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ON POSITIVE TYPE INITIAL PROFILES

FOR THE KDV EQUATION

SERGEI GRUDSKY AND ALEXEI RYBKIN

(Communicated by James E. Colliander)

Abstract. We show that the KdV flow evolves any real locally integrable
initial profile q of the form q = r′ + r2, where r ∈ L2

loc, r|R+
= 0 into a

meromorphic function with no real poles.

1. Introduction

This note is closely related to the recent paper [7] by Kappeler et al. and [12] by
one of the authors.

More specifically, we are concerned with well-posedness and related issues of the
initial value problem for the Korteweg-De Vries (KdV) equation (x ∈ R, t ≥ 0)

(1.1)

{
∂tu− 6u∂xu+ ∂3

xu = 0,

u(x, 0) = q(x)

with certain non-smooth and non-decaying initial profiles q.
The problem of well-posedness of (1.1) was raised back in the late 1960s about the

same time as the inverse scattering formalism for (1.1) was discovered and has drawn
enormous attention. We are not in a position to go over the extensive literature on
the subject and refer to the book [13] by Tao where further references are given. We
only mention here that a large amount of effort has been put into well-posedness
in Sobolev spaces Hs (R) with negative indices s (that is, the space of distributions

subject to (1 + |x|)sf̂(x) ∈ L2 (R)). Reaching s = −3/4 in [3] by Colliander et al.
was a very important milestone. This case covers such physically significant initial
data as the delta function, Coulomb potential, etc., but the harmonic analytical
methods employed there meet real problems for s < −3/4. An important step in
crossing this threshold was done by Kappeler et al. [7], where it was shown that
(1.1) is globally well-posed in a certain sense if q = r′ + r2 with some r ∈ L2 (R).

The map
B(r) = r′ + r2, r ∈ L2

loc (R) ,

is commonly referred to as Miura. It is easy to see that the Schrödinger operator

Lq = −∂2
x + q(x), x ∈ R,
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2080 SERGEI GRUDSKY AND ALEXEI RYBKIN

is positive, i.e. Lq ≥ 0, for any such q ∈ B
(
L2
loc (R)

)
. One of the main results of [7]

is that the converse of this fact also holds true; i.e. if Lq ≥ 0, then q ∈ B
(
L2
loc (R)

)
.

We call such a potential q positive type, and it is our main object.
We note that all functions in B

(
L2 (R)

)
exhibit certain decay at ±∞. On the

other hand, there has been significant interest in non-decaying solutions to (1.1)
(other than periodic). The case of the so-called steplike initial profiles (i.e. when
q(x) → 0 sufficiently fast as x → +∞ (−∞) and q(x) doesn’t decay at −∞ (+∞)) is
of physical interest and has attracted much attention since the early 1970s. We refer
to the recent paper [5] by Egorova-Grunert-Teschl for a comprehensive account of
the (rigorous) literature on steplike initial profiles with specified behavior at infinity
(e.g. q tending to a constant, periodic function, etc.). In the recent paper [12] of one
of the authors (see also [11]) the case of q’s rapidly decaying at +∞ and sufficiently
arbitrary at −∞ is studied in great detail.

The current note is concerned with treating positive type steplike initial data q in
(1.1). To avoid technical complications we assume that q ∈ L1

loc (R) and identically
vanishes on R+ := (0,∞), even though q has no smoothness and any kind of decay
at −∞ except that the fact that q vanishes on R+ leads to an extremely strong
smoothing effect. Dispersion instantaneously turns such initial profiles q(x) into a
function u(x, t) meromorphic in x on the whole complex plane for any t > 0. The
well-posedness of problem (1.1) can therefore be understood in a classical sense and
moreover it comes with an explicit formula

u(x, t) = −2∂2
x log det (1 +Hx,t) ,

where Hx,t is the Hankel operator with symbol

ϕx,t(λ) =
iλ−m(λ2)

iλ+m(λ2)
e2iλ(4λ

2t+x), λ ∈ R , x ∈ R , t > 0,

where m is the Titchmarsh-Weyl m-function associated with Lq on R− := (−∞, 0)
with a Dirichlet boundary condition at 0.

Each pole of the meromorphic in x function u (x, t) is necessarily double moving
over time t > 0, but no other type of singularity can develop. The well-posedness
of our problem, among others, means that such poles never cross the real line (but
may however asymptotically approach it). That is, no positon (a solution having a
second order moving singularity) may occur in our situation. Incidentally, a positon
solution is an example of a singular solution from H−2 (R). Note that while such
solutions (as well as some other strongly singular solutions) were discovered a long
time ago and have received considerable attention (see e.g. [9] by Matveev and the
extensive literature cited therein), no rigorous general theory is available to date
to treat such initial data. We only mention that the main difficulty comes from
the fact that the Schrödinger operator Lq with q ∈ H−2 is ill-defined, as it can be
introduced in different non-equivalent ways which result in real problems applying
the inverse scattering method. Standard harmonic analytic techniques also fail to
handle such singular distributions.

Our approach is based on a suitable adaptation of the inverse scattering formal-
ism and analysis of Hankel operators with certain oscillatory symbols. Moreover,
the theory of Hankel operators is used in a quite substantial way, and we hope that
our approach may turn out to be productive in many other important issues of
completely integrable systems.
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KDV EQUATION 2081

The paper is organized as follows. In Section 2 we review Hankel operators and
prove a new result related to a Hankel operator with a cubic oscillatory symbol.
In Section 3 we recall the concept of the Titchmarsh-Weyl m-function and some
elements of the scattering theory. In the last section, Section 4, we state and prove
our main result.

2. Hankel operators

Hankel operators naturally appear in linear algebra, operator theory, complex
analysis, mathematical physics, and many other areas. In our note they play a
crucial role. However, their formal definitions vary. In the context of integral
operators, a Hankel operator is usually defined as an integral operator on L2(R+)
whose kernel depends on the sum of the arguments; i.e.

(2.1) (Hf) (x) =

∫ ∞

0

H(x+ y)f(y)dy , x ≥ 0 , f ∈ L2(R+) ,

with some function H.
In many situations, including ours, H is not a function but rather a distribution.

It is convenient then to accept a regularized version of (2.1).
Let1

(Ff) (λ) =
1√
2π

∫
eiλxf(x)dx

be the Fourier transform and χ the Heaviside function of R+.

Definition 2.1. Given ϕ ∈ L∞ (R), we call the operator Hϕ on L2 (R+) defined
for any f ∈ L2 (R+) by

(2.2) Hϕf = χFϕFf

the Hankel operator on L2 (R+) with symbol ϕ.

It follows from a straightforward computation that (2.1) and (2.2) agree if ϕ ∈
L2 (R) ∩ L∞ (R) and H = Fϕ. However if ϕ is merely L∞ (R), then Fϕ is not a
function but a (tempered) distribution. The operator H given by (2.1) is no longer
well-defined, but the one given by (2.2) is.

The Hankel operator Hϕ is clearly bounded from (2.2). One immediately has

(2.3) ‖Hϕ‖ ≤ ‖ϕ‖∞ .

Membership of Hϕ in narrower Schatten-Von Neumann ideals is, however, a
much more subtle issue which was completely resolved by Peller in about 1980 (see
e.g. [10]).

We will be particularly concerned with the invertibility of 1+Hϕ. The first fact
is trivial.

Lemma 2.2. Let ϕ be such that |ϕ(λ)| ≤ 1 a.e. λ ∈ R and |ϕ(λ)| < 1 a.e. on a
set S of positive Lebesgue measure. Then −1 is not an eigenvalue of Hϕ.

Proof. Assume −1 is an eigenvalue of Hϕ and f 
= 0 is the corresponding normalized
eigenvector (i.e. ‖f‖L2(R+) = 1).

It follows from

f +Hϕf = 0

1For brevity we set
∫

:=
∫∞
−∞.
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2082 SERGEI GRUDSKY AND ALEXEI RYBKIN

that

1 +

∫
ϕ(λ)f̂(λ)f̂(λ)dλ = 0

and hence

(2.4) 1 + Re

∫
ϕ(λ)f̂(λ)f̂(λ)dλ = 0.

But

Re

∫
ϕ(λ)f̂(λ)dλ ≤

∫ ∣∣∣ϕ(λ)f̂(λ)∣∣∣ · ∣∣∣f̂(λ)∣∣∣ dλ
≤

∥∥∥ϕf̂∥∥∥
L2(R+)

·
∥∥∥f̂∥∥∥

L2(R+)
=

∥∥∥ϕf̂∥∥∥
L2(R+)

=

(
1−

∫
S

(
1− |ϕ(λ)|2

) ∣∣∣f̂(λ)∣∣∣2 dλ)1/2

< 1,(2.5)

since as an H2 function f̂ cannot vanish identically on S. Comparing (2.4) and
(2.5) leads to a contradiction. �

The proof of Lemma 2.2 is no longer valid if |ϕ(λ)| = 1 for a.e. real λ.
However in our setting symbols ϕ have a very specific structure:

(2.6) ϕ(λ) = eiλ(λ
2+a)I(λ),

where a is a real number and I is an inner function of the upper half plane (i.e.2

I ∈ H∞
+ and |I(λ)| = 1 a.e. λ ∈ R).

Lemma 2.3. Let ϕ be given by (2.6). Then

(1) Hϕ is a compact operator,
(2) 1 +Hϕ is invertible.

Proof. Our argument is based upon the factorization (see [1], [4], Section 5.10, [6])

(2.7) eiλ(λ
2+a) = B(λ)U(λ), λ ∈ R,

whereB(λ) is a Blaschke product with infinitely many zeros accumulating at infinity
and U is a unimodular function from C(R), the class of continuous on R functions
f subject to

lim
λ→−∞

f(λ) = lim
λ→∞

f(λ) 
= ±∞.

Since a product of an inner function and a C(R)-function is in the algebra H∞
+ +

C(R), by the Hartman theorem [8] Hϕ is compact and (1) is proven.
Consider the Hankel operator (2.2) in the Fourier representation. Denoting P±

as the Riesz projection in L2 (R+) onto H2
±, we have

FHϕF−1 = FχFϕFF−1

= P+FFϕ = P+F2ϕ

= P+Jϕ = JP−ϕ,

where Jf(x) = f(−x). Thus, the operator

(2.8) JP−ϕ : H2
+ → H2

+

2Hp
± (0 < p ≤ ∞) are standard Hardy spaces of the upper (lower) half planes C±.
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KDV EQUATION 2083

is unitarily equivalent to Hϕ. Let Tϕ be the Toeplitz operator on H2
+, i.e.

Tϕf = P+ϕf, f ∈ H2
+.

Note ([2], Ch. 2) that (2.7) implies left-invertibility of the operator Tϕ and, by
the Devinatz-Widom theorem ([2], p. 59), there exists a function f ∈ H∞

+ such that

‖ϕ− f‖L∞ < 1.

Thus, it immediately follows from the representation (2.8) that

Hϕ = Hϕ−f

and hence from (2.3) and (2.7) that

‖Hϕ‖ = ‖Hϕ−f‖ ≤ ‖ϕ− f‖L∞ < 1.

This proves (2), and the lemma is proven. �

3. The Titchmarsh-Weyl m-function

and the reflection coefficient

Consider the half line Schrödinger equation

Lqu = zu, x ∈ R−.

If Lq ≥ 0, then there exists a unique (up to a multiplicative constant) solution,
called Weyl, such that Ψ (x, z) ∈ L2 (R−) for each z ∈ C+. Existence and unique-
ness of such a solution take place under much more general assumptions on q (see
e.g. [14]), but we don’t need to explain them here.

Definition 3.1. The function

m (z) = −∂xΨ(0, z)

Ψ (0, z)
, z ∈ C

+,

is called a (Dirichlet or principal) Titchmarsh-Weyl m-function associated with Lq

on L2 (R−) with the Dirichlet boundary condition u (0) = 0.

The Titchmarsh-Weyl m-function is a fundamental object of the spectral theory
of ordinary differential operators and has a number of important properties. In
particular, m (z) is analytic on C

+ and has the Herglotz property: m : C+ → C
+.

Moreover, due to the positivity of Lq the function m
(
λ2

)
as a function of λ is

analytic everywhere in C
+ and m

(
λ2

)
= iλ + o (1) , λ → ∞, in any angle 0 < ε <

arg λ < π − ε .
Now define the reflection coefficient R (λ) from the right incident of q such that

q|R+
= 0. To this end consider a solution to

Lqy = λ2y

which is proportional to the Weyl solution Ψ
(
x, λ2

)
on R− and equal to e−iλx +

R (λ) eiλx on R+. From the continuity of this solution and its derivative at 0 one
has

(3.1) R (λ) =
iλ− ψ′(0,λ2)

ψ(0,λ2)

iλ+ ψ′(0,λ2)
ψ(0,λ2)

=
iλ−m(λ2)

iλ+m(λ2)
.

Note that while m has no clear physical meaning, the reflection coefficient R does.
It follows from the above properties of the m-function that R (λ) is an analytic

function on C+ and |R (λ)| ≤ 1 for λ ∈ C+.
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2084 SERGEI GRUDSKY AND ALEXEI RYBKIN

4. Main result

In this section we state and prove our main result.

Theorem 4.1. Let q in (1.1) be locally integrable, supported on R− and such that
the Schrödinger operator Lq ≥ 0. Then there is a (unique) classical solution to
(1.1) given by

(4.1) u(x, t) = −2∂2
x log det (1 +Hx,t) .

Here Hx,t is the trace class Hankel operator on L2(R+) with the symbol

ϕx,t(λ) =
iλ−m(λ2)

iλ+m(λ2)
e2iλx+8iλ3t,

where m is the (Dirichlet) Titchmarsh-Weyl m-function of Lq on L2(R−).
The solution u(x, t) is meromorphic in C+ for any t > 0 with no real poles.

Proof. It is proven in [7] that

Lq ≥ 0 ⇒ q ∈ B
(
L2
loc

)
,

where B(r) = r′ + r2 is the Miura map. Since q ∈ L1
lim func loc, the function r is

locally absolutely continuous. Approximate r with smooth, compactly supported
functions r̃. Then q̃ = r̃′ + r̃2 approximates q in L1

loc. For each q̃ there exists

the right reflection coefficient R̃. The (classical) Marchenko operator H̃x,t has no
discrete component (since Lq̃ ≥ 0) and hence it takes the form

(4.2)
(
H̃x,tf

)
(·) =

∫ ∞

0

H̃x,t(·+ y)f(y)dy,

where

(4.3) H̃x,t(·) =
1

2π

∫
e2iλx+8iλ3teiλ(·)R̃(λ)dλ.

For the reflection coefficient R̃, by (3.1), we have

R̃(λ) =
iλ− m̃(λ2)

iλ+ m̃(λ2)
,

where m̃ is the Titchmarsh-Weyl m-function associated with Lq̃ with the Dirichlet

boundary condition at 0. By the properties of the reflection coefficient, R̃(λ) is

analytic in C+, R̃(λ) = O(1/λ), λ → ±∞, and
∣∣∣R̃(λ)

∣∣∣ ≤ 1 , λ ∈ C
+. One can

obviously deform the contour of integration in (4.3) now and thus (4.3) reads

(4.4) H̃x,t(·) =
1

2π

∫
Imλ=h

e2iλx+8iλ3teiλ(·)R̃(λ)dλ,

for any h > 0. Since the integrand in (4.4) is clearly integrable along the line

Imλ = h, the operator H̃x,t is trace class (see [12]) and the function

(4.5) ũ(x, t) = −2∂2
x log det

(
1 + H̃x,t

)
is well-defined and solves (1.1) with the initial data q̃.

We now pass to the limit in (4.5) as q̃ → q in L1
loc. It is well-known that

m̃(λ2) → m(λ2) on each compact set in C
+, and hence

R̃(λ) =
iλ− m̃(λ2)

iλ+ m̃(λ2)
−→ R(λ) =

iλ−m(λ2)

iλ+m(λ2)
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KDV EQUATION 2085

on each compact in C+. The oscillatory factor e2iλx+8iλ3t exhibits a superexponen-
tial decay on Imλ = h > 0. This means that (see [12] for)

H̃x,t −→ Hx,t

for any x ∈ R, t > 0 in trace class norm, and hence

det
(
1 + H̃x,t

)
−→ det (1 +Hx,t) .

Note that H̃x,t and

Hx,t(·) =
1

2π

∫
Imλ=h

e2iλx+8iλ3teiλ(·)R(λ)dλ

are clearly entire with respect to x, for any t > 0. It is quite easy to see that

H̃x,t,Hx,t are operator-valued functions entire with respect to x for any t > 0. This
means that the functions

ũ(x, t) = −2∂2
x log det

(
1 + H̃x,t

)
are meromorphic in x on the whole complex plane for any t > 0 and converge to
the meromorphic function

u(x, t) = −2∂2
x log det (1 +Hx,t)

as q̃ → q in L1
loc.

It remains to show that det(1+Hx,t) doesn’t vanish on the real line for any t > 0.
Since Hx,t is trace class, this amounts to showing that −1 is not an eigenvalue of
Hx,t for all x ∈ R , t > 0. We have two cases: Lq has some absolutely continuous
(a.c.) spectrum and Lq has no a.c. spectrum. The first case immediately follows
from Lemma 2.2.

The second case is a bit more involved. If the a.c. spectrum of Lq is empty,
then the Titchmarsh-Weyl m-function is real a.e. on the real line and hence the
reflection coefficient |R(λ)| ≤ 1 in C+ and |R(λ)| = 1 a.e. on R; i.e. R is an inner
function of the upper half plane. Lemma 2.3 then applies. �

Remark 4.2. Theorem 4.1 implies very strong well-posedness of the KdV equation
with eventually any steplike positive type initial data supported on (−∞, 0). Each
such solution u(x, t) is smooth and hence solves the KdV equation in the classical
sense. It also has a continuity property in the sense that if {qn} is a sequence of
smooth functions of the form qn = r2n+r′n convergent in L1

loc to q, then the sequence
of the corresponding solutions {un(x, t)} converges to u(x, t) in L1

loc for any t > 0.
This, in turn, implies uniqueness. The initial condition is satisfied in the sense that

‖u(·, t)− q‖L1
loc

→ 0 , t → 0.

Remark 4.3. We assumed that q ∈ L1
loc and q|R+

= 0 for simplicity. These condi-
tions can be replaced with Lq ≥ 0 and a suitable decay assumption at +∞, but the
consideration becomes much more involved due to serious technical complications
related to singular potentials. We plan to return to this topic elsewhere.
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(2002e:47033)

[7] Thomas Kappeler, Peter Perry, Mikhail Shubin, and Peter Topalov, The Miura map on the
line, Int. Math. Res. Not. 50 (2005), 3091–3133, DOI 10.1155/IMRN.2005.3091. MR2189502
(2006k:37191)

[8] Nikolai K. Nikolski, Operators, functions, and systems: an easy reading, Vol. 1. Hardy, Han-
kel, and Toeplitz, translated from the French by Andreas Hartmann, Mathematical Surveys
and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. MR1864396
(2003i:47001a)

[9] V. B. Matveev, Positons: slowly decreasing analogues of solitons (Russian, with Russian sum-
mary), Teoret. Mat. Fiz. 131 (2002), no. 1, 44–61, DOI 10.1023/A:1015149618529; English
transl., Theoret. and Math. Phys. 131 (2002), no. 1, 483–497. MR1931054 (2003h:37132)

[10] Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Math-
ematics, Springer-Verlag, New York, 2003. MR1949210 (2004e:47040)

[11] Alexei Rybkin, Meromorphic solutions to the KdV equation with non-decaying initial data
supported on a left half line, Nonlinearity 23 (2010), no. 5, 1143–1167, DOI 10.1088/0951-
7715/23/5/007. MR2630095 (2011i:35223)

[12] Alexei Rybkin, The Hirota τ -function and well-posedness of the KdV equation with an arbi-
trary step-like initial profile decaying on the right half line, Nonlinearity 24 (2011), no. 10,

2953–2990, DOI 10.1088/0951-7715/24/10/015. MR2842104 (2012i:37118)
[13] Terence Tao, Nonlinear dispersive equations, Local and global analysis, CBMS Regional Con-

ference Series in Mathematics, vol. 106, published for the Conference Board of the Mathemat-
ical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 2006. MR2233925
(2008i:35211)

[14] Gerald Teschl, Mathematical methods in quantum mechanics. With applications to
Schrödinger operators, Graduate Studies in Mathematics, vol. 99, American Mathematical
Society, Providence, RI, 2009. MR2499016 (2010h:81002)

Departamento de Matematicas, CINVESTAV del I.P.N. Aportado Postal 14-740, 07000

Mexico, D.F., Mexico

E-mail address: grudsky@math.cinvestav.mx

Department of Mathematics and Statistics, University of Alaska Fairbanks, P.O.

Box 756660, Fairbanks, Alaska 99775

E-mail address: arybkin@alaska.edu

Licensed to Univ of Alaska Fairbanks. Prepared on Thu May  8 14:26:16 EDT 2014 for download from IP 137.229.25.162.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1845102
http://www.ams.org/mathscinet-getitem?mr=1845102
http://www.ams.org/mathscinet-getitem?mr=2223704
http://www.ams.org/mathscinet-getitem?mr=2223704
http://www.ams.org/mathscinet-getitem?mr=1969209
http://www.ams.org/mathscinet-getitem?mr=1969209
http://www.ams.org/mathscinet-getitem?mr=1942445
http://www.ams.org/mathscinet-getitem?mr=1942445
http://www.ams.org/mathscinet-getitem?mr=2507328
http://www.ams.org/mathscinet-getitem?mr=2507328
http://www.ams.org/mathscinet-getitem?mr=1847211
http://www.ams.org/mathscinet-getitem?mr=1847211
http://www.ams.org/mathscinet-getitem?mr=2189502
http://www.ams.org/mathscinet-getitem?mr=2189502
http://www.ams.org/mathscinet-getitem?mr=1864396
http://www.ams.org/mathscinet-getitem?mr=1864396
http://www.ams.org/mathscinet-getitem?mr=1931054
http://www.ams.org/mathscinet-getitem?mr=1931054
http://www.ams.org/mathscinet-getitem?mr=1949210
http://www.ams.org/mathscinet-getitem?mr=1949210
http://www.ams.org/mathscinet-getitem?mr=2630095
http://www.ams.org/mathscinet-getitem?mr=2630095
http://www.ams.org/mathscinet-getitem?mr=2842104
http://www.ams.org/mathscinet-getitem?mr=2842104
http://www.ams.org/mathscinet-getitem?mr=2233925
http://www.ams.org/mathscinet-getitem?mr=2233925
http://www.ams.org/mathscinet-getitem?mr=2499016
http://www.ams.org/mathscinet-getitem?mr=2499016

	1. Introduction
	2. Hankel operators
	3. The Titchmarsh-Weyl 𝑚-function  and the reflection coefficient
	4. Main result
	References

