-
sequently, we will have a different function y for each analytic arc. The following algorithm achieves this
and provides the domain of each function y.

This algorithm produces functions y for every analytic arc in A(a) together with their domains.

(i) For a large and fixed integer n, seto; , = nj/(n+1) (j = 1,...,n). The sequence (G, D =1 1s a regular
mesh of the interval [0,7]. For each j =1,...,n, calculate the roots v, ;,...,v,,,; of the polynomial
7 (@) — ae®"v).

(ii) Forevery p =1,...,r + £, compute w, , ;,...,W,,,, ; (sorted in non-decreasing modulus order) as
the roots of the polynomial
w'(a(w) —a(v,)).
(iii) According to the work of Schmidt and Spitzer, a(v,;) belongs to A(a) if and only if
w,’p’j| = w,+1’p’j|. Hence, if this condition holds, take the index p such that a(v,;)e U, define
y(o;,) = a(v, ), and include the point ¢, , in the respective domain. Otherwise, exclude 6,

Remark 5.1. Each iteration in step (i) produces the sets {v, ;,...,V,,, ;}. Some roots may be inter-
changed between iterations. To track them accurately, sort them in non- decreasmg modulus order, ensur-

ing the principal argument of v, ; /v, ; is positive whenever |V K, j| = |V . j|.
Notice that when selecting p in step (iii), we are effectively selecting an analytic arc in A(a).
The previous algorithm provides the values y(G,,) and the collection of indexes j such that

0;, € dom(y), denoted J. Note that the values 6, , for j € J may form one or more intervals. To obtain
y(s) for any s € dom(y), take a large positive integer ¢ and interpolate the data

{0, V(O )} jes-
As an illustration of the precedent algorithm consider again the symbol in Fig. 1, that is

a(t)— -1 34'321+ +i+10t+(3+1)t +4f +ir', (5.1)
£oor

which produces a banded Toeplltz matrix with 9 non-zero diagonals. In thiscase we have r =4 and ¢/ = 4
The limiting set A(a) contains five analytic arcs.

For s € (-7, |, step (i) produces points over the continuous and smooth functions v; (j = 1,...,8),
but, according to step (iii), only a portion of their domains defines . Applying a to these v ; and restrict-
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16.60

8.52

0.45

—7.63

—15.70 & 1 1 1 1
—10.70 -3.93 2.85 9.63 16.40

Fig. 2. The range (cyan curve) of the symbol a in (5.1) and the range of y, (blue), y3 (red), y, (orange), ys (gray), and
g (black).

ing the domains yields the five smooth curves in Fig. 2. It is clear that the limiting set A(a) is contained in
the combined ranges of ao v, (j = 1,...,8), to be more specific, put y; = a o v; and take into account

dom(y,) = (0,0.1162), dom(ys) = (0,0.1351), dom(y,) = (2.5446, ),
dom(ys) = (0,1.6336), dom(yy) = (0,1.4137),

while dom(y ;) = & for j =1,7,8. Note that this domains agree with Remark 3.2. Thus, A(a) is parti-
tioned into the five analytic arcs given by y; (j = 2,...,6).

6. NUMERICAL EXPERIMENTS
In this section we present our numerical experiments for four selected examples, the first three leading
to a tetradiagonal Toeplitz matrix and the last one leading to a pentadiagonal Toeplitz matrix.

As noted in [17], when dealing with spectra of banded Toeplitz matrices, a difficult question arises:
how should the eigenvalues be sorted? At first sight, one might be tempted to sort them by the order
induced when tracing each analytic arc from endpoint to endpoint. However, when approaching a point
where two or more arcs meet, it is very difficult to determine to which arc a particular eigenvalue belongs.

In this article, to measure the error introduced by our expansions, we adopt a different approach. Let
us define the following error quantities. For each y and each index j, with ¢ jn = Jpm/(n+1) € 11, con-
sider the mth term approximation given by Theorem 2.2,

Adm mzlm 6.1)

ot k=0 (}’l + r)k ’

and the respective absolute error

AEY = dist(\)%,sp T,,(a)).

Jpslt 2

Asthe reader can see, by measuring the distance between a point and a set, we avoid any eigenvalue order-
ing but, at the same time, we make the algorithm heavier. Consider also the respective relative and nor-
malized errors

sl(m)

sl(m) __ Jpoht sl(m) __ sl(m) m

RE}" = NE}" = AEJ%(n +r)",
1y.n

where A}, is the eigenvalue of 7,(a) closest to kj‘:'z)
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Table 1. Example 6.1. The relative, absolute, and normalized individual eigenvalue errors
NEsl(m)

J.n

BOGOYA, GRUDSKY

respectively, for 7,,(a) with a given by (6.2), m = 1,2,3 and different values of n

Jn 2

REY™  AES™ and

Jn 2

n

1(1
RES®V

1(1)
AEN

1(1
NESD

12
REJ@

1(2)
AEN

sl(2)
NE!

1(3
RES®

sl(3)
AE}

1(3)
NEN

16
32
64
128
256
512
1024
2048

3.64 x 107!
2.14 x 107!
1.09 x 107!
5.69 x 1072
2.80 x 1072
1.41 x 1072
7.06 x 1073
3.53x 1073

1.41 x 107!
7.40 x 1072
3.77 x 1072
1.90 x 1072
9.55 x 1073
4.78 x 1073
2.39 x 1073
1.20 x 1073

2.40
2.44
2.45
2.45
2.45
2.45
2.45
2.45

5.89 x 1073
1.73 x 1073
4.55x 107
1.18 x 1074
2.92 x 1073
7.39 x 107°
1.85 x 107°
4.63 x 1077

1.07 x 102
2.62x 1073
6.77 x 1074
1.70 x 1074
425 % 1073
1.06 x 1073
2.66 x 107°
6.66 x 1077

3.08
2.85
2.86
2.83
2.81
2.80
2.80
2.79

8.07 x 10~*
9.43 x 107>
1.16 x 107>
1.44 x 10°
1.80 x 1077
2.24 x 1078
2.80 x 107°
3.50 x 10~10

3.33x 1073
3.86 x 10~
4.73 x 107>
5.86 x 107°
7.29 x 1077
9.11 x 1078
1.14 x 1078
1.42 x 10~

1.63 x 10!
1.39 x 10!
1.30 x 10!
1.26 x 10!
1.24 x 10!
1.23 x 10!
1.23 x 10!
1.22 x 10!

Table 2. Example 6.2. The relative, absolute, and normalized individual eigenvalue errors RE’;
NE}",

J-n

eigenvalues A ;.» Whose distance from the cusp point in Fig. 5 exceeds 1/50

sl(m)
J.n 2

AEY™ | and

Jn

respectively, for 7,,(a) with a given by (6.2), m = 1,2,3 and different values of n. We considered only the

n

si(1)
RE!

sl(1)
AE!

NESI(I)

s1(2)
RE!

sl(2)
AE!

sl(2)
NE!

RESI(3)

sl(3)
AES

sl(3)
NE!

16
32
64
128
256
512
1024
2048

3.64 x 107!
2.14 x 107!
1.09 x 107!
5.69 x 1072
2.80 x 1072
1.41 x 1072
7.06 x 1073
3.53x 1073

1.41 x 107!
7.40 x 1072
3.77 x 1072
1.90 x 1072
9.55 x 1073
4.78 x 1073
2.39 x 1073
1.20 x 1073

2.40
2.44
2.45
2.45
2.45
2.45
2.45
2.45

5.89 x 1073
1.73 x 1073
4.55x 10~
1.18 x 1074
2.92 x 1073
7.39 x 10~°
1.85 x 107
4.63 x 1077

1.07 x 1072
2.62x 1073
6.77 x 1074
1.70 x 1074
425 % 1073
1.06 x 1073
2.66 x 107°
6.66 x 1077

3.08
2.85
2.86
2.83
2.81
2.80
2.80
2.79

8.07 x 10~*
9.43 x 107>
1.16 x 107>
1.44 x 107°
1.80 x 1077
2.24 x 1078
2.80 x 107°
3.50 x 10~10

3.33x 1073
3.86 x 10~
4.73 x 107°
5.86 x 10°
7.29 x 1077
9.11 x 1078
1.14 x 1078
1.42 x 10~

1.63 x 10!
1.39 x 10!
1.30 x 10!
1.26 x 10!
1.24 x 10!
1.23 x 10!
1.23 x 10!
1.22 x 10!

Let A e A ;. . D€ the eigenvalues of 7, (a) belonging to U . Finally, consider the respective maximum

€ITors

AE™ = max{AEjf}'Z) p=1,...,0},

RE™ = max{REj-f}'Z) p=1,...,0},

NE!™ = max{NEj':,',',') p=1,...,0}.

Our expansions in Theorem 2.2 tells us that NEZ]('”) = 0(1), thus we expect to obtain bounded normal-
ized errors as n increases to infinity. In our examples, they are apparently convergent (see Tables 1—3).

In order to calculate any of the preceding errors, we need sp 7, (a) first. All considered examples pro-

duce severely ill conditioned eigenvector matrices, i.e., ~10*' for n = 1000; making their calculation very
hard. We used the software Julia with data type ComplexBigFloat-2048, which corresponds approxi-
mately to 660 working precision digits. The numerical experiments were conducted on a computer with
an AMD Ryzen Threadripper 3970X CPU (2 TB RAM) and with Julia version 1.9.2.a.

Example 6.1. Consider the symbol

a(t) = %+(3+i)z+t2. (6.2)
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Table 3. Example 6.3. The relative, absolute, and normalized individual eigenvalue errors RE i
NESl(m),

J.n
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eigenvalues A . Whose distance from the branch point in Fig. 9 exceeds 1/20

sl(m)

1465

AEY™ and

Jn 2

respectively, for 7, (a) with a given by (6.4), m = 1,2,3 and different values of n. We considered only the

n | RE" AE}" INEIV| REN? AE}®  INEY?| REJY AES® | NEJO
1613.64x 107" | 1.41 x 101 | 2.40 [5.89x 1073 |1.07 x 1072 | 3.08 [8.07 x 10~* |3.33 x 1073 | 1.63 x 10!
320214 %1071 7.40 x 1072 244 |1.73x 1073 |2.62x 1073 | 2.85 [9.43 x 10> |3.86 x 107#|1.39 x 10!
64|1.09 x 1071 3.77 x 1072 | 2.45 [4.55x1074]6.77 x 107*| 2.86 | 1.16 x 107> |4.73 x 107> | 1.30 x 10!
128/5.69 x 1072 1.90 x 1072 | 2.45 | .18 x 107*| 1.70 x 10~*| 2.83 | 1.44 x 107° |5.86 x 107°|1.26 x 10!
256[2.80 X 1072 [9.55x 1073 | 2.45 [2.92x 1075|425 x107| 2.81 |1.80x 1077 [7.29 x 1077 [ 1.24 x 10!
512 1.41 x 1072 [ 4.78 x 1073 | 2.45 [7.39x 107 1.06 x 10| 2.80 [2.24 x 10~% [ 9.11 x 108 [ 1.23 x 10!
1024|7.06 x 1073|2.39 x 1073 | 2.45 [1.85%x107%[2.66 x 107°| 2.80 |2.80 x 10~ | 1.14 x 10~% | 1.23 x 10!
2048(3.53 x 1073 [ 1.20 x 1073 | 2.45 |4.63 x 1077|6.66 x 10~7| 2.79 |3.50 x 1071°| 1.42 x 107 [ 1.22 x 10!

Step (i) of the algorithm in Section 5 yields the three functions v, (blue), v, (red), and v, (black), as shown
in the middle image of Fig. 3. However, as seen in the right image, only two of these functions contribute
to the limiting set A(a). In both cases, the corresponding domains are (0, it].

Although the eigenvalues can be ordered by non-decreasing real part, the range of y, runs from right

to left, while that of y, goes from left to right. This reversal in direction complicates the ordering and
makes the situation less straightforward.

Figure 4 presents the individual relative errors for all eigenvalues of 7,,(a) . To data was collected by first

considering the eigenvalues approximated by y,, followed by those approximated by \,. In this example,
we were able to include the full set of eigenvalues. Table 1 shows the maximum relative, absolute, and nor-
malized errors for various values of n and m.

Example 6.2. Consider the symbol

at) =S+t + 1, (6.3)
1t

where the constant ¢ = —1.91873 — 0.665582i is chosen so that A(a) consists of exactly two analytic arcs

(see [7]). As in the previous example, step (i) of the algorithm in Section 5 produces three functions: v,

(blue), v, (red), and v; (black), shown in the middle image of Fig. 6. However, as seen in the right image,

only two of these functions contribute to the limiting set A(a). In both cases, the domains are (0, it].

273 F 4 273 F
1.36 | 2+ 1.36 F
| N\
~1.36 1 2 —1.36 }
273k . . . 4L . . —2.73L . . .
~530 —2.15 1.00 415 730 320 -2.18 —115 —0.3 090 —5.30 —2.15 1.00 4.15 7.30

Fig. 3. Example 6.1. Let a be the symbol in (6.2). (Left) the range (cyan curve) and limiting set (brown points). (Middle)
The blue, red, and black points are the range of v;, v,, and vs, respectively. (Right) The same as the middle image but for
ao Vj.

Vol.65 No.7
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1072F
1074+
1076 -
10°8
10~10
10712
10714 F
10~16

10—18 L L L 1
1 512 1024 1536 2048

Fig. 4. Example 6.1. The relative error REj.l(nm)

(blue), m = 2 (red), m = 3 (green).

for the eigenvalues of 7,,(a) with a given by (6.2), n = 2048, and m = 1

0.0005

—0.0004

—0.0013

—0.0021

—0.0030 i 1 1 1 1
—2.572 —2.571 —2.570

Fig. 5. Example 6.2. A zoom in for the eigenvalues of 7,,(a) where a is given by (6.3) and n = 2048. The gray curve is the
limiting set. The black points are the exact eigenvalues while the blue stars and red points are the eigenvalue approxima-

tions 7\.;](”'") in (6.1), for m =1 and m = 2, respectively.

2.13F 4 2.13F
1.07F 2F .07}
0F 0 0f
~1.07 -2t ~1.07
—2.13L . —4 —2.13L L ! !

—-3.03 —1.02 1.00 3.01 5.03

—0.86 0.05 0.97 189 280 —-3.03 —1.02 1.00 3.01 5.03

Fig. 6. Example 6.2. Let a be the symbol in (6.3). Left: the range (cyan curve) and limiting set (brown points). Middle:
The blue, red, and black points are the range of v;, v,, and v, respectively. Right: The same as the middle image but for
aov;.

J
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102
1074
1076
1078
10710
10712
10714
10-16
10718

1 512 1024 1536 2048

Fig. 7. Example 6.2. The relative error REi.l(nm) for the eigenvalues of 7,,(a) with a given by (6.3), n = 2048 and m = 1
(blue), m = 2 (red), m = 3 (green).

1.85 120 1.85F
0.92| 0.53F 0.92
0l —0.15} 0
~0.92 —0.83} ~0.92
—1.85L i L L —1.50L L L L ] 185k . L L

—1.20 —0.38 0.44 126 2.08 —-2.20 —1.15 —0.10 095 2.00 —1.20 —0.38 0.44 1.26 2.08

Fig. 8. Example 6.3. Let a be the symbol in (6.4). Left: the range (cyan curve) and limiting set (brown points). Middle:
The blue, red, and black points are the range of v;, v,, and v, respectively. Right: The same as the middle image but for
aov;.

J

The presence of a cusp point in the limiting set significantly complicates the ordering of the eigenval-
ues. Figure 5 shows a zoomed-in view of the eigenvalues near this point. It illustrates how difficult it is to
determine whether a given eigenvalue belongs to one arc or the other. Furthermore, near this non-simple
point, the approximation with one term kj-]f,,” (blue stars) outperforms the two-term approximation ki-]’(,,z)
(red points), highlighting that our results are not valid for non-simple points.

Figure 7 displays the individual relative errors for all eigenvalues of 7, (a). To obtain the data, we first

worked with the eigenvalues approximated via y,, followed by those approximated via y,. In this example,
it was possible to work with the full set of eigenvalues. However, it is worth noting that those located near
the cusp point exhibit irregular error behavior. Table 2 presents the maximum relative, absolute, and nor-
malized errors for various values of # and m.

Example 6.3. Consider the symbol

3+i
t

In this case, the limiting set A(a) consists of three analytic arcs. Step (i) of the algorithm in Section 5 yields
the three functions v, (blue), v, (red), and v, (black), as shown in the middle image of Fig. 8. As seen in
the right image, all three functions contribute to different portions of the limiting set A(a). Their respec-
tive domains are approximately given by dom(y,) = (0,2.8881), dom(y,) = (0,2.2365), and
dom(y;) = (0,1.1585).

a(t) = +G+i)+1. (6.4)
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0.0072

0.0019

—0.0034

—0.0087

—0.0140 ' ' ' '
—0.6420 —0.6275 —0.6130

Fig. 9. Example 6.3. A zoom in for the eigenvalues of 7,,(a) where a is given by (6.4) and n = 2048. The gray curve is the
limiting set. The black points are the exact eigenvalues while the blue stars and red points are the eigenvalue approxima-

tions k;l(nm) in (6.1), for m =1 and m = 2, respectively.

1072
1074
1076
1078
10710 -
1012
10714+
10~16

512 1024 1536 2048

—

Fig. 10. Example 6.3. The relative error REj‘(n’”) for the eigenvalues of 7,,(a) with a given by (6.4), n = 2048 and m = 1
(blue), m = 2 (red), m = 3 (green).

Figure 9 shows a zoomed-in view of the eigenvalues and their approximations near the branch point
where the three analytic arcs meet, highlighting the eigenvalues and their approximations. Figure 10 pres-
ents the individual relative errors RE;',(,,'”) for all eigenvalues of 7,(¢) and m = 1 (blue), m = 2 (red), and
m = 3 (green). The data was obtained by considering first the eigenvalues approximated by v, (from right

to left), followed by those approximated by y, (from bottom to top), and finally those by y, (from top to
bottom). Table 3 reports the maximum relative, absolute, and normalized errors for various values of n
and m.

Example 6.4. Consider the symbol
a(t) = %+%+3t—t2, (6.5)
1

which generates a penta-diagonal Toeplitz matrix. In this case, the limiting set A(a) consists of five ana-
lytic arcs. Step (i) of the algorithm in Section 5 produces the four functions v, (blue), v, (red), v, (black),
and v, (orange), plotted in the middle image of Fig. 11. As shown in the right image, all four functions
contribute to different parts of the limiting set A(a), in particular, y; gives rise to two different parts.
The corresponding domains are approximately given by dom(y,) = dom(y,) = (0,1.7449),
dom(y;) = (0,0.8975) U (1.8015,2.7869), and dom(y,) = (0,0.8975).
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4.71F 2.50F / 4.713

236 1.25 2.356

—2.36 —1.25 —2.356

: '-f.f_:\\

1.670 -32 —-1L1 1.0 31 5.2

—4.7]1 & 1 1 L b -2

50 % —4.713
—-32 —-11 10 31 52 —0.900

0.385

Fig. 11. Example 6.4. Let a be the symbol in (6.5). (Left) The range (cyan curve) and limiting set (brown points). (Middle)
The blue, red, black, and orange points are the range of vy, v,, v3, and vy, respectively. (Right) The same as the middle
image butforaov;.

0.06 F 0.02F
[
[ ¢
0.03 | 0.01
&
@
O B O @ 0 * O x O * @ x @
&
&
—0.03 | —0.01
L 3
9
—0.06 1 1 1 I —0.02 k& 1 1 I !
1.480  1.458  1.435 1.413  1.390 3.60 3.63 3.66 3.69 3.72

Fig. 12. Example 6.4. A zoom in for the eigenvalues of 7,,(a) where a is given by (6.5) and n = 2048, near the two branch
points where different analytic arcs meet. The gray curve is the limiting set. The black points are the exact eigenvalues

while the blue stars and red points are the eigenvalue approximations Xj.lim) in (6.1), for m = 1 and m = 2, respectively.

1076
1078
10~10
10712
1014
10~16

1 512 1024 1536 2048

Fig. 13. Example 6.4. The relative error REit;m) for the eigenvalues of 7},(a) with a given by (6.5), n = 2048 and m = 1
(blue), m = 2 (red), m = 3 (green).
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Table 4. Example 6.4. The relative, absolute, and normalized individual eigenvalue errors RE’;

NEsl(m)

oo
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sl(m)
J.n 2

AEY™ and

Jn 2

respectively, for 7, (a) with a given by (6.5), m = 1,2,3 and different values of n. We considered only the
eigenvalues A J.» Whose distance from the two branch points in Figure 12 exceeds 1/20

n RES" AESY INEYP| RE)? AES? INEJ)?|  REJY AE}®  INEJ®
16 [2.74x 1072 9.31 x 1072 | 1.58 | 1.01 x 1073 3.45x 1073| 1.00 | 118 x 10~* |4.01 x 10~* | 1.97
32 [2.58 %1072 6.83x 1072 | 2.25 [4.46x10~*| 1.18 x 103 | 1.29 [8.95% 107¢ |2.37 x 10> | 0.85
64 | 1.43x 1072 3.66 X 1072 | 2.38 | 1.30 x 107%|3.33x 1074 | 1.41 | 1.30x 10® [3.32x107® | 0.91
128 | 8.54x 1073 [2.00 x 1072 | 2.58 [3.93x107°[9.22x 1073 | 1.53 |2.09 x 1077 [4.90x 1077 | 1.05
256 | 4.14x 1073(9.92x 1073 | 2.55 |9.61 x 107° | 231 x 107 | 1.52 [2.55%x 1078 | 6.11 x10~% | 1.04
512 1210 x 1073 | 5.01 x 1073 | 2.57 [2.45%x107°|584x107°| 1.54 | 3.27x 107 | 7.80 x 10~ | 1.05
1024 | 1.04 x 1073 [ 2.50 x 1073 | 2.56 | 6.08 X 1077 | 1.46 x 107°| 1.53 | 4.06 x 10710 | 9.74 x 1010 | 1.05
2048 [ 5.26 x 1074 | 1.26 x 1073 | 2.57 | 1.54x 1077 | 3.67 x 1077 | 1.54 | 5.16 x 107" | 1.23 x 10717 | 1.06

Figure 12 shows a zoomed-in view of the eigenvalues and their approximations near the two branch

points where the analytic arcs meet. Figure 13 displays the individual relative errors REj.lL'") for all eigen-
values of 7,,(a) and m =1 (blue), m = 2 (red), and m = 3 (green). The data was obtained by first process-
ing the eigenvalues approximated by , (from top to bottom), followed by those by y, (from bottom to

top), then the two parts of 5, and finally those by y, (from bottom to top). Table 4 reports the maximum
relative, absolute, and normalized errors for various values of #» and m.

FUNDING

The research of M. Bogoya was supported by project CI 41701, Facultad de Ciencias, Universidad del Valle.

The research of S.M. Grudsky was supported by CONACYT (Mexico) project “Ciencia de Frontera”
FORDECYT-PRONACES/61517/2020 and by Regional Mathematical Center of the Southern Federal University
with the support of the Ministry of Science and Higher Education of Russia, Agreement 075-02-2025-1720.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

. E. E. Tyrtyshnikov, “A unifying approach to some old and new theorems on distribution and clustering,” Linear

Algebra Appl. 232, 1—43 (1996).

A. Bottcher and S. M. Grudsky, Spectral Properties of Banded Toeplitz Matrices (SIAM, Philadelphia, Pa., 2005).

A. Béttcher and B. Silbermann, Analysis of Toeplitz Operators, 2nd ed. (Springer, Berlin, 2006).

U. Grenander and G. Szegd, Toeplitz Forms and Their Applications, 2nd ed. (AMS Chelsea, New York, 1984).

P. Schmidt and F. Spitzer, “The Toeplitz matrices of an arbitrary Laurent polynomial,” Math. Scand. 8, 15—38

(1960).

6. A. Bottcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices (Springer-Verlag, New York,
1999).

7. A. Bottcher, J. Gasca, S. M. Grudsky, and A. V. Kozak, “Eigenvalue clusters of large tetradiagonal Toeplitz ma-
trices,” Integr. Equations Oper. Theory 93, 8 (2021).

8. J. L. Ullman, “A problem of Schmidt and Spitzer,” Bull. Am. Math. Soc. 73, 883—885 (1967).

9. M. Bogoya, J. Gasca, and S. M. Grudsky, “Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz ma-
trices,” J. Spectral Theory 15 (1), 441—477 (2025).

10. A. Bottcher, S. M. Grudsky, and E. A. Maximenko, “Inside the eigenvalues of certain Hermitian Toeplitz band
matrices,” J. Comput. Appl. Math. 233 (9), 2245—-2264 (2010).

11. A. Bottcher, M. Bogoya, S. M. Grudsky, and E. A. Maximenko, “Asymptotics of eigenvalues and eigenvectors
of Toeplitz matrices,” Sb. Math. 208 (11), 1578—1601 (2017).

—_—

A

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 65 No.7 2025



EIGENVALUES OF NON-HERMITIAN BANDED TOEPLITZ MATRICES 1471

12. M. Bogoya, A. Bottcher, and S. M. Grudsky, “Asymptotic eigenvalue expansions for Toeplitz matrices with cer-
tain Fisher—Hartwig symbols,” J. Math. Sci. 271, 176—196 (2023).

13. S.-E. Ekstrom, C. Garoni, and S. Serra-Capizzano, “Are the eigenvalues of banded symmetric Toeplitz matri-
ces known in almost closed form?,” Exp. Math. 27 (4), 478—487 (2018).

14. S.-E. Ekstrom and C. Garoni, “A matrix-less and parallel interpolation—extrapolation algorithm for computing
the eigenvalues of preconditioned banded symmetric Toeplitz matrices,” Numer. Algorithms 80, 819—848
(2019).

15. S.-E. Ekstrom and P. Vassalos, “A matrix-less method to approximate the spectrum and the spectral function
of Toeplitz matrices with real eigenvalues,” Numer. Algorithms 89, 701—720 (2022).

16. H. Widom, “Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz deter-
minants in the case of nonvanishing index,” in Topics in Operator Theory: Ernst D. Hellinger Memorial Volume
(Birkhéuser, Basel, 1990), pp. 387—421.

17. M. Bolten, S.-E. Ekstrom, 1. Furci, and S. Serra-Capizzano, “Toeplitz momentary symbols: Definition, results,
and limitations in the spectral analysis of structured matrices,” Linear Algebra Appl. 651, 51—82 (2022).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Al tools may have been used in the translation or editing of this article.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 65 No.7 2025



	1. INTRODUCTION
	2. MAIN RESULTS
	3. TECHNICAL MATTERS
	4. PROOFS OF THE MAIN RESULTS
	5. AN ALGORITHM TO CALCULATE THE FUNCTION TOGETHER WITH ITS DOMAIN FOR EACH ANALYTIC ARC IN
	6. NUMERICAL EXPERIMENTS
	REFERENCES

		2025-08-13T13:18:44+0300
	Preflight Ticket Signature




