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Fakulẗat für Mathematik, Technische Universität Chemnitz,
Chemnitz, 09107, Germany

S. M. GRUDSKY§
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Escuela de F́ısica y Mateḿaticas, Instituto Polit́ecnico Nacional,
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Abstract. In a recent paper, we established asymptotic formulas for the eigenvalues of then×n truncations of certain infinite Hessenberg Toeplitz

matrices asn goes to infinity. The symbol of the Toeplitz matrices was of the forma(t) = t−1(1−t)α f (t) (t ∈T), whereα is a positive real number

but not an integer andf is a smooth function inH∞. Thus,a has a single power singularity at the point1. In the present work we extend the results

to symbols with a finite number of power singularities. To be more precise, we consider symbols of the forma(t) = t−1 f (t)∏K
k=1(1− t/tk)αk

(t ∈ T), wheretk = eiθk , the argumentsθk are all different, and the exponentsαk are positive real numbers but not integers.
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1 Introduction and main results

Given a functiona∈ L1 on the unit circle in the complex planeT, we denote by

ak =
∫ 2π

0
a
(
eiθ)e−ikθ dθ/2π, k∈ Z,
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thekth Fourier coefficient and byTn(a) then×n Toeplitz matrix(a j−k)n
j,k=1. We are interested in the behavior of the

eigenvalues ofTn(a) asn goes to infinity. The functiona is usually referred to as the symbol or the generating function
of the sequence{Tn(a)}∞

n=1.
For real-valued functionsa the matricesTn(a) are all Hermitian and a number of results on the asymptotics of the

eigenvalues ofTn(a) are available in this case: see, for example, [6], [12], [15], [17], [19], [20], [21], [22], [24], [25],
[27], [28]. In this case the eigenvalues mimic in the one or other sense the distribution of the values of the functiona at
equispaced points on the unit circle.

The picture is less complete for complex-valued symbols. Papers [10], [14], [18] are devoted to the limiting behavior
of the eigenvalues ofTn(a) if a is a rational function, while papers [1] and [26] embark on the asymptotic eigenvalue
distribution in the case of non-smooth symbols. In [23] and [26], it was observed that ifa∈ L∞ and the essential range
R (a) does not separate the plane, then the eigenvalues ofTn(a) approximateR (a), which resembles the Hermitian
case. Many of the results of the papers cited above can also be found in the books [5], [7], [8].

An extreme situation is the one whereak = 0 for k≤ −1. Then, the matricesTn(a) are lower triangular and hence
the spectrumspTn(a) is just the singleton{a0}. Note thata0 captures almost no information about the functiona
itself. The first interesting case beyond this trivial situation is the one whereTn(a) has an additional super-diagonal
and thus is a Hessenberg Toeplitz matrix. Of course, this happens if and only ifak = 0 for k≤ −2. Such symbols can
be analytically continued into the punctured disk0 < |z| < 1, which, as pointed out in [18] and [26], can result in an
eigenvalues distribution along points and curves that are very different from the rangeR (a). On the other hand, the
presence of singularities in the symbol causes the opposite tendency, that is, it somehow forces the eigenvalues to mimic
the range [26].

In [4], we considered symbols with a singularity of the type(1− t)α (t ∈ T) in order to illustrate certain instability
phenomena in the eigenvalue distribution. The eigenvalues of the Hessenberg Toeplitz matrices generated bya(t) =
t−1(1− t)α were studied in [2]. The recent papers [9] and [16] contain intriguing numerical experiments for individual
eigenvalues of Toeplitz matrices whose symbols have a so-called Fisher-Hartwig singularity. These are special symbols
that are smooth onT minus a single point but not smooth on the entire circleT; see [7], [8]. Papers [9] and [16]
motivated us to take up the singularity(1− t)α again, and in [3] we established fairly precise results on the eigenvalues
of Tn(a) in the case wherea(t) = t−1(1− t)α f (t) and f satisfies certain smoothness and analyticity requirements. In the
present paper, we generalize these results to symbols with several singularities of the power type.

Let H∞ be the usual Hardy space of (boundary values of) bounded analytic functions in the unit diskD. Givena∈
C(T), we denote bywindλ(a) the winding number ofaabout a pointλ∈C\R (a) and byD(a) the set of allλ∈C\R (a)
for which windλ(a) 6= 0. In this paper we study the eigenvalues ofTn(a) for symbolsa(t) = t−1 f (t)∏K

k=1(1− t/tk)αk

(t ∈ T), where f is a smooth function subject to additional conditions, the pointstk = eiθk are all different, and the
exponentsαk are distinct positive real numbers but not integers. Thus, we require in particular thatαk 6= α` for k 6= `.
Our approach also works if two or more of the exponentsαk coincide, although then a series of technical details emerges.
To keep this paper within a reasonable volume, we decided not to embark on the case of coinciding exponents here.

We enumerate the singularity pointstk as follows: lett1 be such thatα1 = min1≤k≤K{αk} and number the remaining
tk counterclockwise. Let{Tk}K

k=1 be the connected components ofT \ {t1, . . . , tK} and denote byclosTk be the arcTk

together with its two endpoints. Leth(t):= a(t)t andh0 be its zeroth Fourier coefficient. We assume thata has the
following properties.

1. h∈ H∞ andh0 6= 0.

2. f ∈C∞(T).

3. h can be analytically extended to an open neighborhoodW of T\{t1, . . . , tK} not containing the set{t1, . . . , tK}.
4. The derivativea′(t) does not vanish fort ∈ T\{t1, . . . , tK}, eacha(closTk) is a Jordan curve which surrounds the

points in its interior clockwise, and fork 6= `, the interiors of the curvesa(closTk) anda(closT̀ ) are disjoint.

Figure 2 shows two concrete examples of such functions.
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If f is identically 1, that is, ifa(t) = t−1 ∏K
k=1(1− t/tk)αk, then properties 1 to 4 are satisfied if and only ifσ:=

∑K
k=1 αk < 2. To see this, lett revolve the unit circle once counterclockwise starting att1. We have

a(t) = t−1(1− t/t1)σ
K

∏
k=2

(
1− t/tk
1− t/t1

)αk

.

Taking into account that the argument of(1− t/tk)/(1− t/t1) is piecewise constant and thatt−1(1− t/t1)σ describes a
loop that encircles the points in its interior exactly once clockwise if and only ifσ < 2, it is not difficult to see that the
range ofa is a flower withK non-overlapping petals and that the petals surround their interiors exactly once clockwise
if and only if σ < 2.

Let Dn(a) denote the determinant ofTn(a). Thus, the eigenvaluesλ of Tn(a) are the solutions of the equation
Dn(a−λ) = 0. Our assumptions imply thatTn(a) is a Hessenberg matrix, that is, it arises from a lower triangular matrix
by adding the super-diagonal. This circumstance together with the Baxter-Schmidt formula for Toeplitz determinants
allows us to expressDn(a−λ) as a Fourier integral. The value of this integral mainly depends onλ and on the singularity
of each(1− t/tk)αk at the pointtk. Let W0 be a small open neighborhood of zero inC. We show that for every point
λ ∈ D(a)∩ (

a(W)\W0
)

there is a unique pointtλ /∈ D such thata(tλ) = λ. After exploring the contributions ofλ and
the singular pointstk to the Fourier integral, we get the following asymptotic expansion forDn(a−λ).

Theorem 1.1. Let a(t) = t−1h(t) be a symbol with properties 1 to 4. Then, for every small open neighborhoodW0 of
zero inC, everyλ ∈D(a)∩ (

a(W)\W0
)
, and every real positiveµ,

Dn(a−λ) = (−h0)n+1

(
1

tn+2
λ a′(tλ)

− ∑
(k,`,s)∈Lµ

Ak,`,s

λs+1tn
knαks+`+1 +R1(λ,n)

)
, (1.1)

whereLµ is the collection of all the triples(k, `,s) such thatk∈ {1, . . . ,K}, ` ∈ {0,1, . . .}, s∈ {1,2, . . .}, andαks+ `+
1 < µ;

Ak,`,s =
sin(αkπs)Γ(αks+ `+1)

i`πts+1
k `!

[
f s(tkeiθ)gαks(θ)∏ j 6=k(1−eiθtk/t j)α j s

eiθ(s+1)

](`)

θ=0

,

g(θ) = (eiθ−1)/(iθ), andR1(λ,n) = O(1/nµ) asn→ ∞, uniformly with respect toλ ∈ a(W)\W0.

Of course, in Theorem 1.1 the superscript(`) means “takè derivatives with respect toθ” and the subscriptθ = 0
means “evaluate inθ = 0”.

The order of the sum in (1.1) is1/nα1+1. Thus, among the singularities of the symbola, the factor(1− t/t1)α1

makes the biggest contribution toDn(a−λ). Changing to the variablet/t1 in a, we can obtain a new symbolã in which
the first singularity point will be1. Moreover,spTn(a) = spTn(ã); see [18] or [5, Section 11.1] for details. In order to
simplify some of our forthcoming results, we henceforth assume without loss of generality thatt1 = 1.

Let ωn:= exp(−2πi/n) and Jn:=
{

j ∈ {0, . . . ,n− 1} : a(ω j
n) /∈ W0

}
, also letγ:= min1≤k≤K{αk : αk > α1} and

ζ:= min{1,α1,γ−α1}. As µ is any real positive number, we can develop (1.1) with an arbitrary error bound, but to
make our calculations reasonable and readable, we use Theorem 1.1 withµ = 2ζ + α1 +1 to obtain the following two
results.

Theorem 1.2. Let a(t) = t−1h(t) be a symbol with properties 1 to 4. Then, for every small open neighborhoodW0 of
the origin inC and everyj ∈ Jn, the equationDn(a−λ) = 0 has a solutionλ = λ j,n such that

tλ j,n
=ω j

nn(α1+1)/n

(
1+

[1+2ζ]

∑
m=1

logm

(
a2(ω j

n)

A1,0,1ω2 j
n a′(ω j

n)

)
1

m! nm

− 1
A1,0,1

∑
(k,`,s)∈K

Ak,`,s

tn
kas−1(ω j

n)nαks+`−α1+1
+R2( j,n)

)
, (1.2)
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whereK is the collection of all triples(k, `,s) 6= (1,0,1) such thatk ∈ {1, . . . ,K}, ` ∈ {0,1, . . .}, s∈ {1,2, . . .}, and
αks+ ` < 2ζ+α1. The remainder satisfies

R2( j,n) = O(1/n2ζ+1)+O(logn/n2)

asn→ ∞, uniformly in j ∈ Jn.

The termslogm(·)/(m! nm) are large whenω j
n is close to one of the singularity pointst j and are small whenω j

n is far
from all thet j ’s. Thus, these terms correct the behavior of the eigenvalues close to each singularity point.

Theorem 1.3. Let a(t) = t−1h(t) be a symbol with properties 1 to 4. Then, for every small neighborhoodW0 of zero in
C and everyj ∈ Jn,

λ j,n =a(ω j
n)+(α1 +1)ω j

na′(ω j
n)

logn
n

+ω j
na′(ω j

n)
[1+2ζ]

∑
m=1

logm

(
a2(ω j

n)

A1,0,1ω2 j
n a′(ω j

n)

)
1

m! nm

− ω j
na′(ω j

n)
A1,0,1

∑
(k,`,s)∈K

Ak,`,s

tn
kas−1(ω j

n)nαks+`−α1+1
+R3( j,n), (1.3)

whereζ andK are as in Theorem 1.2 and

R3( j,n) = O(1/n2ζ+1)+O(log2n/n2)

asn→ ∞, uniformly in j ∈ Jn.

Figures 1 and 2 illustrate Theorem 1.3.
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Figure 1. The picture shows a piece ofR (a) for the symbola(t) = t−1(1− t)0.3(1− t/e2i)0.4(1− t/e4i)0.5 (solid blue
line) located far from zero. The black dots arespT4096(a) calculated byMatlab. The red pluses, blue crosses, and green
stars are the approximations obtained by using 2, 3, and 4 terms of (1.3), respectively.
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Figure 2. The black dots and the green stars, are the spectrum ofT128(a) calculated withMatlaband formula (1.3) with
4 terms, respectively.
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2 Toeplitz determinant

Consider the functionb(λ)(t):= 1/
(
h(t)−λt

)
whereλ ∈D(a) andt ∈ T.

Lemma 2.1. Leta(t) = t−1h(t) be a symbol with property 1. Then, for eachλ ∈D(a) and everyn∈ N,

Dn(a−λ) = (−1)nhn+1
0 b(λ)

n , (2.1)

whereb(λ)
n stands for thenth Fourier coefficient ofb(λ) andh0 for the zeroth Fourier coefficient ofh.

Proof. The Baxter-Schmidt formula, which can for example be found in [5, p. 37], says that ifn, r ≥ 1 are integers and
f is a function which is analytic and non-zero in some neighborhood of the origin, then

f−r
0 Dn(t−r f ) = (−1)rn[1/ f ]−n

0 Dr(t−n/ f ),

where[ ]n denotes thenth Fourier coefficient. Because of property 1, the functionf (t):= h(t)−λt satisfies the hypothesis
of the Baxter-Schmidt formula. Finally, takingr = 1 we easily obtain the lemma.

With the aid of expression (2.1) we will calculate the Toeplitz determinantDn(a−λ) as a Fourier integral. As in
the one singularity case [3], this is our starting point to find an asymptotic expansion for the eigenvalues ofTn(a). The
major contributions to this integral comes fromλ whenλ is close toR (a) and from the singularity pointstk. We analyze
them in separate sections.

3 Contribution of λ to the asymptotic behavior ofDn

Recall that

b(λ)
n =

1
2π

∫ π

−π
b(λ)(eiθ)e−inθdθ,

is thenth Fourier coefficient of the functionb(λ).

Lemma 3.1. Let a(t) = t−1h(t) be a symbol satisfying properties 1, 3, and 4. LetW0 be a small open neighborhood
of zero inC. Then, for eachλ ∈ D(a) \W0 sufficiently close toR (a), there is a unique pointtλ in W \D such that
a(tλ) = λ. Moreover, the pointtλ is a simple pole forb(λ).

Proof. Enumerate the collection{Tk}K
k=1 in the following way: for1≤ k < K let Tk be such thattk and tk+1 are its

extreme points, and letTK be such thattK and t1 = 1 are its extreme points. The symbola maps each archTk to a
different petalPk:= a(Tk) in R (a); see Figure 3. Ash belongs toH∞ and can be analytically extended toW, the map
h can be thought of as a bounded and analytic function inD∪W. Sinceh0 = h(0) 6= 0, the functionz−1h(z) = a(z)
is unbounded inD. Thus, the mapa must sendD \ {0} to the exterior ofR (a), that is, the unbounded connected
component ofC\R (a), and it must accordingly sendW \D to D(a)∩a(W).

By property 4,a′(t) 6= 0 for everyt ∈ Tk. TakeS= {t ∈ Tk : a(t) /∈W0}. As a′ is also analytic inW, for eacht ∈ S

there is an open neighborhoodV(k)
t ⊂W of t such thata′(t) 6= 0 for everyt ∈V(k)

t . Then, there is an open neighborhood

U (k)
t ⊂V(k)

t of t such thata is a conformal map (and hence bijective) fromU (k)
t to a

(
U (k)

t

)
. As eachSis compact, we can

take a finite sub-cover from
{
U (k)

t

}
t∈S, sayU (k):=

⋃Nk
s=1U (k)

ts . It follows thata is a conformal map (and hence bijective)

from U (k) ⊃ S(k) to a
(
U (k)

)⊃ a
(
S(k)

)
.

Let U :=
⋃K

k=1U (k). The lemma holds for everyλ ∈ a(U)∩ (D(a)\W0). Finally, sincea′(tλ) 6= 0, the pointtλ must
be a simple pole ofb(λ).
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Figure 3. A typical range for the mapa with 3 singularities over the unit circle.

Lemma 3.1 allows us to write

b(λ)(z) =
1

tλa′(tλ)(z− tλ)
+ b̂(λ)(z), (3.1)

whereb̂(λ) is analytic with respect toz in W and uniformly bounded with respect toλ in a(W) \W0. Taking Fourier
coefficients and writinĝb(λ)(θ) instead of̂b(λ)

(
eiθ), we easily obtain

b(λ)
n =

−1

tn+2
λ a′(tλ)

+ I , (3.2)

where

I :=
1
2π

∫ π

−π
b̂(λ)(θ)e−inθdθ.

The first term in (3.2) times(−1)nhn+1
0 is the contribution oftλ to the asymptotic expansion ofDn(a−λ); see (2.1). The

functionb̂(λ) has singularities at eachθk, and we use this fact to expandI in the following Section.

4 Contribution of tk to the asymptotic behavior ofDn

We start this Section by constructing a particular partition of the unity. Letδ be a small number satisfying0 < δ <
min j 6=k{|θ j − θk|}/2 and take a functionΦ0 ∈ C∞[−π,π] which is supported in(−δ/2,δ/2) and is identically1 in
(−δ/4,δ/4). We may also suppose thatR (Φ0) = [0,1].

For eachx∈ [−π,π], let Φx(θ):= Φ0(θ−x). The collection

P := {Φθ1, . . . ,ΦθK ,Φ∗},

with Φ∗(θ):= 1−∑K
k=1 Φθk(θ), is a partition of the unity for the interval[−π,π]. By pasting segments[−π,π] in both

directions, we continue this partitionP to the entire real lineR.
We will use the following well known asymptotic results, which are, for example, in [11, p. 47] and [13, p. 97],

respectively.

Theorem 4.1. If α < β, v∈CK [α,β], andv(s)(α) = v(s)(β) = 0 for 0≤ s≤ K, then

∫ β

α
v(θ)e−inθdθ =

1
(in)K

∫ β

α
v(K)(θ)e−inθdθ = o(1/nK) asn→ ∞.
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Theorem 4.2. Let β > 0, δ > 0, v∈C∞[0,δ], andv(s)(δ) = 0 for all s≥ 0. Then, for everyK ∈ N,

∫ δ

0
θβ−1v(θ)einθdθ =

K−1

∑
k=0

v(k)(0)Γ(β+k)iβ+k

k!nβ+k
+RK,v(n),

where|RK,v(n)| ≤CK,v/nβ+K , the branch of the powerβ +k is the one corresponding to the argument in(−π,π], and
Γ(z) is Euler’s Gamma function. Ifv depends on a parameter and theL∞ norms of the derivativesv(s) for 0≤ s≤ K
have bounds that do not depend on the parameter, then one can take a single constantCK,v for all parameters.

Lemma 4.3. For every sufficiently small positiveδ, we have

I =
1
2π

K

∑
k=1

∫ θk+δ

θk−δ
Φθk(θ)b(λ)(θ)e−inθdθ+Q1(λ,n), (4.1)

whereQ1(λ,n) = o(1/n∞) asn→ ∞, uniformly with respect toλ in a(W)\W0.

Proof. Using the partitionP , we may writeI = I1 + · · ·+ IK + I ∗ where

Ik:=
1
2π

∫ θk+δ

θk−δ
Φθk(θ)b̂(λ)(θ)e−inθdθ

for k = 1, . . . ,K and

I ∗:=
1
2π

∫ π

−π
Φ∗(θ)b̂(λ)(θ)e−inθdθ.

Takingv(θ):= Φ∗(θ)b̂(λ)(θ), α:= θ1, andβ:= 2π+θ1 in Theorem 4.1 we easily getI ∗ = o(1/n∞) asn→ ∞, uniformly
with respect toλ ∈ a(W)\W0.

Using (3.1), we arrive atIk = Ik1− Ik2 where

Ik1:=
1
2π

∫ θk+δ

θk−δ
Φθk(θ)b(λ)(θ)e−inθdθ (4.2)

and

Ik2:=
1
2π

∫ θk+δ

θk−δ

Φθk(θ)e−inθ

tλa′(tλ)
(
eiθ− tλ

)dθ.

Finally, lettingv(θ):= Φθk(θ)/
(
tλa′(tλ)(eiθ− tλ)

)
, α:= θk− δ, andβ:= θk + δ in Theorem 4.1 we easily obtainIk2 =

o(1/n∞) asn→ ∞, uniformly with respect toλ in a(W)\W0.

Expression (4.1) says that the value ofI basically depends on the integrandb(λ)(θ)e−inθ at the singularity arguments
θk. As we can takeδ as small as we desire, we may assume that in every integral of the sum of (4.1) the variableθ is
arbitrarily close toθk. Keeping this idea in mind, we will develop an asymptotic expansion forb(λ). For future reference,
we rewrite (4.1) as

I =
K

∑
k=1

Ik1 +Q1(λ,n), (4.3)

whereQ1(λ,n) = o(1/n∞) asn→∞, uniformly inλ∈ a(W)\W0. Writing h(θ) instead ofh(eiθ), we obtain the following
lemma.

Lemma 4.4. For everyk∈ {1, . . . ,K} and every sufficiently small positiveδ,

Ik1 =
−1
2πλ

∞

∑
s=0

1
λs

∫ θk+δ

θk−δ

Φθk(θ)hs(θ)e−inθ

eiθ(s+1) dθ. (4.4)
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Proof. Note that

b(λ)(θ) =
1

h(θ)−λeiθ =
−1
λeiθ ·

1
1−λ−1e−iθh(θ)

.

Let k∈ {1, . . . ,K}. As |h(θ)| → 0 when|θ−θk| → 0, there is a small positive constantδk such that|λ−1e−iθh(θ)|< 1
for every|θ−θk|< δk. Let δ = min1≤k≤K{δk}. Thus,

b(λ)(θ) =
−1
λeiθ

∞

∑
s=0

(
λ−1e−iθh(θ)

)s =−
∞

∑
s=0

hs(θ)
λs+1eiθ(s+1) (4.5)

for everyk∈ {1, . . . ,K} and every|θ−θk|< δ. Finally, inserting (4.5) in (4.2) finishes the proof.

We will use the notation

Ik1s:=
−1

2πλs+1

∫ θk+δ

θk−δ

Φθk(θ)hs(θ)e−inθ

eiθ(s+1) dθ. (4.6)

Once more, takingv(θ):= −Φθk(θ)/
(
2πλeiθ), α:= θk− δ, andβ:= θk + δ in Theorem 4.1 we easily obtainIk1s|s=0 =

o(1/n∞) asn→ ∞, uniformly with respect toλ ∈ a(W)\W0. With the previous notation, we can rewrite (4.4) as

Ik1 =
∞

∑
s=1

Ik1s+Q2(k,λ,n),

whereQ2(k,λ,n) = o(1/n∞) asn→ ∞, uniformly with respect toλ ∈ a(W)\W0. Now we use Theorem 4.2 to express
Ik1s asymptotically. We recall thath(t) = f (t)∏K

k=1(1− t/tk)αk, wheretk = eiθk, the argumentsθk are all different, and
the exponentsαk are positive reals but not integers, withα1 = min1≤k≤K{αk}.

Lemma 4.5. Let f be a function with property 2 andµ be any positive real number. Then, fork∈ {1, . . . ,K},

Ik1 = ∑
(`,s)∈L∗

µ

Ak,`,s

λs+1tn
knαks+`+1 +Q7(k,λ,n), (4.7)

whereL∗
µ is the collection of all pairs(`,s) such that̀ ∈ {0,1, . . .}, s∈ {1,2, . . .}, andαks+ `+1 < µ;

Ak,`,s =
sin(αkπs)Γ(αks+ `+1)

i`πts+1
k `!

[
f s(tkeiθ)gαks(θ)∏ j 6=k(1−eiθtk/t j)α j s

eiθ(s+1)

](`)

θ=0

,

g(θ) = (eiθ−1)/(iθ), andQ7(k,λ,n) = O(1/nµ) asn→ ∞, uniformly with respect toλ ∈ a(W)\W0.

Proof. Changingθ to θ+θk in (4.6), we obtain

Ik1s =
−1

2πλs+1

∫ δ

−δ

Φ0(θ) f s(tkeiθ)
(
1−eiθ)αks∏ j 6=k

(
1−eiθtk/t j

)α j se−inθ

eiθ(s+1)tn+s+1
k

dθ.

It is easy to verify that1− eiθ = −iθg(θ), whereg(θ):= 1+ iθ/2+ (iθ)2/6+ O(θ3) asθ → 0. Thus, we can write
Ik1s =

∫ δ
−δ θαksv(θ)e−inθdθ, where

v(θ):=
−(−i)αksΦ0(θ) f s(tkeiθ)gαks(θ)∏ j 6=k

(
1−eiθtk/t j

)α j s

2πλs+1eiθ(s+1)tn+s+1
k

,
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the branch of the powerαks being the one corresponding to the argument in(−π,π]. Note that for every sufficiently
small positiveδ we haveg∈C∞[−δ,δ] andg(0) = 1. Clearly,

Ik1s =
∫ 0

−δ
θαksv(θ)e−inθdθ+

∫ δ

0
θαksv(θ)e−inθdθ

=
∫ δ

0
(−θ)αksv(−θ)einθdθ+

∫ δ

0
θαksv(θ)e−inθdθ = Ik1s1 + Ik1s2, (4.8)

where

Ik1s1:= (−1)αks
∫ δ

0
θαksv(−θ)einθdθ, Ik1s2:=

∫ δ

0
θαksv(θ)e−inθdθ.

Note thatv(±θ) ∈C∞[0,δ] andv(s)(±δ) = 0 for all s≥ 0 becauseΦ0 ≡ 0 in a small neighborhood of±δ. Applying
Theorem 4.2 toIk1s1 andIk1s2, we obtain

Ik1s1 =
L−1

∑̀
=0

(−1)αks+`v(`)(0)Γ(αks+ `+1)iαks+`+1

nαks+`+1`!
+Q3(s,k,L,λ,n),

Ik1s2 =
L−1

∑̀
=0

v(`)(0)Γ(αks+ `+1)i−αks−`−1

nαks+`+1`!
+Q4(s,k,L,λ,n), (4.9)

for everyL ∈ N, whereQ3 andQ4 areO(1/nαks+L+1) asn→ ∞, uniformly in λ ∈ a(W) \W0. Substitution of (4.9) in
(4.8) yields

Ik1s =
L−1

∑̀
=0

v(`)(0)Γ(αks+ `+1)
nαks+`+1`!

(
i−αks−`−1 +(−1)αks+`iαks+`+1)

+Q5(s,k,L,λ,n),

for everyL ∈N, whereQ5(s,k,L,λ,n) = O(1/nαks+L+1) asn→∞, uniformly in λ∈ a(W)\W0. At this point, one could
be tempted to write

Ik1 =
∞

∑
s=1

(
L−1

∑̀
=0

Ak,`,s

λs+1tn
knαks+`+1 +Q5(s,k,L,λ,n)

)
+Q2(k,λ,n) asn→ ∞, (4.10)

whereAk,`,s equals

sin(αkπs)Γ(αks+ `+1)
i`πts+1

k `!

[
Φ0(θ) f s(tkeiθ)gαks(θ)∏ j 6=k(1−eiθtk/t j)α j s

eiθ(s+1)

](`)

θ=0

.

Note that we can drop the factorΦ0(θ) above becauseΦ0 ≡ 1 in a neighborhood ofθ = 0. However, representation
(4.10) does not permit us to get an appropriate bound for the remainder ofIk1. We therefore tackle the problem as
follows. First notice that

h(θ+θk) = f (θ+θk)
K

∏
j=1

(1−eiθtk/t j)α j

= (1−eiθ)αk f (θ+θk)∏
j 6=k

(1−eiθtk/t j)α j = O(θαk) as θ→ 0.

Thus, from (4.5) we obtain

b(λ)(θ+θk) =−
S−1

∑
s=0

hs(θ+θk)
λs+1ei(θ+θk)(s+1) + f (λ)

k,S(θ) (4.11)
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for everyS∈ N and everyk ∈ {1, . . . ,K}. Here f (λ)
k,S(θ) = O(θαkS) asθ → 0, uniformly in λ ∈ a(W) \W0. Inserting

(4.11) in (4.2) and (4.3) we obtain

Ik1 =
S−1

∑
s=1

Ik1s+
1
2π

∫ δ

−δ
Φ0(θ) f (λ)

k,S(θ)e−inθdθ+Q2(k,λ,n)

=
S−1

∑
s=1

L−1

∑̀
=0

Ak,`,s

λs+1tn
knαks+`+1 +

S−1

∑
s=1

Q5(s,k,L,λ,n)

+
1
2π

∫ δ

−δ
Φ0(θ) f (λ)

k,S(θ)e−inθdθ+Q2(k,λ,n) (4.12)

for everyL,S∈N. The functionΦ0(θ) f (λ)
k,S(θ) belongs toC[αkS][−δ,δ] and thus by Theorem 4.1, the integral on the right

side of (4.12) iso(1/n[αkS]) asn→ ∞, uniformly in λ ∈ a(W)\W0.
Fix S∈ N such that[α1S] > µ. Then, the integral on the right side of (4.12) iso(1/nµ) asn→ ∞, uniformly in

λ ∈ a(W)\W0 for everyk∈ {1, . . . ,K}.
Now fix L ∈N such thatα1+L+1> µ. Thus,Q5(s,k,L,λ,n) = O(1/nµ) asn→∞, uniformly in λ ∈ a(W)\W0 for

everyk∈ {1, . . . ,K}. Therefore, the finite sum∑S−1
s=1 Q5(s,k,L,λ,n) is O(1/nµ) asn→ ∞, uniformly in λ ∈ a(W)\W0

for everyk∈ {1, . . . ,K}.
In summary,

Ik1 =
S−1

∑
s=1

L−1

∑̀
=0

Ak,`,s

λs+1tn
knαks+`+1 +Q6(k,λ,n),

whereQ6(S,k,L,λ,n) = O(1/nµ) asn→ ∞, uniformly in λ ∈ a(W)\W0 for everyk∈ {1, . . . ,K}. Finally, avoiding the
unnecessary terms of the sum we finish the proof.

Proof of Theorem 1.1.Combine (2.1), (3.2), (4.3), and (4.7).

5 Individual eigenvalues

In order to find the eigenvalues of the matricesTn(a), we need to solve the equationsDn(a− λ) = 0. We start this
Section by locating the zeros ofDn(a−λ).

Let W0 be a small open neighborhood of zero inC andωn:= exp(−2πi/n). Let

Jn:=
{

j ∈ {0, . . . ,n−1} : a(ω j
n) /∈W0

}
. (5.1)

Recall thatλ = a(tλ). Take an integerj ∈ Jn. Using the representations

1

t2
λa′(tλ)

=
1

ω2 j
n a′(ω j

n)
+O(|tλ−ω j

n|),
1

a2(tλ)
=

1

a2(ω j
n)

+O(|tλ−ω j
n|),

wheretλ belongs to a small neighborhood ofω j
n, we see that the determinantDn(a−λ) in (1.1) equals(−h0)n+1 times

T1−T2 +O

(∣∣∣∣∣
tλ−ω j

n

tn
λ

∣∣∣∣∣

)
+O

(∣∣tλ−ω j
n
∣∣

nα1+1

)
+R1(λ,n), (5.2)

wheretλ belongs to a small neighborhood ofω j
n,

T1:=
1

tn
λω2 j

n a′(ω j
n)

, T2:= ∑
(k,`,s)∈Lµ

Ak,`,s

as+1(ω j
n)tn

knαks+`+1
=

A1,0,1
(
1+Q8(λ,n)

)

a2(ω j
n)nα1+1
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with Q8(λ,n) = O(1/nζ) asn→ ∞, uniformly with respect toλ ∈ a(W)\W0. HereLµ, Ak,`,s, andζ are as in Theorem
1.1. Expression (5.2) makes sense only whentλ is sufficiently close toω j

n and thus it is necessary to know whether there
is a zero ofDn(a−λ) close toω j

n. Let tλ:= ρeiφ. It is easy to verify thatT1−T2 = 0 if and only if

ρ =

(
|a(ω j

n)|2
∣∣1+Q9(n)

∣∣nα1+1

|A1,0,1a′(ω j
n)|

)1/n

(5.3)

and

φ = φs =
1
n

arg

(
a2(ω j

n)
(
1+Q9(n)

)

A1,0,1ω2 j
n a′(ω j

n)

)
− 2πs

n

wheres∈ {0, . . . ,n−1} andQ9(λ,n) = O(1/nζ) asn→ ∞, uniformly with respect toλ ∈ a(W)\W0. Whenn tends to
infinity, (5.3) shows thatρ remains greater than 1 andρ→ 1. The functionT1−T2 hasn zeros with respect toλ ∈D(a)
given by

a
(
ρeiφ0

)
, . . . , a

(
ρeiφn−1

)
.

As Lemma 3.1 establishes a 1-1 correspondence betweenλ andtλ, the functionDn(a−λ) is analytic with respect to
λ ∈ a(W) \W0, that is, analytic with respect totλ ∈W \a−1(W0). We can therefore suppose thatT1−T2 hasn zeros
with respect totλ in the exterior ofD given by

z0:= ρeiφ0, . . . , zn−1:= ρeiφn−1.

We take the function “arg” in the interval(−π,π]. Thus,zj = eiφ j is the nearest zero toω j
n. Consider the open neighbor-

hoodE j of zj sketched in Figure 4.
The boundary ofE j is Γ:= Γ1∪Γ2∪Γ3∪Γ4. We have chosen radial segmentsΓ2 andΓ4 so that their length is

1/nε with ε ∈ (0,min{1,α1,γ−α1}) andγ = min{α j : α j > α1} and all the points inΓ2 have the common argument
(φ j+1 + φ j)/2, while all the points inΓ4 have the common argument(φ j−1 + φ j)/2. As we can see in Figure 4, these
points run from the unit circleT to (1+1/nε)T. Note also thatΓ1⊂ (1+1/nε)T andΓ3 ∈ T. RecallJn from (5.1). We
putdiam(E j):= sup{|z1−z2| : z1,z2 ∈ E j}.

�

�

�

ω j−1
n

ω j
n

ω j+1
n

zj−1

zj

zj+1Γ1
Γ2

Γ3Γ4

E j

T

Figure 4. The neighborhoodE j of zj in the complex plane.
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Theorem 5.1. Supposea(t) = t−1h(t) is a symbol with properties 1 to 4. Letε ∈ (0,min{1,α1,γ−α1}) be a constant.
Then, there is a family of sets{E j} j∈Jn in C such that

1. {E j} j∈Jn is a family of pairwise disjoint open sets,

2. diam(E j)≤ 2/nε,

3. ω j
n ∈ ∂E j ,

4. Dn
(
a−a(tλ)

)
= Dn(a−λ) has exactly one zero in eachE j .

Proof. Assertions 1, 2, and 3 can be deduced from the above construction. We prove assertion 4 by studying the
behavior of|Dn(a−λ)| in dependence ontλ ∈ Γ. For tλ ∈ Γ1 we have, asn→ ∞,

|T1|Γ1 =
1

|a′(ω j
n)|

(
1+

1
nε

)−n

=
exp(−n1−ε)

|a′(ω j
n)|

+O
(

exp(−n1−ε)
n2ε−1

)
,

|T2|Γ1 =
1

nα1+1

∣∣∣∣∣
A1,0,1

(
1+Q8(n)

)

a2(ω j
n)

∣∣∣∣∣ ,
∣∣∣∣∣O

(∣∣∣∣∣
tλ−ω j

n

tn
λ

∣∣∣∣∣

)∣∣∣∣∣
Γ1

= O
(

exp(−n1−ε)
nε

)
,

∣∣∣∣∣O
(∣∣tλ−ω j

n
∣∣

nα1+1

)∣∣∣∣∣
Γ1

= O
(

1
nα1+ε+1

)
,

and
∣∣R1(n, tλ)

∣∣
Γ1

= O(1/nµ). Whenn goes to infinity, the absolute value ofT2 decreases at polynomial speed overΓ1,
while the absolute values of the remaining terms in (5.2) are smaller overΓ1. Thus,

∣∣∣∣∣
Dn(a−λ)

hn+1
0

∣∣∣∣∣
Γ1

=
1

nα1+1

∣∣∣∣∣
A1,0,1

a2(ω j
n)

∣∣∣∣∣+O
(

1
nα1+ε+1

)
asn→ ∞.

For tλ ∈ Γ3, asn→ ∞, we get

|T1|Γ3 =
1

|a′(ω j
n)|

, |T2|Γ3 =
1

nα1+1

∣∣∣∣∣
A1,0,1

(
1+Q8(n)

)

a2(ω j
n)

∣∣∣∣∣ ,

∣∣∣∣∣O
(∣∣∣∣∣

tλ−ω j
n

tn
λ

∣∣∣∣∣

)∣∣∣∣∣
Γ3

= O
(

1
n

)
,

∣∣∣∣∣O
(∣∣tλ−ω j

n
∣∣

nα1+1

)∣∣∣∣∣
Γ3

= O
(

1
nα1+2

)
,

and
∣∣R1(n, tλ)

∣∣
Γ3

= O(1/nµ). Whenn goes to infinity, the modulus ofT1 remains constant overΓ3, while the moduli of
the remaining terms in (5.2) are smaller there. Consequently,

∣∣∣∣∣
Dn(a−λ)

hn+1
0

∣∣∣∣∣
Γ3

=
1

|a′(ω j
n)|

+O
(

1
n

)
asn→ ∞.

As for the radial segmentsΓ2 andΓ4, we start by showing thatT1 and−T2 have the same argument there. Sincezj is a
zero ofT1−T2, we deduce that

arg

(
1

zn
j ω

2 j
n a′(ω j

n)

)
= arg

(
A1,0,1

(
1+Q8(n)

)

a2(ω j
n)nα1+1

)
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asn→ ∞ and thus

−nφ j +arg

(
1

ω2 j
n a′(ω j

n)

)
= arg

(
A1,0,1

(
1+Q8(n)

)

a2(ω j
n)

)
. (5.4)

For tλ ∈ Γ2 we have

arg(T1) = arg

(
1

tn
λω2 j

n a′(ω j
n)

)
=−n

2
(φ j−1 +φ j)+arg

(
1

ω2 j
n a′(ω j

n)

)

=
n
2
(φ j −φ j−1)+arg

(
A1,0,1

(
1+Q8(n)

)

a2(ω j
n)

)

= π+arg

(
A1,0,1

(
1+Q8(n)

)

a2(ω j
n)

)
= arg(−T2).

Here the third line is due to (5.4). In addition, asn→ ∞,

∣∣∣∣∣O
(∣∣∣∣∣

tλ−ω j
n

tn
λ

∣∣∣∣∣

)∣∣∣∣∣
Γ2

= O
(

1
nε|tλ|n

)
,

∣∣∣∣∣O
(∣∣tλ−ω j

n
∣∣

nα1+1

)∣∣∣∣∣
Γ2

= O
(

1
nα1+ε+1

)
,

and
∣∣R1(n, tλ)

∣∣
Γ2

= O(1/nµ). Furthermore,

∣∣∣∣∣
Dn(a−λ)

hn+1
0

∣∣∣∣∣
Γ2

=
1

|tn
λa′(ω j

n)|
+O

(
1

nε|tλ|n
)

+
1

nα1+1

∣∣∣∣∣
A1,0,1

a2(ω j
n)

∣∣∣∣∣+O
(

1
nα1+ε+1

)

overΓ2 asn→ ∞. The situation is similar for the segmentΓ4.

�

≈ |A1,0,1|
nα1+1|a(ω j

n)|2

≈ 1

|a′(ω j
n)|

Γ 1
Γ 2

Γ 3

Γ 4ωj n

T z j

Figure 5. The absolute value ofDn(a−λ)/hn+1
0 overE j .
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Figure 5 resumes our analysis of|Dn(a−λ)/hn+1
0 |. From the previous study of|Dn(a−λ)| overΓ we infer that for

every sufficiently largen we have

|T1−T2|Γ ≥ 1
2nα1+1

∣∣∣∣∣
A1,0,1

a2(ω j
n)

∣∣∣∣∣
and ∣∣∣∣∣O

(∣∣∣∣∣
tλ−ω j

n

tn
λ

∣∣∣∣∣

)
+O

(∣∣tλ−ω j
n
∣∣

nα1+1

)
+R1(n, tλ)

∣∣∣∣∣
Γ

≤ O
(

1
nα1+ε+1

)
.

Hence, by Rouch́e’s theorem,Dn(a−λ)/(−h0)n+1 andT1−T2 have the same number of zeros inE j , that is, a unique
zero.

As a consequence of Theorem 5.1, we can iterate the variabletλ in the equationDn(a−λ) = 0, whereDn(a−λ) is
given by (1.1). In this fashion we find the unique eigenvalue ofTn(a) which is located close toa(ω j

n).

Proof of Theorem 1.2.The equationDn(a−λ) = 0 with Dn(a−λ) given by (1.1) is equivalent to the equation

t−n
λ =

A1,0,1t2
λa′(tλ)

a2(tλ)nα1+1


1+

1
A1,0,1

∑
(k,`,s)∈Lµ

(k,`,s)6=(1,0,1)

Ak,`,s

as−1(tλ)tn
knαks+`−α1

+Q10(n, tλ)


 , (5.5)

whereQ10(n, tλ) = O(1/nµ−α1−1) asn→ ∞, uniformly with respect totλ ∈W \ a−1(W0). Recall from Theorem 1.1
that γ = min{α j : α j > α1} andζ = min{1,α1,γ−α1}. As µ is any real positive number, we can develop (5.5) with
an arbitrary error bound, but to make our calculations reasonable and readable, we limit ourselves toµ = 2ζ + α1 +1.
Equation (5.5) is an implicit expression fortλ. We manipulate it to obtain a few asymptotic terms fortλ. Remember that
λ belongs toD(a) \W0; see Figure 3. We can chooseW so thin thatλ = a(tλ), a′(tλ), andtλ are bounded and not too
close to zero. After taking thenth root for the main branch specified by the argument in(−π,π] and expanding in (5.5),

tλ j,n
=ω j

nn(α1+1)/n


1+

[1+2ζ]

∑
m=1

logm

(
a2(tλ j,n

)

A1,0,1t2
λ j,n

a′(tλ j,n
)

)
1

m! nm +Q11( j,n)




×


1− 1

A1,0,1
∑

(k,`,s)∈Lµ
(k,`,s)6=(1,0,1)

Ak,`,s

as−1(tλ j,n
)tn

knαks+`−α1+1 +Q12( j,n)


 , (5.6)

whereQ11 andQ12 areO(1/n2ζ+1) asn→ ∞, uniformly with respect toj ∈ Jn. After multiplying in (5.6) we obtain

tλ j,n
=ω j

nn(α1+1)/n


1+

[1+2ζ]

∑
m=1

logm

(
a2(tλ j,n

)

A1,0,1t2
λ j,n

a′(tλ j,n
)

)
1

m! nm

− 1
A1,0,1

∑
(k,`,s)∈Lµ

(k,`,s) 6=(1,0,1)

Ak,`,s

as−1(tλ j,n
)tn

knαks+`−α1+1 +Q13( j,n)


 , (5.7)
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whereQ13(n, tλ) = O(1/n2ζ+1) asn→ ∞, uniformly with respect totλ ∈W \a−1(W0). Note that, asn→ ∞,

n(α1+1)/n = exp

(
(α1 +1)

logn
n

)
= 1+(α1 +1)

logn
n

+O
(

log2n
n2

)
. (5.8)

Thus, our first approximation fortλ j,n
is

tλ j,n
= ω j

n +Q14( j,n),

whereQ14( j,n) = O(logn/n) asn→∞, uniformly with respect toj ∈ Jn. Replacingtλ j,n
by this approximation in (5.7)

we obtain

tλ j,n
=ω j

nn(α1+1)/n


1+

[1+2ζ]

∑
m=1

logm

(
a2(ω j

n)

A1,0,1ω2 j
n a′(ω j

n)

)
1

m! nm

− 1
A1,0,1

∑
(k,`,s)∈Lµ

(k,`,s)6=(1,0,1)

Ak,`,s

tn
kas−1(ω j

n)nαks+`−α1+1
+R2( j,n)


 ,

whereR2( j,n) = O(1/n2ζ+1)+O(logn/n2) asn→ ∞, uniformly with respect toj ∈ Jn.

Proof of Theorem 1.3.Inserting (5.8) in (1.2) we obtain

tλ j,n
=ω j

n
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logn
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m! nm
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(k,`,s)6=(1,0,1)

Ak,`,s

tn
kas−1(ω j

n)nαks+`−α1+1
+Q15( j,n)


 , (5.9)

whereQ15( j,n) = O(1/n2ζ+1)+O(log2n/n2) asn→ ∞, uniformly with respect toj ∈ Jn.
Since the symbola is analytic in a small neighborhood of eachtλ j,n

, we haveλ j,n = a(tλ j,n
) = a(ω j

n +z) = a(ω j
n)+

a′(ω j
n)z+O(|z|2). Thus, applying the symbola to (5.9), we get

λ j,n=a(ω j
n)+(α1 +1)ω j

na′(ω j
n)

logn
n

+ω j
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n)Q15( j,n)+Q16( j,n),

whereQ16( j,n) = O(log2n/n2) asn→ ∞, uniformly with respect toj ∈ Jn.
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Figure 6. The absolute value of the difference between the eigenvalues ofT256
(
t−1(1− t)0.6(1+ t)0.9

)
obtained with

Matlab and formula (6.2). The red, blue, and green dots correspond to the approximations of (6.2) with 2, 3, and 4
terms, respectively.

6 Examples

In this Section we consider two particular situations for symbols with two and three singularities. In these situations we
employ our formulas fortλ j,n

andλ j,n, and with the aid ofMatlab, we calculate the corresponding numerical errors.

Example 6.1. Consider the symbola(t) = t−1(1− t)0.6(1+ t)0.9 with two singularities. In this case equations (1.2) and
(1.3) become

tλ j,n
= ω j

nn1.6/n

(
1+

1
n

log

(
a2(ω j

n)

A1,0,1ω2 j
n a′(ω j

n)

)
− (−1)nA2,0,1

A1,0,1n1.3 +R2( j,n)

)
(6.1)

and

λ j,n =a(ω j
n)+1.6ω j

na′(ω j
n)

logn
n

+
ω j

na′(ω j
n)

n
log

(
a2(ω j

n)

A1,0,1ω2 j
n a′(ω j

n)

)

− (−1)nA2,0,1ω j
na′(ω j

n)
A1,0,1n1.3 +R3( j,n), (6.2)

respectively. Here

A1,0,1 = 20.9sin(0.6π)Γ(1.6)/π, A2,0,1 = 20.6sin(0.9π)Γ(1.9)/π,

andR2, R3 areO(1/n1.6) asn→ ∞, uniformly with respect toj ∈ Jn. Table 1 shows the data, see also Figures 2 and 6.

Example 6.2. Consider now the symbol

a(t) = t−1(1− t)0.4(1− t/e2i)0.6(1− t/e4i)0.7
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n 256 512 1024 2048 4096

(6.1) with 1 term 1.1×10−2 6.8×10−3 3.3×10−3 1.7×10−3 8.4×10−4

(6.1) with 2 terms 2.6×10−3 7.9×10−4 2.3×10−4 7.1×10−5 2.2×10−5

(6.1) with 3 terms 2.5×10−3 7.9×10−4 2.2×10−4 6.6×10−5 1.9×10−5

(6.2) with 2 term 1.4×10−2 7.1×10−3 3.5×10−3 1.7×10−3 8.5×10−4

(6.2) with 3 terms 1.6×10−3 5.8×10−4 2.2×10−4 7.5×10−5 2.6×10−5

(6.2) with 4 terms 1.4×10−3 4.4×10−4 1.8×10−4 6.0×10−5 2.0×10−5

Table 1. The table shows the maximum error obtained with formulas (6.1) and (6.2) for the eigenvalues of the matrices
Tn

(
t−1(1− t)0.6(1+ t)0.9

)
for different values ofn. The data was obtained by comparison with the solutions given by

Matlab, taking into account only the 90% best approximated eigenvalues.

with three singularities. In this case equations (1.2) and (1.3) read

tλ j,n
=ω j

nn1.4/n

(
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1
n

log

(
a2(ω j
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A1,0,1ω2 j
n a′(ω j
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and
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logn
n

+
ω j

na′(ω j
n)

n
log
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− A2,0,1e−2niω j
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n)
A1,0,1n1.2 − A3,0,1e−4niω j

na′(ω j
n)

A1,0,1n1.3 +R3( j,n) (6.4)

respectively. Here

A1,0,1 = sin(0.4π)Γ(1.4)(1−e−2i)0.6(1−e−4i)0.7/π,

A2,0,1 = sin(0.6π)Γ(1.6)(1−e2i)0.4(1−e−2i)0.7/(πe4i),

A3,0,1 = sin(0.7π)Γ(1.7)(1−e4i)0.4(1−e2i)0.6/(πe8i),

andR2, R3 areO(1/n1.4) asn→ ∞, uniformly with respect toj ∈ Jn. Table 2 shows the data, see also Figure 2.

n 256 512 1024 2048 4096

(6.3) with 1 term 2.5×10−2 1.1×10−2 6.2×10−3 3.1×10−3 1.6×10−3

(6.3) with 2 terms 1.0×10−2 3.0×10−3 9.0×10−4 2.8×10−4 9.5×10−5

(6.3) with 4 terms 7.8×10−3 2.4×10−3 6.8×10−4 2.3×10−4 7.8×10−5

(6.4) with 2 terms 2.6×10−2 1.2×10−2 6.4×10−3 3.2×10−3 1.6×10−3

(6.4) with 3 terms 9.2×10−3 2.0×10−3 6.3×10−4 2.1×10−4 7.8×10−5

(6.4) with 5 terms 5.7×10−3 1.8×10−3 5.2×10−4 1.9×10−4 7.0×10−5

Table 2. The table shows the maximum error obtained with formulas (6.3) and (6.4) for the eigenvalues of the matrices
Tn

(
t−1(1− t/e2i)0.4(1− t/e4i)0.6(1− t/e6i)0.7

)
for different values ofn. The data was obtained by comparison with the

solutions given byMatlab, taking into account only the 90% best approximated eigenvalues.

Tables 1 and 2 reveal that the maximum error of (1.2) with one term is reduced by nearlyn/80 times when consid-
ering the second term; see also Figure 6.
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