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Abstract—For large non-Hermitian banded Toeplitz matrices, it is well known that their eigenvalues
cluster along a limiting set, which is formed by a finite union of closed analytic arcs. We consider gen-
eral non-Hermitian banded Toeplitz matrices and extend the simple-loop method to obtain individual
asymptotic expansions for eigenvalues approaching simple and non-degenerate points of the limiting
set as the matrix order increases to infinity. We also develop an algorithm to effectively compute these
expansions.
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1. INTRODUCTION

Let  be a function in , where  is the boundary of the unit complex disc. We denote by
 the  Toeplitz matrix ,

where  stands for the th Fourier coefficient of , that is

As we can see, the matrix  has constant entries along the main diagonals. The function  is usually
called symbol or generating function.

Due to their wide range of applications, Toeplitz matrices have been a subject of sustained interest for
over a century. In particular, the study of their spectral properties–including spectral distribution, clus-
tering, localization, and the behavior of eigenvalues and eigenvectors–has generated a vast body of litera-
ture. See the brilliant and beautiful paper [1] of E. Tyrtyshnikov for a compendium and unifying results
about spectral distribution, localization, and clustering. Further general and in-depth treatments of
Toeplitz operators and matrices can be found in [2–4].
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Fig. 1. (Left) The range (green curve) and the limiting set (brown curve) for the symbol a(t) = –t–4 – (3 + 2i)t–3 +

. (Right) The -pseudospectrum of . The black points are the eigenvalues of
 while the green to brown curves correspond to , 1/30, …, 1/90, respectively. This example is called the

“whale” and was treated in [6], where a picture similar to the left one appears on the title page. The limiting set was com-
puted using the algorithm in [7].
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The spectral study of Toeplitz matrices naturally divides into two cases: Hermitian and non-Hermitian.
The former case has been extensively studied and, in general, is well understood. But besides a number of
related articles, it is fair to say that the latter case is more complicated and less clear.

The matrix  is Hermitian if and only if  is real-valued. Therefore, to study the non-Hermitian
case we need to focus on truly complex-valued symbols.

Let  be a Laurent polynomial, that is,

(1.1)

where  for  and . The cases  and  produce trivial spectra, hence we
assume that . In 1960 P. Schmidt and F. Spitzer [5] showed that, as  increases to infinity, the spec-
tra  converge in the Hausdorff metric to a certain limiting set , which is the union of finitely
many analytic arcs, see Fig. 1.

For a symbol  with the form (1.1), the respective matrix  has a finite number of non-zero diago-
nals. In such a case we say that it is a banded Toeplitz matrix.

The findings in [5] were among the first to achieve a degree of generality in the non-Hermitian case.
However, they provided no description of how to find those arcs, nor even how many of them  con-
tains. It was only with the work of [8] that the connectedness of  was established.

For a banded Toeplitz matrix, the eigenvector matrix of  is, in general, severely ill conditioned.
Hence, the numerical computation of its eigenvalues is a challenging task (see the related discussion in the
introduction of [9]). To see that, consider the well-known -pseudospectrum of a matrix  given by

For small values of , let’s say , we expect that  separates the eigenvalues of . But if it is
not, then an reliable numerical calculation of those eigenvalues will require a large number of precision
digits, memory, and processing time. Figure 1 shows the -pseudospectrum for an iconic example. There
we can see that the eigenvalues near the central part are impossible to approximate using machine preci-
sion. For instance, to obtain those eigenvalues in the software Julia v.1.9.2 for  with 16 correct
decimal digits, it was necessary to compute them using 2048-bit BigComplexFloat data type, which is
equivalent to 660 digits of precision. The process took 16 days and consumed 1.8 TB of memory in a super-
computer.
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The study of eigenvalue distributions – understood as the probability density describing their spread
across the complex plane – evolved until the 1996 celebrated paper [1], which marked a culmination of
that research branch.

In 2010, the work [10] considered a class of Hermitian Toeplitz matrices and developed a technique
known as simple-loop method (SLM), providing individual asymptotic expansions for their eigenvalues. In
the Hermitian case, the SLM evolved from treating Laurent polynomials to handling more general sym-
bols in weighted Wiener algebras  with different weights . For the non-Hermitian case, the SLM has
so far been limited to banded Toeplitz matrices with a fixed number of non-zero diagonals; see [11, 12] for
a detailed account.

Let  be the eigenvalues of . Under certain assumptions on the symbol , the SLM
shows that there exists an integer  (depending on the smoothness of ) such that

where ; the coefficients  are functions depending on  that can be com-

puted; and the remainder term  is of order  as  uniformly in . Such
expansions have inspired a number of numerical studies (see, e.g. [13–15]), suggesting broader applica-
bility beyond the original simple-loop setting.

In the present work, we focus on general banded Toeplitz matrices, that is, with symbols having the
form (1.1). Our attention is on the eigenvalues approaching simple and non-degenerate points of the lim-
iting set. Roughly speaking, these correspond to interior points of the analytic arcs forming the limiting
set, and will be described in detail later. We extend SLM to this setting, deriving the respective individual
asymptotic eigenvalue expansions.

The paper is organized as follows. Our main results are presented in Section 2. The technical tools
needed for the proofs appear in Section 3, while the proofs themselves are given in Section 4. In Section 5,
we introduce a numerical algorithm that implements our expansions, and in Section 6, we present several
numerical experiments that illustrate our results.

2. MAIN RESULTS

For a Laurent polynomial  with the form (1.1), the limiting set  of the spectra  can be
defined as

In [5], P. Schmidt and F. Spitzer gave the following interesting description of : a point  belongs
to  if and only if , where  are the roots of the polynomial ,
sorted in non-decreasing modulus order. This description served as the theoretical base for the algorithm
developed in [7], which produces points in the limiting set without computing any eigenvalue at all. It was
also employed recently in [9] to obtain individual eigenvalue expansions for a class of tetradiagonal
Toeplitz matrices. We use the same description here.

A point  is called simple if  but . (In the
particular cases , , we simply remove the terms , , respectively.) In such a case
there is a unique number  such that . In the bulk of our calculation we will
need to find the th root of the polynomial  as a function of , which according to the
implicit function theorem, can be done locally if

exists and is non zero. Hence, we call a simple point  non-degenerate if
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and otherwise we call it degenerate. According to Theorem 3.2 in [7], a non-degenerate simple point is a
regular point of , meaning that it has an open neighborhood  such that  is an analytic
arc (without self-intersection) starting and ending at the boundary of .

Let  be a non-degenerate simple point of , and let  be a neighborhood of  such that

(2.1)

for every . Since  is a regular point of , we must have , and, by reducing
 if necessary, we can assume that the same is true for every .

Since  is an analytic arc, the inverse function theorem tells us that each  is analytic there
also. Hence, we can extend each  analytically to all of .

If  runs over the analytic arc , the number  satisfying

is unique and real. Note that by swapping  with , if necessary, we can assume that .
Naturally,  becomes an analytic function on , and we can extend it analytically to all of , but
now it will have complex values. We will prove that  have an inverse function , which is a conformal
map. Finally, consider the function  given by , which is clearly analytic.
See the following diagram.

Fix a non-degenerate simple point  and let ; consider the set

where  is a sufficiently large constant and  are chosen so that

•  and ;

• for every sufficiently large ,  admits an analytic continuation on , and for every  the
point  satisfies (2.1) and .

For , let  and define  as

Since  is the limiting set of the spectra , for every sufficiently large , we will have eigenvalues
of  in . The following theorem gives us a recursive equation to calculate them.
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Theorem 2.1. Let  be the Laurent polynomial in (1.1) and let  be the eigenvalues of 
belonging to . Then, for every sufficiently large  the following statements hold.

(i) The numbers  are pairwise distinct and for each , there is a number 
such that .

(ii) For each , there exist a small neighborhood  where  is the unique solution of

with  (where the principal branch of the logarithm is taken) and  is an infinitely differentiable
function over , playing the role of a remainder term with order  for
some , as  uniformly in .

In practice, the neighborhood  can be taken such that it contains all the non-degenerate simple
points of an analytic arc of . Then  will travel through that analytic arc from one end to the other,
and the subsequence  will have the form  for some fixed number . In such a case, the
eigenvalues  for  will be sorted along the respective analytic arc from one end to the other.
We use this approach in Section 6 to sort the eigenvalues and to measure the respective errors.

Theorem 2.2. Under the same hypothesis of Theorem 2.1, as , for every integer  and every
 we have the following expansions:

where  and the coefficients  and  are functions that, in principle, can be determined
explicitly, for instance

 and  are remainder terms satisfying  and , as 
uniformly in .

Our numerical experiments show (see Figs. 5, 9, and 12) that, when approaching the singular points of
the limiting set, the accuracy of the expansions in Theorem 2.2 decreases, but remains acceptable if high
precision calculations are not required.

3. TECHNICAL MATTERS
Throughout this section we assume that  is a Laurent polynomial with the form (1.1), and that

 is a non-degenerate simple point.
Lemma 3.1. For every sufficiently large , the function  is a conformal map of  onto its image.
Proof. Since , it is clearly analytic. Suppose that there exist 

such that . We then have

for . Consequently, taking  we get

and we arrive at . This happens only if , which is impossible, or , which
implies , as desired. We have proved that  is injective on . Finally, for every sufficiently
large , we can extend the same property to .
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Remark 3.1. The function  maps the real interval  into the limiting set ;
consequently, it is our spectral symbol (the function in the leading term of the respective eigenvalue expan-
sion). We will construct  as . Recall that  satisfies both  and  for
some .

In principle, the parameter  belongs to , but if  is a solution of  with
, we obtain

where . Thus,  also solves .

On the other hand, if  solves , then , which implies that
it is enough to consider values of  in the interval .

In 1990, H. Widom [16] proved the following. Let  be the roots of the polynomial . If
they are pairwise distinct, then

(3.1)

where , the sum runs over all sets  having cardinality ,

and .
Let  be a point in the region  where  is analytic and conformal, and take . As in the pre-

vious section, let  be the roots of the polynomial  sorted in non-decreasing
modulus order. Recall that .

A point in  is called branch point if at least two of the roots   coincide. Since
there is a finite number of branch points, by reducing  if necessary, we can assume that there is no branch
points in . Consequently, the roots  are pairwise distinct for all . For brevity,
write  instead of . The following theorem gives an asymptotic expression for .

Theorem 3.2. For every sufficiently large  and  with , we have

where  is an analytic function on  satisfying  for some , as  uniformly in s.
Proof. Applying (3.1) to the symbol , we obtain an expression for  where the

main contribution for  large enough is given by terms with maximum absolute value of . We have here
exactly two terms ,  with this property:
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A simple calculation produces

Consequently,

which can be written as

where , which clearly is an analytic function on . To find the
order of  as , note first that, since the region  is compact and the roots  are sorted in
non-decreasing modulus order, the number

is strictly positive and smaller than .
Additionally, for each  the roots  are pairwise distinct, which implies the existence of a

constant  such that

for any . Every  with  must contain an index , then

and we arrive at

which implies  uniformly in , proving the theorem.

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 2.1. We are interested in the eigenvalues of  belonging to , which is equivalent
to solving the equation  for  Since  is the limiting set of the spectra  and

 is a neighborhood of the non-degenerate simple point , we know that  for
every sufficiently large . Hence, let  be the eigenvalues of  belonging to U.
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From Lemma 3.1 we know that  is a conformal (and hence injective) map from  to . By reducing
, if necessary, we can assume that for each , there exists a unique point  in  such that

. This gives us the part (i).

We now prove the part (ii). From Theorem 3.3,  is an eigenvalue of  if and only if

which we write as

We now simplify the previous quotient of products. Assume first the case  and . Let
. After expanding and simplifying the common terms, the previous relation

becomes

where

Taking the principal branch of the logarithm we obtain

for , and we are left with finding the order of the last term on the right.

Note that  is clearly analytic, and if  with , then , while  for .
Thus  is bounded away from zero in  and is also bounded. Therefore, we can choose a continuous
branch of the function  in the region . Moreover, the term  is analytic
there.

A simple calculation shows that

where , meaning . Finally, we have

The uniqueness of the solution  on  is a consequence of Lemma 4.1. The cases where  or
, can be proved similarly.
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Take any . Theorem 2.1 tells us, in particular, that  is an eigenvalue of ,
belonging to , if and only if  solves

(4.1)

where . The relation (4.1) is an implicit equation for , which we will solve using the
Banach fixed-point theorem. The term  plays the role of a remainder, suggesting the usage of the
reduced equation

(4.2)

We now introduce the necessary objects to prove Theorem 2.2. Consider the functions

Note that if  and  are solutions of (4.1) and (4.2), respectively, then we obtain

(4.3)

Now, we state the following technical lemma.
Lemma 4.1. For each  and every sufficiently large , there exists a collection of mutually dis-

joint neighborhoods  such that  and both  and  are contractive maps on .
The previous lemma is quite similar to Proposition 4.1 in [9], so we omit the proof.
Proof of Theorem 2.2. After Lemma 4.1, the Banach fixed-point theorem tells us that (4.2) has a unique

solution  and that we can find it by iteration. Specifically, if  then the sequence ,

given recursively by  , converges to .

Since  is analytic on the compact region , Eq. (4.2) tells us that . Hence, a first
iteration produces

Similarly, a second iteration reads

Continuing this process, for any integer , we obtain the expansion

where  and  are analytic functions on , and  uniformly in .

Now, we estimate the distance between  and . From (4.3), we have
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for some  in . Letting , we arrive at

Consequently, for any integer , we obtain the expansion

where  is an analytic function on  with  uniformly in .

Finally, to obtain the expansion for , it is enough to apply  to the previous expression
using its analyticity and the Taylor theorem.

5. AN ALGORITHM TO CALCULATE THE FUNCTION  
TOGETHER WITH ITS DOMAIN FOR EACH ANALYTIC ARC IN 

The expansions in Theorem 2.2 can be used to directly calculate any eigenvalue of  approaching
a non-degenerate simple point of  for an arbitrarily large , but first we need , for which we do not
have an explicit expression.

It is required to select the point , which is equivalent to selecting an analytic arc there. Con-
sequently, we will have a different function  for each analytic arc. The following algorithm achieves this
and provides the domain of each function .

This algorithm produces functions  for every analytic arc in  together with their domains.

(i) For a large and fixed integer , set  . The sequence  is a regular
mesh of the interval . For each , calculate the roots  of the polynomial

.
(ii) For every , compute  (sorted in non-decreasing modulus order) as

the roots of the polynomial

(iii) According to the work of Schmidt and Spitzer,  belongs to  if and only if
. Hence, if this condition holds, take the index  such that , define
, and include the point  in the respective domain. Otherwise, exclude .

Remark 5.1. Each iteration in step (i) produces the sets . Some roots may be inter-
changed between iterations. To track them accurately, sort them in non-decreasing modulus order, ensur-
ing the principal argument of  is positive whenever .

Notice that when selecting  in step (iii), we are effectively selecting an analytic arc in .
The previous algorithm provides the values  and the collection of indexes  such that

, denoted . Note that the values  for  may form one or more intervals. To obtain
 for any , take a large positive integer  and interpolate the data

As an illustration of the precedent algorithm consider again the symbol in Fig. 1, that is

(5.1)

which produces a banded Toeplitz matrix with 9 non-zero diagonals. In this case we have  and .
The limiting set  contains five analytic arcs.

For , step (i) produces points over the continuous and smooth functions  ,
but, according to step (iii), only a portion of their domains defines . Applying  to these  and restrict-
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Fig. 2. The range (cyan curve) of the symbol  in (5.1) and the range of  (blue),  (red),  (orange),  (gray), and
 (black).
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ing the domains yields the five smooth curves in Fig. 2. It is clear that the limiting set  is contained in
the combined ranges of  , to be more specific, put  and take into account

while  for . Note that this domains agree with Remark 3.2. Thus,  is parti-
tioned into the five analytic arcs given by  .

6. NUMERICAL EXPERIMENTS

In this section we present our numerical experiments for four selected examples, the first three leading
to a tetradiagonal Toeplitz matrix and the last one leading to a pentadiagonal Toeplitz matrix.

As noted in [17], when dealing with spectra of banded Toeplitz matrices, a difficult question arises:
how should the eigenvalues be sorted? At first sight, one might be tempted to sort them by the order
induced when tracing each analytic arc from endpoint to endpoint. However, when approaching a point
where two or more arcs meet, it is very difficult to determine to which arc a particular eigenvalue belongs.

In this article, to measure the error introduced by our expansions, we adopt a different approach. Let
us define the following error quantities. For each  and each index  with , con-
sider the th term approximation given by Theorem 2.2,

(6.1)

and the respective absolute error

As the reader can see, by measuring the distance between a point and a set, we avoid any eigenvalue order-
ing but, at the same time, we make the algorithm heavier. Consider also the respective relative and nor-
malized errors

where  is the eigenvalue of  closest to .
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Table 1. Example 6.1. The relative, absolute, and normalized individual eigenvalue errors , , and

, respectively, for  with  given by (6.2),  and different values of 

n

16 3.64 × 10–1 1.41 × 10–1 2.40 5.89 × 10–3 1.07 × 10–2 3.08 8.07 × 10–4 3.33 × 10–3 1.63 × 101

32 2.14 × 10–1 7.40 × 10–2 2.44 1.73 × 10–3 2.62 × 10–3 2.85 9.43 × 10–5 3.86 × 10–4 1.39 × 101

64 1.09 × 10–1 3.77 × 10–2 2.45 4.55 × 10–4 6.77 × 10–4 2.86 1.16 × 10–5 4.73 × 10–5 1.30 × 101

128 5.69 × 10–2 1.90 × 10–2 2.45 1.18 × 10–4 1.70 × 10–4 2.83 1.44 × 10–6 5.86 × 10–6 1.26 × 101

256 2.80 × 10–2 9.55 × 10–3 2.45 2.92 × 10–5 4.25 × 10–5 2.81 1.80 × 10–7 7.29 × 10–7 1.24 × 101

512 1.41 × 10–2 4.78 × 10–3 2.45 7.39 × 10–6 1.06 × 10–5 2.80 2.24 × 10–8 9.11 × 10–8 1.23 × 101

1024 7.06 × 10–3 2.39 × 10–3 2.45 1.85 × 10–6 2.66 × 10–6 2.80 2.80 × 10–9 1.14 × 10–8 1.23 × 101

2048 3.53 × 10–3 1.20 × 10–3 2.45 4.63 × 10–7 6.66 × 10–7 2.79 3.50 × 10–10 1.42 × 10–9 1.22 × 101

sl( )
,RE m

j n
sl( )

,AE m
j n

sl( )
,NE m

j n ( )nT a a = 1,2,3m n

sl(1)REn
sl(1)AEn

sl(1)NEn
sl(2)REn

sl(2)AEn
sl(2)NEn

sl(3)REn
sl(3)AEn

sl(3)NEn

Table 2. Example 6.2. The relative, absolute, and normalized individual eigenvalue errors , , and

, respectively, for  with  given by (6.2),  and different values of . We considered only the
eigenvalues  whose distance from the cusp point in Fig. 5 exceeds 1/50

n

16 3.64 × 10–1 1.41 × 10–1 2.40 5.89 × 10–3 1.07 × 10–2 3.08 8.07 × 10–4 3.33 × 10–3 1.63 × 101

32 2.14 × 10–1 7.40 × 10–2 2.44 1.73 × 10–3 2.62 × 10–3 2.85 9.43 × 10–5 3.86 × 10–4 1.39 × 101

64 1.09 × 10–1 3.77 × 10–2 2.45 4.55 × 10–4 6.77 × 10–4 2.86 1.16 × 10–5 4.73 × 10–5 1.30 × 101

128 5.69 × 10–2 1.90 × 10–2 2.45 1.18 × 10–4 1.70 × 10–4 2.83 1.44 × 10–6 5.86 × 10–6 1.26 × 101

256 2.80 × 10–2 9.55 × 10–3 2.45 2.92 × 10–5 4.25 × 10–5 2.81 1.80 × 10–7 7.29 × 10–7 1.24 × 101

512 1.41 × 10–2 4.78 × 10–3 2.45 7.39 × 10–6 1.06 × 10–5 2.80 2.24 × 10–8 9.11 × 10–8 1.23 × 101

1024 7.06 × 10–3 2.39 × 10–3 2.45 1.85 × 10–6 2.66 × 10–6 2.80 2.80 × 10–9 1.14 × 10–8 1.23 × 101

2048 3.53 × 10–3 1.20 × 10–3 2.45 4.63 × 10–7 6.66 × 10–7 2.79 3.50 × 10–10 1.42 × 10–9 1.22 × 101

sl( )
,RE m
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Let  be the eigenvalues of  belonging to . Finally, consider the respective maximum
errors

Our expansions in Theorem 2.2 tells us that , thus we expect to obtain bounded normal-
ized errors as  increases to infinity. In our examples, they are apparently convergent (see Tables 1–3).

In order to calculate any of the preceding errors, we need  first. All considered examples pro-
duce severely ill conditioned eigenvector matrices, i.e.,  for ; making their calculation very
hard. We used the software Julia with data type ComplexBigFloat-2048, which corresponds approxi-
mately to 660 working precision digits. The numerical experiments were conducted on a computer with
an AMD Ryzen Threadripper 3970X CPU (2 TB RAM) and with Julia version 1.9.2.a.

Example 6.1. Consider the symbol

(6.2)
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Table 3. Example 6.3. The relative, absolute, and normalized individual eigenvalue errors , , and

, respectively, for  with  given by (6.4),  and different values of . We considered only the
eigenvalues  whose distance from the branch point in Fig. 9 exceeds 1/20

n

16 3.64 × 10–1 1.41 × 10–1 2.40 5.89 × 10–3 1.07 × 10–2 3.08 8.07 × 10–4 3.33 × 10–3 1.63 × 101

32 2.14 × 10–1 7.40 × 10–2 2.44 1.73 × 10–3 2.62 × 10–3 2.85 9.43 × 10–5 3.86 × 10–4 1.39 × 101

64 1.09 × 10–1 3.77 × 10–2 2.45 4.55 × 10–4 6.77 × 10–4 2.86 1.16 × 10–5 4.73 × 10–5 1.30 × 101

128 5.69 × 10–2 1.90 × 10–2 2.45 1.18 × 10–4 1.70 × 10–4 2.83 1.44 × 10–6 5.86 × 10–6 1.26 × 101

256 2.80 × 10–2 9.55 × 10–3 2.45 2.92 × 10–5 4.25 × 10–5 2.81 1.80 × 10–7 7.29 × 10–7 1.24 × 101

512 1.41 × 10–2 4.78 × 10–3 2.45 7.39 × 10–6 1.06 × 10–5 2.80 2.24 × 10–8 9.11 × 10–8 1.23 × 101

1024 7.06 × 10–3 2.39 × 10–3 2.45 1.85 × 10–6 2.66 × 10–6 2.80 2.80 × 10–9 1.14 × 10–8 1.23 × 101

2048 3.53 × 10–3 1.20 × 10–3 2.45 4.63 × 10–7 6.66 × 10–7 2.79 3.50 × 10–10 1.42 × 10–9 1.22 × 101
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,RE m
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Step (i) of the algorithm in Section 5 yields the three functions  (blue),  (red), and  (black), as shown
in the middle image of Fig. 3. However, as seen in the right image, only two of these functions contribute
to the limiting set . In both cases, the corresponding domains are .

Although the eigenvalues can be ordered by non-decreasing real part, the range of  runs from right
to left, while that of  goes from left to right. This reversal in direction complicates the ordering and
makes the situation less straightforward.

Figure 4 presents the individual relative errors for all eigenvalues of . To data was collected by first
considering the eigenvalues approximated by , followed by those approximated by . In this example,
we were able to include the full set of eigenvalues. Table 1 shows the maximum relative, absolute, and nor-
malized errors for various values of  and .

Example 6.2. Consider the symbol

(6.3)

where the constant  is chosen so that  consists of exactly two analytic arcs
(see [7]). As in the previous example, step (i) of the algorithm in Section 5 produces three functions: 
(blue),  (red), and  (black), shown in the middle image of Fig. 6. However, as seen in the right image,
only two of these functions contribute to the limiting set . In both cases, the domains are .
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Fig. 3. Example 6.1. Let  be the symbol in (6.2). (Left) the range (cyan curve) and limiting set (brown points). (Middle)
The blue, red, and black points are the range of , , and , respectively. (Right) The same as the middle image but for

.
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Fig. 4. Example 6.1. The relative error  for the eigenvalues of  with  given by (6.2), , and 
(blue),  (red),  (green).
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Fig. 5. Example 6.2. A zoom in for the eigenvalues of  where  is given by (6.3) and . The gray curve is the
limiting set. The black points are the exact eigenvalues while the blue stars and red points are the eigenvalue approxima-

tions  in (6.1), for  and , respectively.
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Fig. 6. Example 6.2. Let  be the symbol in (6.3). Left: the range (cyan curve) and limiting set (brown points). Middle:
The blue, red, and black points are the range of , , and , respectively. Right: The same as the middle image but for
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Fig. 7. Example 6.2. The relative error  for the eigenvalues of  with  given by (6.3),  and 
(blue),  (red),  (green).
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Fig. 8. Example 6.3. Let  be the symbol in (6.4). Left: the range (cyan curve) and limiting set (brown points). Middle:
The blue, red, and black points are the range of , , and , respectively. Right: The same as the middle image but for
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The presence of a cusp point in the limiting set significantly complicates the ordering of the eigenval-
ues. Figure 5 shows a zoomed-in view of the eigenvalues near this point. It illustrates how difficult it is to
determine whether a given eigenvalue belongs to one arc or the other. Furthermore, near this non-simple
point, the approximation with one term  (blue stars) outperforms the two-term approximation 
(red points), highlighting that our results are not valid for non-simple points.

Figure 7 displays the individual relative errors for all eigenvalues of . To obtain the data, we first
worked with the eigenvalues approximated via , followed by those approximated via . In this example,
it was possible to work with the full set of eigenvalues. However, it is worth noting that those located near
the cusp point exhibit irregular error behavior. Table 2 presents the maximum relative, absolute, and nor-
malized errors for various values of  and .

Example 6.3. Consider the symbol

(6.4)

In this case, the limiting set  consists of three analytic arcs. Step (i) of the algorithm in Section 5 yields
the three functions  (blue),  (red), and  (black), as shown in the middle image of Fig. 8. As seen in
the right image, all three functions contribute to different portions of the limiting set . Their respec-
tive domains are approximately given by , , and

.
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ψ ≈1dom( ) (0,2.8881) ψ ≈2dom( ) (0,2.2365)

ψ ≈3dom( ) (0,1.1585)
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Fig. 9. Example 6.3. A zoom in for the eigenvalues of  where  is given by (6.4) and . The gray curve is the
limiting set. The black points are the exact eigenvalues while the blue stars and red points are the eigenvalue approxima-

tions  in (6.1), for  and , respectively.
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Fig. 10. Example 6.3. The relative error  for the eigenvalues of  with  given by (6.4),  and 
(blue),  (red),  (green).
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Figure 9 shows a zoomed-in view of the eigenvalues and their approximations near the branch point
where the three analytic arcs meet, highlighting the eigenvalues and their approximations. Figure 10 pres-
ents the individual relative errors  for all eigenvalues of  and  (blue),  (red), and

 (green). The data was obtained by considering first the eigenvalues approximated by  (from right
to left), followed by those approximated by  (from bottom to top), and finally those by  (from top to
bottom). Table 3 reports the maximum relative, absolute, and normalized errors for various values of 
and m.

Example 6.4. Consider the symbol

(6.5)

which generates a penta-diagonal Toeplitz matrix. In this case, the limiting set  consists of five ana-
lytic arcs. Step (i) of the algorithm in Section 5 produces the four functions  (blue),  (red),  (black),
and  (orange), plotted in the middle image of Fig. 11. As shown in the right image, all four functions
contribute to different parts of the limiting set , in particular,  gives rise to two different parts.
The corresponding domains are approximately given by ,

, and .
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Fig. 11. Example 6.4. Let  be the symbol in (6.5). (Left) The range (cyan curve) and limiting set (brown points). (Middle)
The blue, red, black, and orange points are the range of , , , and , respectively. (Right) The same as the middle
image but for .
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Fig. 12. Example 6.4. A zoom in for the eigenvalues of  where  is given by (6.5) and , near the two branch
points where different analytic arcs meet. The gray curve is the limiting set. The black points are the exact eigenvalues

while the blue stars and red points are the eigenvalue approximations  in (6.1), for  and , respectively.
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Fig. 13. Example 6.4. The relative error  for the eigenvalues of  with  given by (6.5),  and 
(blue),  (red),  (green).
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Table 4. Example 6.4. The relative, absolute, and normalized individual eigenvalue errors , , and

, respectively, for  with  given by (6.5),  and different values of . We considered only the
eigenvalues  whose distance from the two branch points in Figure 12 exceeds 1/20

n

16 2.74 × 10–2 9.31 × 10–2 1.58 1.01 × 10–3 3.45 × 10–3 1.00 1.18 × 10–4 4.01 × 10–4 1.97
32 2.58 × 10–2 6.83 × 10–2 2.25 4.46 × 10–4 1.18 × 10–3 1.29 8.95 × 10–6 2.37 × 10–5 0.85
64 1.43 × 10–2 3.66 × 10–2 2.38 1.30 × 10–4 3.33 × 10–4 1.41 1.30 × 10–6 3.32 × 10–6 0.91

128 8.54 × 10–3 2.00 × 10–2 2.58 3.93 × 10–5 9.22 × 10–5 1.53 2.09 × 10–7 4.90 × 10–7 1.05
256 4.14 × 10–3 9.92 × 10–3 2.55 9.61 × 10–6 2.31 × 10–5 1.52 2.55 × 10–8 6.11 × 10–8 1.04
512 2.10 × 10–3 5.01 × 10–3 2.57 2.45 × 10–6 5.84 × 10–6 1.54 3.27 × 10–9 7.80 × 10–9 1.05

1024 1.04 × 10–3 2.50 × 10–3 2.56 6.08 × 10–7 1.46 × 10–6 1.53 4.06 × 10–10 9.74 × 10–10 1.05
2048 5.26 × 10–4 1.26 × 10–3 2.57 1.54 × 10–7 3.67 × 10–7 1.54 5.16 × 10–11 1.23 × 10–10 1.06
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Figure 12 shows a zoomed-in view of the eigenvalues and their approximations near the two branch
points where the analytic arcs meet. Figure 13 displays the individual relative errors  for all eigen-
values of  and  (blue),  (red), and  (green). The data was obtained by first process-
ing the eigenvalues approximated by  (from top to bottom), followed by those by  (from bottom to
top), then the two parts of , and finally those by  (from bottom to top). Table 4 reports the maximum
relative, absolute, and normalized errors for various values of  and .
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