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A Note on Muskhelishvili-Vekua Reduction

Sergei Grudsky and Nikolai Tarkhanov

Abstract. We focus on classical boundary value problems for the Laplace
equation in a plane domain bounded by a nonsmooth curve which has a finite
number of singular points. Using a conformal mapping of the unit disk onto
the domain, we pull back the problem to the unit disk, which is usually referred
to as the Muskhelishvili-Vekua method. The problem in the unit disk reduces
to a Toeplitz equation with symbol having discontinuity of second kind. We
develop a constructive invertibility theory for Toeplitz operators in the unit
disk to derive solvability conditions and explicit formulas for solutions of the
boundary value problem.

1. Statement of the problem

Elliptic partial differential equations are known to appear in many applied
areas of mathematical physics. To name but a few, we mention mechanics of solid
medium, diffraction theory, hydrodynamics, gravity theory, quantum field theory,
and many others.

In this paper, we focus on boundary value problems for the Laplace equation
in plane domains bounded by nonsmooth curves C. We are primarily interested
in domains whose boundaries have a finite number of singular points of oscillating
type. By this is meant that the curve may be parametrised in a neighbourhood of a
singular point z0 by z(r) = z0 + r exp(ıϕ(r)) for r ∈ (0, r0], where r is the distance
of z and z0 and ϕ(r) is a real-valued function which is bounded while its derivative
in general is unbounded at r = 0.

There is a vast literature devoted to boundary value problems for elliptic equa-
tions in domains with nonsmooth boundary, cf. [KL91], [MNP00], [KMR00]
and the references given there. In most of these papers, piecewise smooth curves
with corner points or cusps are treated, cf. [DS00], [KKP98], [KP03], [MS89],
[Rab99]. The paper [RST04] is of particular importance, for it gives a character-
isation of Fredholm boundary value problems in domains with weakly oscillating
cuspidal edges on the boundary.

There are significantly fewer works dealing with more complicated curves C.
They mostly focus on qualitative properties, such as existence, uniqueness and
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stability of solutions with respect to small perturbations, see for instance [Kel66],
[KM94]. The present paper deals not only with qualitative investigations of bound-
ary value problems in domains whose boundaries strongly oscillate at singular points
but also with constructive solution of such problems.

We restrict ourselves to the Dirichlet problem for the Laplace equation

(1.1) Δu := (∂/∂x)2u+ (∂/∂y)2u = 0

in a simply connected domain D with boundary C in the plane of variables (x, y) ∈
R2. The boundary data are

(1.2) u = u0

on C. Our standing assumption on u0 is that u0 ∈ Lp(C) with some 1 < p < ∞. We
look for a solution u being the real part of a holomorphic function of Hardy-Smirnov
class Ep(D) in D. Such functions are known to possess finite nontangential limit
values almost everywhere on the boundary, and so equality (1.2) is understood in
that sense.

Our setting of the Dirichlet problem follows that of the monograph [KKP98]
and the results are intimately related to Theorem 1.1 of [KKP98, p. 165]. This
theorem gives a complete study of the case where the angle at which the tan-
gent of the boundary intersects the real axis has discontinuities of the first kind
at angular points of the boundary. Our theory treats also the case where the an-
gle of the tangent has discontinuities of the second kind at angular points, under
some assumptions on the oscillations of the tangent. For example, in the case p = 2,
these assumptions are satisfied if the angle of the tangent has a first kind disconti-
nuity at the angular point. Hence, our treatment is essentially more advanced than
that of [KKP98]. The approach we apply is different from that of [KKP98] and
it exploits the modern techniques of Toeplitz operators.

We study the case where C belongs to the class of so-called sectorial curves. In
a forthcoming paper, we shall treat both the Dirichlet and Neumann problems as
well as a more general Zaremba problem in domains bounded by spirals including
non-rectifiable ones, see [GT12].

2. General description of the method

Our approach to the study of elliptic problems in domains with nonsmooth
boundary goes back at least as far as [Mus68] and [Vek42]. It consists in reducing
the problem in D to a singular integral equation on the unit circle by means of a
conformal map of the unit disk onto the domain D. The coefficients of the singular
integral equation obtained in this way fail in general to be continuous, for they are
intimately connected with the derivative of boundary values of the conformal map.
This method was successfully used for solving problems in domains with piecewise
smooth boundary, where the singular points are corner points or cusps, see [DS00],
[KKP98], [KP03]. In this case, the coefficients of the mentioned singular integral
equation have discontinuities of the first kind. Since the theory of such equations
has been well developed, a sufficiently complete theory of boundary value problems
for a number of elliptic equations in domains with piecewise smooth boundary has
been constructed. Note that by now the theory of singular integral equations (or,
in other terms, the theory of Toeplitz operators) with discontinuities of second kind
has been well developed, too. In particular, we use well-known results on Toeplitz
operators with sectorial symbols (see for instance [BS90] and [GK92]) to study
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problem (1.1), (1.2). Note that boundary value problems in Lipschitz domains
for strongly elliptic second order partial differential equations have been studied
intensively, see for instance [Ken94]. The methods of our paper are not applicable
to get new results in the general case. However, the explicit formulas like that of
Theorem 5.3 provide an attractive complement to the strong qualitative results of
[Ken94].

3. Reduction of the Dirichlet problem

The Dirichlet problem is a most frequently encountered elliptic boundary value
problem. This is not only because the Dirichlet problem is of great interest in
applications in electrostatics, gravity theory, incompressible fluid theory, etc., but
also since it is a good model where one tests approaches to other, more complicated,
problems.

Let D be a simply connected bounded domain in the plane of real variables
(x, y). The boundary of D is a closed curve which we denote by C. Consider the
Dirichlet problem (1.1), (1.2) in D with data u0 on C. As usual, we introduce a
complex structure in R2 by z = x + ıy and pick a conformal mapping z = c(ζ) of
the unit disk D = {ζ ∈ C : |ζ| < 1} onto the domain D, cf. Riemann mapping
theorem. Throughout the paper, we make a standing assumption on the mappings
z = c(ζ) under consideration, specifically,

(3.1) c′(0) > 0.

Then problem (1.1), (1.2) can be reformulated as

(3.2)

1

|c′(ζ)|2 ΔU = 0 for |ζ| < 1,

U = U0 for |ζ| = 1,

where U(ζ) := u(c(ζ)) and U0(ζ) := u0(c(ζ)).
For 1 ≤ p < ∞, we denote by Hp(D) the Hardy space on the unit disk. By the

conformal map z = c(ζ), the space is transported to the so-called Hardy-Smirnov
space Ep(D) of functions on D. A holomorphic function f on D is said to belong
to Ep(D) if

sup
r∈(0,1)

∫
Cr

|f(z)|p |dz| < ∞,

where Cr is the push-forward of the circle |ζ| = r by z = c(ζ). It is easy to see that
f ∈ Ep(D) if and only if

(3.3) p
√
c′(ζ) f(c(ζ)) ∈ Hp(D).

It is then a familiar property of the functions of Hardy classH1(D) that the function
p
√
c′(ζ) f(c(ζ)) has finite nontangential limit values almost everywhere on the unit

circle T = {ζ ∈ C : |ζ| = 1}.
If C is a rectifiable curve, then the function z = c(ζ) is continuous on the closed

unit disk D, absolutely continuous on the unit circle T and (c(eıt))′ = ıeıtc′(eıt)
almost everywhere on T. It follows from (3.3) that f(z) has finite nontangential
limit values almost everywhere on C, and

(3.4) lim
r→1−

∫
Cr

|f(z)|p |dz| =
∫
C
|f(z)|p |dz|.
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It is well known that for each harmonic function u(x, y) in D there is an analytic
function f(z) in D whose real part is u. We therefore look for a solution u of problem
(1.1) and (1.2), which has the form u = �f with f ∈ Ep(D). There is no restriction
of generality in assuming that

(3.5) �f(c(0)) = 0.

By the above, we get

f(c(ζ)) =
h+(ζ)
p
√
c′(ζ)

for ζ ∈ D, where h+ is an analytic function of Hardy class Hp(D).
By Theorem 4 in [Gol69, p. 46], the conformal mapping z = c(ζ) is bijective

and continuous on the closed unit disk. Hence the function U(ζ) = u(c(ζ)) has finite
nontangential limit values almost everywhere on T and in this way U(ζ) = U0(ζ)
is understood on the unit circle T. This enables us to rewrite problem (3.2) in the
form

�
( h+(ζ)

p
√
c′(ζ)

)
= U0(ζ)

for ζ ∈ T, where h+ is an analytic function of Hardy class Hp(D). This latter
problem can in turn be reformulated as

1

2

( h+(ζ)
p
√
c′(ζ)

+
h−(ζ)

p
√
c′(ζ)

)
= U0(ζ)

for ζ ∈ T, where

h−(ζ) = h+(ζ)

= h+
( ζ

|ζ|2
)

= h+
(1
ζ̄

)

can be specified within analytic functions of Hardy class Hp in the complement of
the closed unit disk. More precisely,

h+
(1
ζ̄

)

belongs to the Hardy class Hp in the complement of D̄ up to an additive complex
constant, if the functions of Hardy class Hp in C \ D̄ are assumed to vanish at
infinity. Finally, we transform the Dirichlet problem to

(3.6) a(ζ)h+(ζ) + h−(ζ) = f(ζ)

for ζ ∈ T, where

a(ζ) =
(
c′(ζ)

c′(ζ)

)1/p

= exp
(
− ı

2

p
arg c′(ζ)

)

and f(ζ) = 2U0(ζ)
p
√
c′(ζ). It is well known from the theory of conformal mappings

that
arg c′(ζ) = α(c(ζ))− arg ζ − π

2
for ζ ∈ T, where α(c(ζ)) is the angle at which the tangent of C at the point z = c(ζ)
intersects the real axis. Note that f ∈ Lp(T).
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Let now

(STf)(ζ) :=
1

πı

∫
T

f(ζ ′)

ζ ′ − ζ
dζ ′, ζ ∈ T,

stand for the singular Cauchy integral. If 1 < p < ∞, then ST is a bounded operator
in Lp(T), and the operators

P±
T

:=
1

2
(I ± ST)

prove to be continuous projections in Lp(T) called analytic projections. They are
intimately related with the classical decomposition of Lp(T) into the direct sum
of traces on T of Hardy class Hp functions in D and C \ D. Denoting these trace
spaces by Hp± we get

P±
T
L2(T) = Hp±,

whence P±
T
Hp± = Hp± and P±

T
Hp∓ = 0.

Applying P+
T

to both sides of equality (3.6) and taking into account that

(P+
T
h−)(ζ) = h−(0) and h−(0) = h+(0) = h+(0), the latter being due to (3.5),

we get

(T (a)h+)(ζ) + h+(0) = f+(ζ)(3.7)

for ζ ∈ T, where T (a) := P+
T
aP+

T
is a Toeplitz operator with symbol a on Lp(T)

and f+(ζ) = (P+
T
f) (ζ) for ζ ∈ T. By (3.5) we have to put the additional condition

(3.8) �h+(0) = 0.

We thus arrive at the following result.

Theorem 3.1.

1) If u = �f with f ∈ Ep(D) is a solution of the Dirichlet problem in D,

then h+(ζ) = p
√
c′(ζ) f(c(ζ)) is a solution of equation ( 3.7).

2) If h+ ∈ Hp+ is a solution of ( 3.7), then u(z) = � ( p
√
c−1′(z)h+(c−1(z)))

is a solution of the Dirichlet problem in D.

Proof. 1) has already been proved, it remains to show 2). Let h+ ∈ Hp+

satisfy (3.7). Rewrite this equality in the form ah+ + h− = f with h− given by
h− = −P−

T
(ah+) + P−

T
f . This latter equality can in turn be rewritten as

1

2

( h+(ζ)
p
√
c′(ζ)

+
h−(ζ)

p
√
c′(ζ)

)
= U0(ζ)

for ζ ∈ T. Since the function U0(ζ) = u0(c(ζ)) is real-valued, it follows that

h−(ζ) = h+(ζ), and so

� h+(ζ)
p
√

c′(ζ)
= U0(ζ)

for ζ ∈ T. The function

� h+(ζ)
p
√
c′(ζ)

is harmonic in D and has nontangential limit values almost everywhere on T which
coincide with U0(ζ). Moreover, the function f(z) := p

√
c−1′(z)h+(c−1(z)) is of

Hardy-Smirnov class Ep(D) and u(x, y) = � f(z) is a solution of the Dirichlet
problem in D, as desired. �
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Corollary 3.2. If the operator T (a) is invertible on the space Hp+ and

(3.9)
�
(
T (a)−1f+

)
(0) = 0,(

T (a)−11
)
(0) = 1,

then the Dirichlet problem in D has a unique solution of the form

u(z) = �
(

p
√
c−1′(z)

(
(T (a)−1f+)(c−1(z))− 1

2
(T (a)−1f+)(0) (T (a)−11)(c−1(z))

))
,

where f+ = P+
T

(
2u0(c(ζ))

p
√
c′(ζ)

)
.

Proof. Applying the operator T (a)−1 to (3.7) yields

h+(ζ) + T (a)−1h+(0) =
(
T (a)−1f+

)
(ζ)

for all ζ ∈ T. Since both sides of the equality extend to holomorphic functions in
the disk, we can set ζ = 0, and obtain

2h+(0) =
(
T (a)−1f+

)
(0)

by (3.9). Hence it follows that the solution of (3.7) satisfying (3.8) is unique and it
has the form

h+(ζ) =
(
T (a)−1f+

)
(ζ)− 1

2

(
T (a)−1f+

)
(0)(T (a)−11)(ζ),

as desired. �

Remark 3.3. Condition (3.9) is actually fulfilled in all cases to be treated in
this work.

4. Factorisation of symbols

The results of this section with detailed explanations, proofs and corresponding
references can be found in the books [GK92], [LS87], and [BS90].

Let L∞(T) be the space of all essentially bounded functions on the unit circle
T, H∞± the Hardy spaces on T which consist of the restrictions to T of bounded
analytic functions in D and C\D, respectively, and C(T) the space of all continuous
functions on T.

A bounded linear operator A on a Hilbert space H is said to be normally
solvable if its range imA is closed. A normally solvable operator is called Fredholm
if its kernel and cokernel are finite dimensional. In this case, the index of A is
introduced as

indA := α(A)− β(A),

where α(A) = dimkerA and β(A) = dim cokerA.
The symbol a(ζ) of a Toeplitz operator T (a) is said to admit a p -factorisation

if it can be represented in the form

(4.1) a(ζ) = a+(ζ)ζκa−(ζ),

where κ is an integer number,

(4.2)
a+ ∈ Hq+, a− ∈ Hp−,

1/a+ ∈ Hp+, 1/a− ∈ Hq−,

p and q are conjugate exponents (i.e., 1/p + 1/q = 1), and (1/a+)ST(1/a
−) is a

bounded operator on Lp(T).
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The functions a+ and a− in (4.1) are determined uniquely up to a constant
factor. As is proved in [LS87], the factorisation is determined uniquely up to a
multiplicative constant if it bears properties (4.2) only.

Theorem 4.1. An operator T (a) is Fredholm in the space Hp+ if and only if
the symbol a(ζ) admits a p -factorisation. If T (a) is Fredholm, then indT (a) = −κ.

Theorem 4.2. Let a ∈ L∞(T) and a(ζ) �= 0 almost everywhere on T. Then at
least one of the numbers α(T (a)) and β(T (a)) is equal to zero.

Combining Theorems 4.1 and 4.2, we get a criterion of invertibility for Toeplitz
operators.

Corollary 4.3. An operator T (a) is invertible on Hp+ if and only if the
symbol a(ζ) admits a p -factorisation with κ = 0. In this case

(T (a))−1 = (1/a+)P+
T
(1/a−).

Proof. If κ = 0 then α(T (a)) = β(T (a)), and so both α(T (a)) and β(T (a))
vanish. Hence it follows that T (a) is invertible on Hp+.

We now establish the formula for the inverse operator (T (a))−1. Let f ∈ Hp+.
Then (

(1/a+)P+
T
(1/a−)

)
T (a)f =

(
(1/a+)P+

T
(1/a−)

)
P+
T
(af)

=
(
(1/a+)P+

T
(1/a−)

)
af

= (1/a+)P+
T
a+f

= (1/a+)a+f

= f,

and similarly

T (a)
(
(1/a+)P+

T
(1/a−)

)
f = P+

T
a
(
(1/a+)P+

T
(1/a−)

)
f

= P+
T
a−P+

T
(1/a−)f

= P+
T
a−(1/a−)f

= f.

Here we have used the familiar equalities P+
T
h−P+

T
= P+

T
h− and P+

T
h+P+

T
= h+P+

T

which is valid for all h− ∈ Hq− ⊕ {c} and h+ ∈ Hq+. �
Given a nonvanishing function a ∈ C(T), we denote by inda(T)(0) the winding

number of the curve a(T) about the origin, or the index of the origin with respect
to a(T).

Theorem 4.4. Suppose a ∈ C(T). Then the operator T (a) is Fredholm on the
space Hp+ if and only if a(ζ) �= 0 for all ζ ∈ T. Under this condition, the index of
T (a) is given by

indT (a) = −inda(T)(0).

We now introduce the concept of sectoriality which is of crucial importance in
this paper.

Definition 4.5. A function a ∈ L∞(T) is called p -sectorial if ess inf |a(ζ)| > 0
and there is a real number ϕ0 such that

(4.3) sup
ζ∈T

| arg (exp(ıϕ0)a(ζ)) | <
π

max{p, q}
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for all ζ ∈ T.

A function a ∈ L∞(T) is said to be locally p -sectorial if ess inf |a(ζ)| > 0 and
for any ζ0 ∈ T there is an open arc containing ζ0, such that (4.3) is satisfied for all
ζ in the arc with some ϕ0 ∈ R depending on ζ0. Each p -sectorial curve is obviously
locally p -sectorial.

Theorem 4.6.

1) If a(ζ) is a p -sectorial symbol, then the operator T (a) is invertible in the
space Hp+.

2) If a(ζ) is a locally p -sectorial symbol, then T (a) is a Fredholm operator
in Hp+.

If a symbol a is factorised by a sectorial symbol to a continuous symbol which
does not vanish on T, then the operator T (a) is Fredholm.

Theorem 4.7. Let a(ζ) = c(ζ)a0(ζ), where c ∈ C(T) and a0 ∈ L∞(T). Then
T (a) is Fredholm in Hp+ if and only if c(ζ) vanishes at no point of T and T (a0) is
Fredholm, in which case

indT (a) = indT (a0)− indc(T)(0).

Proof. This is a straightforward consequence of Theorems 4.1 and 4.4. �

5. Sectorial curves

In this section we consider a simply connected domain D ⊂⊂ R
2 whose bound-

ary C is smooth away from a finite number of points. By this is meant that C is a
Jordan curve of the form

C =

n⋃
k=1

Ck,

where Ck = [zk−1, zk] is an arc with initial point zk−1 and endpoint zk which are
located after each other in positive direction on C, and zn = z0. Moreover, (zk−1, zk)
is smooth for all k.

Definition 5.1. The curve C is called p -sectorial if, for each k = 1, . . . , n,
there is a neighbourhood (z−k , z+k ) of zk on C and a real number ϕk, such that

(5.1) sup
z∈(z−

k ,z+
k )\{zk}

|α(z)− ϕk| <

⎧⎪⎪⎨
⎪⎪⎩

π

2
, if p ≥ 2,

π

2
(p− 1), if 1 < p < 2,

where α(z) is the angle at which the tangent of C at the point z intersects the real
axis.

If zk is a conical point of C, then the angle at which the tangent of C at z
intersects the real axis has jump jk < π when z passes through zk. It follows that
(5.1) is fulfilled at zk with a suitable ϕk, if p ≥ 2, and is fulfilled if moreover
jk < (p − 1)π, if 1 < p < 2. If zk is a cuspidal point of C, then the angle
has jump jk = π when z passes through zk. Hence, condition (5.1) is violated,
i.e., cuspidal points are prohibited for sectorial curves. Yet another example of
prohibited behaviour is described by the curve z(t) = t(1 + ı sin(1/t)) with |t| < ε,
which oscillates rapidly near the origin.
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Theorem 5.2. Suppose C is p -sectorial for 1 < p < ∞. Then the Toeplitz
operator ( 3.7) corresponding to this curve is invertible.

Proof. We have to prove that the Toeplitz operator with symbol

a(ζ) = exp
(
− ı

2

p
arg c′(ζ)

)

is invertible. Recall that arg c′(ζ) = α(c(ζ))− arg ζ − π

2
for ζ ∈ T.

The idea of the proof is to represent the symbol in the form a(ζ) = c(ζ)a0(ζ),
where a0 is p -sectorial and c ∈ C(T) is such that indc(T)(0) = 0. To this end, we
first choose a continuous branch of the function arg c′(ζ) on T \ {ζ1, . . . , ζn}, where
zk = c(ζk) for k = 1, . . . , n. Consider an arc (ζ1, ζ

+
1 ) on T and take the branch of

arg c′(ζ) such that (5.1) holds for k = 1. Hence it follows that the argument of a(ζ)
satisfies

(5.2) sup
ζ∈(ζ1,ζ

+
1 )

∣∣∣− 2

p
arg c′(ζ)− ψ1

∣∣∣ <

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

p
, if p ≥ 2,

π

q
, if 1 < p < 2,

where

ψk = −2

p
ϕk +

2

p
arg ζk +

π

p

for k = 1, . . . , n.
Then we extend arg c′(ζ) to a continuous function on the arc (ζ1, ζ2). Note that

the right-hand side of (5.2) can be written as

π

max{p, q}
for all 1 < p < ∞. It is easy to see that there is an integer number j2 with the
property that

(5.3) sup
ζ∈(ζ−

2 ,ζ2)

∣∣∣− 2

p
arg c′(ζ)− (ψ2 + 2πj2)

∣∣∣ < π

max{p, q} ,

where ψ2 is defined above. Choose the continuous branch of arg c′(ζ) on (ζ2, ζ
+
2 ),

such that (5.3) is still valid with (ζ−2 , ζ2) replaced by (ζ2, ζ
+
2 ).

We now extend arg c′(ζ) to a continuous function on the arc (ζ2, ζ3), and so on.
Proceeding in this fashion, we get a continuous branch of arg c′(ζ) on all of (ζn, ζ1)
satisfying

(5.4) sup
ζ∈(ζ−

1 ,ζ1)

∣∣∣− 2

p
arg c′(ζ)− (ψ1 + 2πj1)

∣∣∣ < π

max{p, q}

with some integer j1.
The task is now to show that j1 = 0, and so the inequality (5.2) actually holds

with (ζ1, ζ
+
1 ) replaced by (ζ−1 , ζ+1 ) \ {ζ1}. For this purpose, we link any two points

z−k and z+k together by a smooth curve Ak, such that

1) C̃ =
(
(z+1 , z

−
2 ) ∪ . . . ∪ (z+n , z

−
1 )

)
∪ (A1 ∪ . . . ∪An) is a smooth closed curve

which bounds a simply connected domain D̃.
2) The angle α̃(z) at which the tangent of C̃ at the point z intersects the real

axis satisfies (5.1).
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Consider a conformal map z = c̃(ζ) of D onto D. By the very construction,
α̃(z) = α(z) holds for all z ∈ (z+1 , z

−
2 ) ∪ . . . ∪ (z+n , z

−
1 ). Suppose (5.4) is valid with

j1 �= 0. Then, in particular,∣∣∣− 2

p
arg c̃′(ζ̃−1 )− (ψ1 + 2πj1)

∣∣∣ < π

max{p, q}
where z−1 = c̃(ζ̃−1 ). From this we deduce that the function arg c̃′(ζ) has a nonzero
increment when the point ζ makes one turn along the unit circle T starting from
the point ζ̃+1 with z+1 = c̃(ζ̃+1 ). Hence it follows, by the argument principle, that
the function c̃′ has zeros in D, which contradicts the conformality of c̃. Thus, j1 = 0
in (5.4).

We have thus chosen a continuous branch of the function arg c′(ζ) on the set
T \ {ζ1, . . . , ζn}, satisfying

(5.5) sup
ζ∈(ζ−

k ,ζ+
k )\{ζk}

∣∣∣− 2

p
arg c′(ζ)− (ψk + 2πjk)

∣∣∣ < π

max{p, q}

for all k = 1, . . . , n, where jk is integer and j1 = 0. This allows one to construct
the desired factorisation of a(ζ).

We first define c(ζ) away from the arcs (ζ−k , ζ+k ) which encompass singular
points ζk of c′(ζ). Namely, we set

c(ζ) := exp
(
− ı

2

p
arg c′(ζ)

)

for ζ ∈ T \
⋃n

k=1(ζ
−
k , ζ+k ).

To define c(ζ) in any arc (ζ−k , ζ+k ) with k = 1, . . . , n, we pick an εk > 0 small

enough, so that arg ζ−k +εk < arg ζk < arg ζ+k −εk. Then the symbol c(ζ) is defined
by

c(ζ) := exp
(
− ı

2

p

(arg ζ−k + εk − arg ζ) arg c′(ζ−k ) + (arg ζ − arg ζ−k )ϕ̃k

εk

)
,

if ζ ∈ (ζ−k , eıεkζ−k ],

c(ζ) := exp
(
− ı

2

p
ϕ̃k

)
,

if ζ ∈ (eıεkζ−k , e−ıεkζ+k ), and

c(ζ) := exp
(
− ı

2

p

(arg ζ+k − arg ζ)ϕ̃k + (arg ζ − arg ζ+k + εk) arg c
′(ζ+k )

εk

)
,

if ζ ∈ [e−ıεkζ+k , ζ+k ). Here, ϕ̃k = −p

2
(ψk + 2πjk).

Obviously, c(ζ) is a nonvanishing continuous function of ζ ∈ T. From (5.5) it
follows that indc(T)(0) = 0. Put

a0(ζ) :=
a(ζ)

c(ζ)

for ζ ∈ T. Then

arg a0(ζ) = 0

for all ζ ∈ T \
⋃n

k=1(ζ
−
k , ζ+k ). Moreover, if the numbers ε1, . . . , εn are small enough

then

| arg a0(ζ)| ≤
π

max{p, q}
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for all ζ ∈
⋃n

k=1(ζ
−
k , ζ+k ). Hence, a0(ζ) is a p -sectorial symbol, which yields the

desired factorisation.
By Theorem 4.6, 1) we conclude that the Toeplitz operator T (a0) is invertible

in the space Hp+. Moreover, Theorem 4.7, shows that T (a) is Fredholm of index
zero. Finally, Theorem 4.2 implies that the operator T (a) is actually invertible, as
desired. �

Corollary 3.2 gives the solution of the Dirichlet problem in D via the inverse
operator (T (a)−1. If a(ζ) admits a p -factorisation then Corollary 4.3 yields an
explicit formula for (T (a)−1. In case the boundary of D is a sectorial curve, it
is possible to construct a p -factorisation of a(ζ) with the help of conformal map
z = c(ζ).

Theorem 5.3. Let C be a p -sectorial curve. For any u0 ∈ Lp(C), the Dirichlet
problem has a unique solution u = �f with f ∈ Ep(D) given by

u(z) = �
∫
T

1

2πı

ζ + c−1(z)

ζ − c−1(z)
u0(c(ζ))

dζ

ζ

for z ∈ D.

Proof. According to Theorems 5.2 and 4.1, a p -factorisation of the symbol
of Toeplitz operator corresponding to the Dirichlet problem in a domain with p -
sectorial boundary, if there is any, looks like a(ζ) = a+(ζ)a−(ζ). We begin with
the representation

a(ζ) =
(
c′(ζ)

c′(ζ)

)1/p

for ζ ∈ T, cf. (3.6). In the case of p -sectorial curves the angle α(z) is bounded, and
so the curve C is rectifiable. By a well-known result (see for instance [Gol69]), the

derivative c′(ζ) belongs to H1+, whence p
√
c′(ζ) ∈ Hp+ and p

√
c′(ζ) ∈ Hp− ⊕ {c}.

Comparing this with a(ζ) = a+(ζ)a−(ζ), we get

p
√
c′(ζ)a+(ζ) = p

√
c′(ζ)(1/a−(ζ)).

By (4.2), the left-hand side of this equality belongs to H1+ and the right-hand side
to H1− ⊕ {c}. Hence it follows that

p
√
c′(ζ)a+(ζ) = c,

p
√
c′(ζ)(1/a−(ζ)) = c

where c is a complex constant. The factorisation a(ζ) = a+(ζ)a−(ζ) with

a+(ζ) = c
(
1/ p

√
c′(ζ)

)
,

a−(ζ)) =
1

c
p
√
c′(ζ)

satisfies (4.2), and (T (a))−1 = p
√
c′(ζ)P+

T
(1/ p

√
c′(ζ)), which is due to Corollary 4.3.

This establishes the theorem when combined with the formula of Corollary 3.2. We
fill in details.

We first observe that condition (3.9) is fulfilled. Indeed, from
(
T (a)−11

)
(ζ) = p

√
c′(ζ)P+

T
(1/ p

√
c′(ζ))(ζ)

= p
√
c′(ζ)

(
1/ p

√
c′(0)

)
,
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it follows that
(
T (a)−11

)
(0) = 1, for the derivative c′(0) is positive. On the other

hand, the equality
(
T (a)−1f+

)
(ζ) = p

√
c′(ζ)P+

T

(
(1/ p

√
c′(ζ))P+

T

(
2u0(c(ζ))

p
√
c′(ζ)

))
(ζ)

= p
√
c′(ζ)P+

T

(
2u0(c(ζ))

)
(ζ)

implies that �
(
T (a)−1f+

)
(0) = 0, for c′(0) > 0 and �P+

T
(2u0(c(ζ))) (0) = 0, the

latter being due to the fact that u0 is real-valued. Thus we may use the formula of
Corollary 3.2.

An easy computation shows that (see the proof of Corollary 3.2)

h+(ζ) =
(
T (a)−1f+

)
(ζ)− 1

2

(
T (a)−1f+

)
(0)(T (a)−11)(ζ)

= p
√
c′(ζ)P+

T

(
2u0(c(ζ))

)
(ζ)− p

√
c′(0)P+

T

(
u0(c(ζ))

)
(0) p

√
c′(ζ)(1/ p

√
c′(0))

= p
√
c′(ζ)P+

T

(
2u0(c(ζ))

)
(ζ)− P+

T

(
u0(c(ζ))

)
(0) p

√
c′(ζ)

holds for almost all ζ ∈ T. Writing the projection P+
T

as the Cauchy integral, we
get

h+(ζ) =
p
√
c′(ζ)

2πı

∫
T

(u0(c(ζ
′))

ζ ′ − ζ
− u0(c(ζ

′))

2ζ ′

)
dζ ′

= p
√
c′(ζ)

∫
T

1

2πı

ζ ′ + ζ

ζ ′ − ζ
u0(c(ζ

′))
dζ ′

ζ ′

for all ζ ∈ D. Since

u(z) = � h+(c−1(z))
p
√
c′(c−1(z))

,

the proof is complete. �

Note that the formula of Theorem 5.3 coincides with formula (1.10) of [KKP98,
p. 158].
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