Conference 03 (2011), pp. 23-41
Proceedings of "Analysis, Mathematical Physics and Applications"
held in Ixtapa, Mexico, March 1-5, 2010

Eigenvalues of Hessenberg Toeplitz matrices GENERATED BY SYMBOLS WITH SEVERAL SINGULARITIES *

J. M. Bogoya ${ }^{\dagger}$
Departamento de Matemáticas, CINVESTAV del I.P.N., Ciudad de México, Apartado Postal 14-740, 07000, México
\section*{A. BÖTTCHER ${ }^{\ddagger}$}
Fakultät für Mathematik, Technische Universität Chemnitz, Chemnitz, 09107, Germany
S. M. Grudsky ${ }^{\S}$
Departamento de Matemáticas, CINVESTAV del I.P.N., Ciudad de México, Apartado Postal 14-740, 07000, México
\section*{E. A. Maksimenko ${ }^{\text {II }}$}
Escuela de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México, 07730, México

(Communicated by Vladimir Rabinovich)

Abstract

In a recent paper, we established asymptotic formulas for the eigenvalues of the $n \times n$ truncations of certain infinite Hessenberg Toeplitz matrices as n goes to infinity. The symbol of the Toeplitz matrices was of the form $a(t)=t^{-1}(1-t)^{\alpha} f(t)(t \in \mathbb{T})$, where α is a positive real number but not an integer and f is a smooth function in H^{∞}. Thus, a has a single power singularity at the point 1 . In the present work we extend the results to symbols with a finite number of power singularities. To be more precise, we consider symbols of the form $a(t)=t^{-1} f(t) \prod_{k=1}^{K}\left(1-t / t_{k}\right)^{\alpha_{k}}$ $(t \in \mathbb{T})$, where $t_{k}=e^{i \theta_{k}}$, the arguments θ_{k} are all different, and the exponents α_{k} are positive real numbers but not integers.

Keywords. Toeplitz matrix, eigenvalue, Fourier integral, asymptotic expansion.
MSC 2010. Primary 47B35. Secondary 15A15, 15A18, 47N50, 65F15.

1 Introduction and main results

Given a function $a \in L^{1}$ on the unit circle in the complex plane \mathbb{T}, we denote by

$$
a_{k}=\int_{0}^{2 \pi} a\left(e^{i \theta}\right) e^{-i k \theta} d \theta / 2 \pi, \quad k \in \mathbb{Z}
$$

[^0]the k th Fourier coefficient and by $T_{n}(a)$ the $n \times n$ Toeplitz matrix $\left(a_{j-k}\right)_{j, k=1}^{n}$. We are interested in the behavior of the eigenvalues of $T_{n}(a)$ as n goes to infinity. The function a is usually referred to as the symbol or the generating function of the sequence $\left\{T_{n}(a)\right\}_{n=1}^{\infty}$.

For real-valued functions a the matrices $T_{n}(a)$ are all Hermitian and a number of results on the asymptotics of the eigenvalues of $T_{n}(a)$ are available in this case: see, for example, [6], [12], [15], [17], [19], [20], [21], [22], [24], [25], [27], [28]. In this case the eigenvalues mimic in the one or other sense the distribution of the values of the function a at equispaced points on the unit circle.

The picture is less complete for complex-valued symbols. Papers [10], [14], [18] are devoted to the limiting behavior of the eigenvalues of $T_{n}(a)$ if a is a rational function, while papers [1] and [26] embark on the asymptotic eigenvalue distribution in the case of non-smooth symbols. In [23] and [26], it was observed that if $a \in L^{\infty}$ and the essential range $\mathcal{R}(a)$ does not separate the plane, then the eigenvalues of $T_{n}(a)$ approximate $\mathcal{R}(a)$, which resembles the Hermitian case. Many of the results of the papers cited above can also be found in the books [5], [7], [8].

An extreme situation is the one where $a_{k}=0$ for $k \leq-1$. Then, the matrices $T_{n}(a)$ are lower triangular and hence the spectrum $\operatorname{sp} T_{n}(a)$ is just the singleton $\left\{a_{0}\right\}$. Note that a_{0} captures almost no information about the function a itself. The first interesting case beyond this trivial situation is the one where $T_{n}(a)$ has an additional super-diagonal and thus is a Hessenberg Toeplitz matrix. Of course, this happens if and only if $a_{k}=0$ for $k \leq-2$. Such symbols can be analytically continued into the punctured disk $0<|z|<1$, which, as pointed out in [18] and [26], can result in an eigenvalues distribution along points and curves that are very different from the range $\mathcal{R}(a)$. On the other hand, the presence of singularities in the symbol causes the opposite tendency, that is, it somehow forces the eigenvalues to mimic the range [26].

In [4], we considered symbols with a singularity of the type $(1-t)^{\alpha}(t \in \mathbb{T})$ in order to illustrate certain instability phenomena in the eigenvalue distribution. The eigenvalues of the Hessenberg Toeplitz matrices generated by $a(t)=$ $t^{-1}(1-t)^{\alpha}$ were studied in [2]. The recent papers [9] and [16] contain intriguing numerical experiments for individual eigenvalues of Toeplitz matrices whose symbols have a so-called Fisher-Hartwig singularity. These are special symbols that are smooth on \mathbb{T} minus a single point but not smooth on the entire circle \mathbb{T}; see [7], [8]. Papers [9] and [16] motivated us to take up the singularity $(1-t)^{\alpha}$ again, and in [3] we established fairly precise results on the eigenvalues of $T_{n}(a)$ in the case where $a(t)=t^{-1}(1-t)^{\alpha} f(t)$ and f satisfies certain smoothness and analyticity requirements. In the present paper, we generalize these results to symbols with several singularities of the power type.

Let H^{∞} be the usual Hardy space of (boundary values of) bounded analytic functions in the unit disk \mathbb{D}. Given $a \in$ $C(\mathbb{T})$, we denote by $\operatorname{wind}_{\lambda}(a)$ the winding number of a about a point $\lambda \in \mathbb{C} \backslash \mathcal{R}(a)$ and by $\mathcal{D}(a)$ the set of all $\lambda \in \mathbb{C} \backslash \mathcal{R}(a)$ for which $\operatorname{wind}_{\lambda}(a) \neq 0$. In this paper we study the eigenvalues of $T_{n}(a)$ for symbols $a(t)=t^{-1} f(t) \prod_{k=1}^{K}\left(1-t / t_{k}\right)^{\alpha_{k}}$ ($t \in \mathbb{T}$), where f is a smooth function subject to additional conditions, the points $t_{k}=e^{i \theta_{k}}$ are all different, and the exponents α_{k} are distinct positive real numbers but not integers. Thus, we require in particular that $\alpha_{k} \neq \alpha_{\ell}$ for $k \neq \ell$. Our approach also works if two or more of the exponents α_{k} coincide, although then a series of technical details emerges. To keep this paper within a reasonable volume, we decided not to embark on the case of coinciding exponents here.

We enumerate the singularity points t_{k} as follows: let t_{1} be such that $\alpha_{1}=\min _{1 \leq k \leq K}\left\{\alpha_{k}\right\}$ and number the remaining t_{k} counterclockwise. Let $\left\{T_{k}\right\}_{k=1}^{K}$ be the connected components of $\mathbb{T} \backslash\left\{t_{1}, \ldots, t_{K}\right\}$ and denote by clos T_{k} be the arc T_{k} together with its two endpoints. Let $h(t):=a(t) t$ and h_{0} be its zeroth Fourier coefficient. We assume that a has the following properties.

1. $h \in H^{\infty}$ and $h_{0} \neq 0$.
2. $f \in C^{\infty}(\mathbb{T})$.
3. h can be analytically extended to an open neighborhood W of $\mathbb{T} \backslash\left\{t_{1}, \ldots, t_{K}\right\}$ not containing the set $\left\{t_{1}, \ldots, t_{K}\right\}$.
4. The derivative $a^{\prime}(t)$ does not vanish for $t \in \mathbb{T} \backslash\left\{t_{1}, \ldots, t_{K}\right\}$, each $a\left(\cos T_{k}\right)$ is a Jordan curve which surrounds the points in its interior clockwise, and for $k \neq \ell$, the interiors of the curves $a\left(\cos T_{k}\right)$ and $a\left(\operatorname{clos} T_{\ell}\right)$ are disjoint.

Figure 2 shows two concrete examples of such functions.

If f is identically 1 , that is, if $a(t)=t^{-1} \prod_{k=1}^{K}\left(1-t / t_{k}\right)^{\alpha_{k}}$, then properties 1 to 4 are satisfied if and only if $\sigma:=$ $\sum_{k=1}^{K} \alpha_{k}<2$. To see this, let t revolve the unit circle once counterclockwise starting at t_{1}. We have

$$
a(t)=t^{-1}\left(1-t / t_{1}\right)^{\sigma} \prod_{k=2}^{K}\left(\frac{1-t / t_{k}}{1-t / t_{1}}\right)^{\alpha_{k}} .
$$

Taking into account that the argument of $\left(1-t / t_{k}\right) /\left(1-t / t_{1}\right)$ is piecewise constant and that $t^{-1}\left(1-t / t_{1}\right)^{\sigma}$ describes a loop that encircles the points in its interior exactly once clockwise if and only if $\sigma<2$, it is not difficult to see that the range of a is a flower with K non-overlapping petals and that the petals surround their interiors exactly once clockwise if and only if $\sigma<2$.

Let $D_{n}(a)$ denote the determinant of $T_{n}(a)$. Thus, the eigenvalues λ of $T_{n}(a)$ are the solutions of the equation $D_{n}(a-\lambda)=0$. Our assumptions imply that $T_{n}(a)$ is a Hessenberg matrix, that is, it arises from a lower triangular matrix by adding the super-diagonal. This circumstance together with the Baxter-Schmidt formula for Toeplitz determinants allows us to express $D_{n}(a-\lambda)$ as a Fourier integral. The value of this integral mainly depends on λ and on the singularity of each $\left(1-t / t_{k}\right)^{\alpha_{k}}$ at the point t_{k}. Let W_{0} be a small open neighborhood of zero in \mathbb{C}. We show that for every point $\lambda \in \mathcal{D}(a) \cap\left(a(W) \backslash W_{0}\right)$ there is a unique point $t_{\lambda} \notin \overline{\mathbb{D}}$ such that $a\left(t_{\lambda}\right)=\lambda$. After exploring the contributions of λ and the singular points t_{k} to the Fourier integral, we get the following asymptotic expansion for $D_{n}(a-\lambda)$.
Theorem 1.1. Let $a(t)=t^{-1} h(t)$ be a symbol with properties 1 to 4. Then, for every small open neighborhood W_{0} of zero in \mathbb{C}, every $\lambda \in \mathcal{D}(a) \cap\left(a(W) \backslash W_{0}\right)$, and every real positive μ,

$$
\begin{equation*}
D_{n}(a-\lambda)=\left(-h_{0}\right)^{n+1}\left(\frac{1}{t_{\lambda}^{n+2} a^{\prime}\left(t_{\lambda}\right)}-\sum_{(k, \ell, s) \in \mathcal{L}_{\mu}^{\lambda^{s+1}} t_{k}^{n} n^{\alpha_{k} s+\ell+1}} \frac{\left.A_{k}, R_{1}(\lambda, n)\right), ~, ~, ~}{}\right. \tag{1.1}
\end{equation*}
$$

where \mathcal{L}_{μ} is the collection of all the triples (k, ℓ, s) such that $k \in\{1, \ldots, K\}, \ell \in\{0,1, \ldots\}, s \in\{1,2, \ldots\}$, and $\alpha_{k} s+\ell+$ $1<\mu$;

$$
A_{k, \ell, s}=\frac{\sin \left(\alpha_{k} \pi s\right) \Gamma\left(\alpha_{k} s+\ell+1\right)}{i^{\ell} \pi t_{k}^{s+1} \ell!}\left[\frac{f^{s}\left(t_{k} e^{i \theta}\right) g^{\alpha_{k} s}(\theta) \prod_{j \neq k}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j} s}}{e^{i \theta(s+1)}}\right]_{\theta=0}^{(\ell)},
$$

$g(\theta)=\left(e^{i \theta}-1\right) /(i \theta)$, and $R_{1}(\lambda, n)=O\left(1 / n^{\mu}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$.
Of course, in Theorem 1.1 the superscript (ℓ) means "take ℓ derivatives with respect to θ " and the subscript $\theta=0$ means "evaluate in $\theta=0$ ".

The order of the sum in (1.1) is $1 / n^{\alpha_{1}+1}$. Thus, among the singularities of the symbol a, the factor $\left(1-t / t_{1}\right)^{\alpha_{1}}$ makes the biggest contribution to $D_{n}(a-\lambda)$. Changing to the variable t / t_{1} in a, we can obtain a new symbol \tilde{a} in which the first singularity point will be 1 . Moreover, $\operatorname{sp} T_{n}(a)=\operatorname{sp} T_{n}(\tilde{a})$; see [18] or [5, Section 11.1] for details. In order to simplify some of our forthcoming results, we henceforth assume without loss of generality that $t_{1}=1$.

Let $\omega_{n}:=\exp (-2 \pi i / n)$ and $\mathcal{I}_{n}:=\left\{j \in\{0, \ldots, n-1\}: a\left(\omega_{n}^{j}\right) \notin W_{0}\right\}$, also let $\gamma:=\min _{1 \leq k \leq K}\left\{\alpha_{k}: \alpha_{k}>\alpha_{1}\right\}$ and $\zeta:=\min \left\{1, \alpha_{1}, \gamma-\alpha_{1}\right\}$. As μ is any real positive number, we can develop (1.1) with an arbitrary error bound, but to make our calculations reasonable and readable, we use Theorem 1.1 with $\mu=2 \zeta+\alpha_{1}+1$ to obtain the following two results.
Theorem 1.2. Let $a(t)=t^{-1} h(t)$ be a symbol with properties 1 to 4. Then, for every small open neighborhood W_{0} of the origin in \mathbb{C} and every $j \in \mathcal{I}_{n}$, the equation $D_{n}(a-\lambda)=0$ has a solution $\lambda=\lambda_{j, n}$ such that

$$
\begin{align*}
t_{\lambda_{j, n}}= & \omega_{n}^{j} n^{\left(\alpha_{1}+1\right) / n}\left(1+\sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \frac{1}{m!n^{m}}\right. \\
& \left.-\frac{1}{A_{1,0,1}} \sum_{(k, \ell, s) \in \mathcal{K}} \frac{A_{k} t_{k}^{n} a^{s-1}\left(\omega_{n}^{j}\right) n^{\alpha_{k} s+\ell-\alpha_{1}+1}}{}+R_{2}(j, n)\right) \tag{1.2}
\end{align*}
$$

where \mathcal{K} is the collection of all triples $(k, \ell, s) \neq(1,0,1)$ such that $k \in\{1, \ldots, K\}, \ell \in\{0,1, \ldots\}, s \in\{1,2, \ldots\}$, and $\alpha_{k} s+\ell<2 \zeta+\alpha_{1}$. The remainder satisfies

$$
R_{2}(j, n)=O\left(1 / n^{2 \zeta+1}\right)+O\left(\log n / n^{2}\right)
$$

as $n \rightarrow \infty$, uniformly in $j \in \mathcal{I}_{n}$.
The terms $\log ^{m}(\cdot) /\left(m!n^{m}\right)$ are large when ω_{n}^{j} is close to one of the singularity points t_{j} and are small when ω_{n}^{j} is far from all the t_{j} 's. Thus, these terms correct the behavior of the eigenvalues close to each singularity point.
Theorem 1.3. Let $a(t)=t^{-1} h(t)$ be a symbol with properties 1 to 4 . Then, for every small neighborhood W_{0} of zero in \mathbb{C} and every $j \in \mathcal{I}_{n}$,

$$
\begin{align*}
\lambda_{j, n}= & a\left(\omega_{n}^{j}\right)+\left(\alpha_{1}+1\right) \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \frac{\log n}{n} \\
& +\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \frac{1}{m!n^{m}} \\
& -\frac{\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{A_{1,0,1}} \sum_{(k, \ell, s) \in \mathcal{K}} \frac{A_{k, \ell, s}}{t_{k}^{n} a^{s-1}\left(\omega_{n}^{j}\right) n^{\alpha_{k} s+\ell-\alpha_{1}+1}}+R_{3}(j, n), \tag{1.3}
\end{align*}
$$

where ζ and \mathcal{K} are as in Theorem 1.2 and

$$
R_{3}(j, n)=O\left(1 / n^{2 \zeta+1}\right)+O\left(\log ^{2} n / n^{2}\right)
$$

as $n \rightarrow \infty$, uniformly in $j \in \mathcal{I}_{n}$.
Figures 1 and 2 illustrate Theorem 1.3.

Figure 1. The picture shows a piece of $\mathcal{R}(a)$ for the symbol $a(t)=t^{-1}(1-t)^{0.3}\left(1-t / e^{2 i}\right)^{0.4}\left(1-t / e^{4 i}\right)^{0.5}$ (solid blue line) located far from zero. The black dots are $\operatorname{sp} T_{4096}(a)$ calculated by Matlab. The red pluses, blue crosses, and green stars are the approximations obtained by using 2,3 , and 4 terms of (1.3), respectively.

Figure 2. The black dots and the green stars, are the spectrum of $T_{128}(a)$ calculated with Matlab and formula (1.3) with 4 terms, respectively.

2 Toeplitz determinant

Consider the function $b^{(\lambda)}(t):=1 /(h(t)-\lambda t)$ where $\lambda \in \mathcal{D}(a)$ and $t \in \mathbb{T}$.
Lemma 2.1. Let $a(t)=t^{-1} h(t)$ be a symbol with property 1. Then, for each $\lambda \in \mathcal{D}(a)$ and every $n \in \mathbb{N}$,

$$
\begin{equation*}
D_{n}(a-\lambda)=(-1)^{n} h_{0}^{n+1} b_{n}^{(\lambda)}, \tag{2.1}
\end{equation*}
$$

where $b_{n}^{(\lambda)}$ stands for the nth Fourier coefficient of $b^{(\lambda)}$ and h_{0} for the zeroth Fourier coefficient of h.
Proof. The Baxter-Schmidt formula, which can for example be found in [5, p.37], says that if $n, r \geq 1$ are integers and f is a function which is analytic and non-zero in some neighborhood of the origin, then

$$
f_{0}^{-r} D_{n}\left(t^{-r} f\right)=(-1)^{r n}[1 / f]_{0}^{-n} D_{r}\left(t^{-n} / f\right),
$$

where [$]_{n}$ denotes the nth Fourier coefficient. Because of property 1 , the function $f(t):=h(t)-\lambda t$ satisfies the hypothesis of the Baxter-Schmidt formula. Finally, taking $r=1$ we easily obtain the lemma.

With the aid of expression (2.1) we will calculate the Toeplitz determinant $D_{n}(a-\lambda)$ as a Fourier integral. As in the one singularity case [3], this is our starting point to find an asymptotic expansion for the eigenvalues of $T_{n}(a)$. The major contributions to this integral comes from λ when λ is close to $\mathcal{R}(a)$ and from the singularity points t_{k}. We analyze them in separate sections.

3 Contribution of λ to the asymptotic behavior of D_{n}

Recall that

$$
b_{n}^{(\lambda)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} b^{(\lambda)}\left(e^{i \theta}\right) e^{-i n \theta} d \theta
$$

is the nth Fourier coefficient of the function $b^{(\lambda)}$.
Lemma 3.1. Let $a(t)=t^{-1} h(t)$ be a symbol satisfying properties 1, 3, and 4. Let W_{0} be a small open neighborhood of zero in \mathbb{C}. Then, for each $\lambda \in \mathcal{D}(a) \backslash W_{0}$ sufficiently close to $\mathcal{R}(a)$, there is a unique point t_{λ} in $W \backslash \overline{\mathbb{D}}$ such that $a\left(t_{\lambda}\right)=\lambda$. Moreover, the point t_{λ} is a simple pole for $b^{(\lambda)}$.

Proof. Enumerate the collection $\left\{T_{k}\right\}_{k=1}^{K}$ in the following way: for $1 \leq k<K$ let T_{k} be such that t_{k} and t_{k+1} are its extreme points, and let T_{K} be such that t_{K} and $t_{1}=1$ are its extreme points. The symbol a maps each arch T_{k} to a different petal $P_{k}:=a\left(T_{k}\right)$ in $\mathcal{R}(a)$; see Figure 3. As h belongs to H^{∞} and can be analytically extended to W, the map h can be thought of as a bounded and analytic function in $\mathbb{D} \cup W$. Since $h_{0}=h(0) \neq 0$, the function $z^{-1} h(z)=a(z)$ is unbounded in \mathbb{D}. Thus, the map a must send $\mathbb{D} \backslash\{0\}$ to the exterior of $\mathcal{R}(a)$, that is, the unbounded connected component of $\mathbb{C} \backslash \mathcal{R}(a)$, and it must accordingly send $W \backslash \overline{\mathbb{D}}$ to $\mathcal{D}(a) \cap a(W)$.

By property $4, a^{\prime}(t) \neq 0$ for every $t \in T_{k}$. Take $S=\left\{t \in T_{k}: a(t) \notin W_{0}\right\}$. As a^{\prime} is also analytic in W, for each $t \in S$ there is an open neighborhood $V_{t}^{(k)} \subset W$ of t such that $a^{\prime}(t) \neq 0$ for every $t \in V_{t}^{(k)}$. Then, there is an open neighborhood $U_{t}^{(k)} \subset V_{t}^{(k)}$ of t such that a is a conformal map (and hence bijective) from $U_{t}^{(k)}$ to $a\left(U_{t}^{(k)}\right)$. As each S is compact, we can take a finite sub-cover from $\left\{U_{t}^{(k)}\right\}_{t \in S}$, say $U^{(k)}:=\bigcup_{s=1}^{N_{k}} U_{t_{s}}^{(k)}$. It follows that a is a conformal map (and hence bijective) from $U^{(k)} \supset S^{(k)}$ to $a\left(U^{(k)}\right) \supset a\left(S^{(k)}\right)$.

Let $U:=\bigcup_{k=1}^{K} U^{(k)}$. The lemma holds for every $\lambda \in a(U) \cap\left(\mathcal{D}(a) \backslash W_{0}\right)$. Finally, since $a^{\prime}\left(t_{\lambda}\right) \neq 0$, the point t_{λ} must be a simple pole of $b^{(\lambda)}$.

Figure 3. A typical range for the map a with 3 singularities over the unit circle.

Lemma 3.1 allows us to write

$$
\begin{equation*}
b^{(\lambda)}(z)=\frac{1}{t_{\lambda} a^{\prime}\left(t_{\lambda}\right)\left(z-t_{\lambda}\right)}+\hat{b}^{(\lambda)}(z) \tag{3.1}
\end{equation*}
$$

where $\hat{b}^{(\lambda)}$ is analytic with respect to z in W and uniformly bounded with respect to λ in $a(W) \backslash W_{0}$. Taking Fourier coefficients and writing $\hat{b}^{(\lambda)}(\theta)$ instead of $\hat{b}^{(\lambda)}\left(e^{i \theta}\right)$, we easily obtain

$$
\begin{equation*}
b_{n}^{(\lambda)}=\frac{-1}{t_{\lambda}^{n+2} a^{\prime}\left(t_{\lambda}\right)}+I \tag{3.2}
\end{equation*}
$$

where

$$
I:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{b}^{(\lambda)}(\theta) e^{-i n \theta} d \theta
$$

The first term in (3.2) times $(-1)^{n} h_{0}^{n+1}$ is the contribution of t_{λ} to the asymptotic expansion of $D_{n}(a-\lambda)$; see (2.1). The function $\hat{b}^{(\lambda)}$ has singularities at each θ_{k}, and we use this fact to expand I in the following Section.

4 Contribution of t_{k} to the asymptotic behavior of D_{n}

We start this Section by constructing a particular partition of the unity. Let δ be a small number satisfying $0<\delta<$ $\min _{j \neq k}\left\{\left|\theta_{j}-\theta_{k}\right|\right\} / 2$ and take a function $\Phi_{0} \in C^{\infty}[-\pi, \pi]$ which is supported in $(-\delta / 2, \delta / 2)$ and is identically 1 in $(-\delta / 4, \delta / 4)$. We may also suppose that $\mathcal{R}\left(\Phi_{0}\right)=[0,1]$.

For each $x \in[-\pi, \pi]$, let $\Phi_{x}(\theta):=\Phi_{0}(\theta-x)$. The collection

$$
\mathcal{P}:=\left\{\Phi_{\theta_{1}}, \ldots, \Phi_{\theta_{K}}, \Phi^{*}\right\}
$$

with $\Phi^{*}(\theta):=1-\sum_{k=1}^{K} \Phi_{\theta_{k}}(\theta)$, is a partition of the unity for the interval $[-\pi, \pi]$. By pasting segments $[-\pi, \pi]$ in both directions, we continue this partition \mathcal{P} to the entire real line \mathbb{R}.

We will use the following well known asymptotic results, which are, for example, in [11, p. 47] and [13, p. 97], respectively.

Theorem 4.1. If $\alpha<\beta, v \in C^{K}[\alpha, \beta]$, and $v^{(s)}(\alpha)=v^{(s)}(\beta)=0$ for $0 \leq s \leq K$, then

$$
\int_{\alpha}^{\beta} v(\theta) e^{-i n \theta} d \theta=\frac{1}{(i n)^{K}} \int_{\alpha}^{\beta} v^{(K)}(\theta) e^{-i n \theta} d \theta=o\left(1 / n^{K}\right) \quad \text { as } n \rightarrow \infty
$$

Theorem 4.2. Let $\beta>0, \delta>0, v \in C^{\infty}[0, \delta]$, and $v^{(s)}(\delta)=0$ for all $s \geq 0$. Then, for every $K \in \mathbb{N}$,

$$
\int_{0}^{\delta} \theta^{\beta-1} v(\theta) e^{i n \theta} d \theta=\sum_{k=0}^{K-1} \frac{v^{(k)}(0) \Gamma(\beta+k) i^{\beta+k}}{k!n^{\beta+k}}+R_{K, v}(n)
$$

where $\left|R_{K, v}(n)\right| \leq C_{K, v} / n^{\beta+K}$, the branch of the power $\beta+k$ is the one corresponding to the argument in $(-\pi, \pi]$, and $\Gamma(z)$ is Euler's Gamma function. If v depends on a parameter and the L^{∞} norms of the derivatives $v^{(s)}$ for $0 \leq s \leq K$ have bounds that do not depend on the parameter, then one can take a single constant $C_{K, v}$ for all parameters.
Lemma 4.3. For every sufficiently small positive δ, we have

$$
\begin{equation*}
I=\frac{1}{2 \pi} \sum_{k=1}^{K} \int_{\theta_{k}-\delta}^{\theta_{k}+\delta} \Phi_{\theta_{k}}(\theta) b^{(\lambda)}(\theta) e^{-i n \theta} d \theta+Q_{1}(\lambda, n), \tag{4.1}
\end{equation*}
$$

where $Q_{1}(\lambda, n)=o\left(1 / n^{\infty}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.
Proof. Using the partition \mathcal{P}, we may write $I=I_{1}+\cdots+I_{K}+I^{*}$ where

$$
I_{k}:=\frac{1}{2 \pi} \int_{\theta_{k}-\delta}^{\theta_{k}+\delta} \Phi_{\theta_{k}}(\theta) \hat{b}^{(\lambda)}(\theta) e^{-i n \theta} d \theta
$$

for $k=1, \ldots, K$ and

$$
I^{*}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Phi^{*}(\theta) \hat{b}^{(\lambda)}(\theta) e^{-i n \theta} d \theta .
$$

Taking $v(\theta):=\Phi^{*}(\theta) \hat{b}^{(\lambda)}(\theta), \alpha:=\theta_{1}$, and $\beta:=2 \pi+\theta_{1}$ in Theorem 4.1 we easily get $I^{*}=o\left(1 / n^{\infty}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$.

Using (3.1), we arrive at $I_{k}=I_{k 1}-I_{k 2}$ where

$$
\begin{equation*}
I_{k 1}:=\frac{1}{2 \pi} \int_{\theta_{k}-\delta}^{\theta_{k}+\delta} \Phi_{\theta_{k}}(\theta) b^{(\lambda)}(\theta) e^{-i n \theta} d \theta \tag{4.2}
\end{equation*}
$$

and

$$
I_{k 2}:=\frac{1}{2 \pi} \int_{\theta_{k}-\delta}^{\theta_{k}+\delta} \frac{\Phi_{\theta_{k}}(\theta) e^{-i n \theta}}{t_{\lambda} a^{\prime}\left(t_{\lambda}\right)\left(e^{i \theta}-t_{\lambda}\right)} d \theta
$$

Finally, letting $v(\theta):=\Phi_{\theta_{k}}(\theta) /\left(t_{\lambda} a^{\prime}\left(t_{\lambda}\right)\left(e^{i \theta}-t_{\lambda}\right)\right), \alpha:=\theta_{k}-\delta$, and $\beta:=\theta_{k}+\delta$ in Theorem 4.1 we easily obtain $I_{k 2}=$ $o\left(1 / n^{\infty}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.

Expression (4.1) says that the value of I basically depends on the integrand $b^{(\lambda)}(\theta) e^{-i n \theta}$ at the singularity arguments θ_{k}. As we can take δ as small as we desire, we may assume that in every integral of the sum of (4.1) the variable θ is arbitrarily close to θ_{k}. Keeping this idea in mind, we will develop an asymptotic expansion for $b^{(\lambda)}$. For future reference, we rewrite (4.1) as

$$
\begin{equation*}
I=\sum_{k=1}^{K} I_{k 1}+Q_{1}(\lambda, n) \tag{4.3}
\end{equation*}
$$

where $Q_{1}(\lambda, n)=o\left(1 / n^{\infty}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$. Writing $h(\theta)$ instead of $h\left(e^{i \theta}\right)$, we obtain the following lemma.

Lemma 4.4. For every $k \in\{1, \ldots, K\}$ and every sufficiently small positive δ,

$$
\begin{equation*}
I_{k 1}=\frac{-1}{2 \pi \lambda} \sum_{s=0}^{\infty} \frac{1}{\lambda^{s}} \int_{\theta_{k}-\delta}^{\theta_{k}+\delta} \frac{\Phi_{\theta_{k}}(\theta) h^{s}(\theta) e^{-i n \theta}}{e^{i \theta(s+1)}} d \theta . \tag{4.4}
\end{equation*}
$$

Proof. Note that

$$
b^{(\lambda)}(\theta)=\frac{1}{h(\theta)-\lambda e^{i \theta}}=\frac{-1}{\lambda e^{i \theta}} \cdot \frac{1}{1-\lambda^{-1} e^{-i \theta} h(\theta)} .
$$

Let $k \in\{1, \ldots, K\}$. As $|h(\theta)| \rightarrow 0$ when $\left|\theta-\theta_{k}\right| \rightarrow 0$, there is a small positive constant δ_{k} such that $\left|\lambda^{-1} e^{-i \theta} h(\theta)\right|<1$ for every $\left|\theta-\theta_{k}\right|<\delta_{k}$. Let $\delta=\min _{1 \leq k \leq K}\left\{\delta_{k}\right\}$. Thus,

$$
\begin{equation*}
b^{(\lambda)}(\theta)=\frac{-1}{\lambda e^{i \theta}} \sum_{s=0}^{\infty}\left(\lambda^{-1} e^{-i \theta} h(\theta)\right)^{s}=-\sum_{s=0}^{\infty} \frac{h^{s}(\theta)}{\lambda^{s+1} e^{i \theta(s+1)}} \tag{4.5}
\end{equation*}
$$

for every $k \in\{1, \ldots, K\}$ and every $\left|\theta-\theta_{k}\right|<\delta$. Finally, inserting (4.5) in (4.2) finishes the proof.
We will use the notation

$$
\begin{equation*}
I_{k 1 s}:=\frac{-1}{2 \pi \lambda^{s+1}} \int_{\theta_{k}-\delta}^{\theta_{k}+\delta} \frac{\Phi_{\theta_{k}}(\theta) h^{s}(\theta) e^{-i n \theta}}{e^{i \theta(s+1)}} d \theta . \tag{4.6}
\end{equation*}
$$

Once more, taking $v(\theta):=-\Phi_{\theta_{k}}(\theta) /\left(2 \pi \lambda e^{i \theta}\right), \alpha:=\theta_{k}-\delta$, and $\beta:=\theta_{k}+\delta$ in Theorem 4.1 we easily obtain $\left.I_{k 1 s}\right|_{s=0}=$ $o\left(1 / n^{\infty}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$. With the previous notation, we can rewrite (4.4) as

$$
I_{k 1}=\sum_{s=1}^{\infty} I_{k 1 s}+Q_{2}(k, \lambda, n)
$$

where $Q_{2}(k, \lambda, n)=o\left(1 / n^{\infty}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$. Now we use Theorem 4.2 to express $I_{k 1 s}$ asymptotically. We recall that $h(t)=f(t) \prod_{k=1}^{K}\left(1-t / t_{k}\right)^{\alpha_{k}}$, where $t_{k}=e^{i \theta_{k}}$, the arguments θ_{k} are all different, and the exponents α_{k} are positive reals but not integers, with $\alpha_{1}=\min _{1 \leq k \leq K}\left\{\alpha_{k}\right\}$.

Lemma 4.5. Let f be a function with property 2 and μ be any positive real number. Then, for $k \in\{1, \ldots, K\}$,

$$
\begin{equation*}
I_{k 1}=\sum_{(\ell, s) \in\left\llcorner_{\mu}^{\llcorner }\right.} \frac{A_{k, \ell, s}}{\lambda^{s+1} t_{k}^{n} n_{k} s+\ell+1}+Q_{7}(k, \lambda, n) \tag{4.7}
\end{equation*}
$$

where \mathcal{L}_{μ}^{*} is the collection of all pairs (ℓ, s) such that $\ell \in\{0,1, \ldots\}, s \in\{1,2, \ldots\}$, and $\alpha_{k} s+\ell+1<\mu$;

$$
A_{k, \ell, s}=\frac{\sin \left(\alpha_{k} \pi s\right) \Gamma\left(\alpha_{k} s+\ell+1\right)}{i^{\ell} \pi t_{k}^{s+1} \ell!}\left[\frac{f^{s}\left(t_{k} e^{i \theta}\right) g^{\alpha_{k} s}(\theta) \prod_{j \neq k}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j} s}}{e^{i \theta(s+1)}}\right]_{\theta=0}^{(\ell)}
$$

$g(\theta)=\left(e^{i \theta}-1\right) /(i \theta)$, and $Q_{7}(k, \lambda, n)=O\left(1 / n^{\mu}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$.
Proof. Changing θ to $\theta+\theta_{k}$ in (4.6), we obtain

$$
I_{k 1 s}=\frac{-1}{2 \pi \lambda^{s+1}} \int_{-\delta}^{\delta} \frac{\Phi_{0}(\theta) f^{s}\left(t_{k} e^{i \theta}\right)\left(1-e^{i \theta}\right)^{\alpha_{k} s} \prod_{j \neq k}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j} s} e^{-i n \theta}}{e^{i \theta(s+1)} t_{k}^{n+s+1}} d \theta
$$

It is easy to verify that $1-e^{i \theta}=-i \theta g(\theta)$, where $g(\theta):=1+i \theta / 2+(i \theta)^{2} / 6+O\left(\theta^{3}\right)$ as $\theta \rightarrow 0$. Thus, we can write $I_{k 1 s}=\int_{-\delta}^{\delta} \theta^{\alpha_{k} s} v(\theta) e^{-i n \theta} d \theta$, where

$$
v(\theta):=\frac{-(-i)^{\alpha_{k} s} \Phi_{0}(\theta) f^{s}\left(t_{k} e^{i \theta}\right) g^{\alpha_{k} s}(\theta) \prod_{j \neq k}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j} s}}{2 \pi \lambda^{s+1} e^{i \theta(s+1)} t_{k}^{n+s+1}}
$$

the branch of the power $\alpha_{k} s$ being the one corresponding to the argument in $(-\pi, \pi]$. Note that for every sufficiently small positive δ we have $g \in C^{\infty}[-\delta, \delta]$ and $g(0)=1$. Clearly,

$$
\begin{align*}
I_{k 1 s} & =\int_{-\delta}^{0} \theta^{\alpha_{k}} v(\theta) e^{-i n \theta} d \theta+\int_{0}^{\delta} \theta^{\alpha_{k} s} v(\theta) e^{-i n \theta} d \theta \\
& =\int_{0}^{\delta}(-\theta)^{\alpha_{k} s} v(-\theta) e^{i n \theta} d \theta+\int_{0}^{\delta} \theta^{\alpha_{k} s} v(\theta) e^{-i n \theta} d \theta=I_{k 1 s 1}+I_{k 1 s 2} \tag{4.8}
\end{align*}
$$

where

$$
I_{k 1 s 1}:=(-1)^{\alpha_{k} s} \int_{0}^{\delta} \theta^{\alpha_{k} s} v(-\theta) e^{i n \theta} d \theta, \quad I_{k 1 s 2}:=\int_{0}^{\delta} \theta^{\alpha_{k} s} v(\theta) e^{-i n \theta} d \theta .
$$

Note that $v(\pm \theta) \in C^{\infty}[0, \delta]$ and $v^{(s)}(\pm \delta)=0$ for all $s \geq 0$ because $\Phi_{0} \equiv 0$ in a small neighborhood of $\pm \delta$. Applying Theorem 4.2 to $I_{k 1 s 1}$ and $\overline{I_{k 1 s 2}}$, we obtain

$$
\begin{align*}
& I_{k 1 s 1}=\sum_{\ell=0}^{L-1} \frac{(-1)^{\alpha_{k} s+\ell} v^{(\ell)}(0) \Gamma\left(\alpha_{k} s+\ell+1\right) i^{\alpha_{k} s+\ell+1}}{n^{\alpha_{k} s+\ell+1} \ell!}+Q_{3}(s, k, L, \lambda, n), \\
& I_{k 1 s 2}=\sum_{\ell=0}^{L-1} \frac{v^{(\ell)}(0) \Gamma\left(\alpha_{k} s+\ell+1\right) i^{-\alpha_{k} s-\ell-1}}{n^{\alpha_{k} s+\ell+1} \ell!}+Q_{4}(s, k, L, \lambda, n), \tag{4.9}
\end{align*}
$$

for every $L \in \mathbb{N}$, where Q_{3} and Q_{4} are $O\left(1 / n^{\alpha_{k} s+L+1}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$. Substitution of (4.9) in (4.8) yields

$$
\begin{aligned}
I_{k 1 s}= & \sum_{\ell=0}^{L-1} \frac{v^{(\ell)}(0) \Gamma\left(\alpha_{k} s+\ell+1\right)}{n^{\alpha_{k} s+\ell+1} \ell!}\left(i^{-\alpha_{k} s-\ell-1}+(-1)^{\alpha_{k} s+\ell} i^{\alpha_{k} s+\ell+1}\right) \\
& +Q_{5}(s, k, L, \lambda, n)
\end{aligned}
$$

for every $L \in \mathbb{N}$, where $Q_{5}(s, k, L, \lambda, n)=O\left(1 / n^{\alpha_{k} s+L+1}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$. At this point, one could be tempted to write

$$
\begin{equation*}
I_{k 1}=\sum_{s=1}^{\infty}\left(\sum_{\ell=0}^{L-1} \frac{A_{k, \ell, s}}{\lambda^{s+1} t_{k}^{n} n^{\alpha_{k} s+\ell+1}}+Q_{5}(s, k, L, \lambda, n)\right)+Q_{2}(k, \lambda, n) \text { as } n \rightarrow \infty, \tag{4.10}
\end{equation*}
$$

where $A_{k, \ell, s}$ equals

$$
\frac{\sin \left(\alpha_{k} \pi s\right) \Gamma\left(\alpha_{k} s+\ell+1\right)}{i^{\ell} \pi t_{k}^{s+1} \ell!}\left[\frac{\Phi_{0}(\theta) f^{s}\left(t_{k} e^{i \theta}\right) g^{\alpha_{k} s}(\theta) \prod_{j \neq k}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j} s}}{e^{i \theta(s+1)}}\right]_{\theta=0}^{(\ell)}
$$

Note that we can drop the factor $\Phi_{0}(\theta)$ above because $\Phi_{0} \equiv 1$ in a neighborhood of $\theta=0$. However, representation (4.10) does not permit us to get an appropriate bound for the remainder of $I_{k 1}$. We therefore tackle the problem as follows. First notice that

$$
\begin{aligned}
h\left(\theta+\theta_{k}\right) & =f\left(\theta+\theta_{k}\right) \prod_{j=1}^{K}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j}} \\
& =\left(1-e^{i \theta}\right)^{\alpha_{k}} f\left(\theta+\theta_{k}\right) \prod_{j \neq k}\left(1-e^{i \theta} t_{k} / t_{j}\right)^{\alpha_{j}}=O\left(\theta^{\alpha_{k}}\right) \text { as } \theta \rightarrow 0 .
\end{aligned}
$$

Thus, from (4.5) we obtain

$$
\begin{equation*}
b^{(\lambda)}\left(\theta+\theta_{k}\right)=-\sum_{s=0}^{S-1} \frac{h^{s}\left(\theta+\theta_{k}\right)}{\lambda^{s+1} e^{i\left(\theta+\theta_{k}\right)(s+1)}}+f_{k, S}^{(\lambda)}(\theta) \tag{4.11}
\end{equation*}
$$

for every $S \in \mathbb{N}$ and every $k \in\{1, \ldots, K\}$. Here $f_{k, S}^{(\lambda)}(\theta)=O\left(\theta^{\alpha_{k} S}\right)$ as $\theta \rightarrow 0$, uniformly in $\lambda \in a(W) \backslash W_{0}$. Inserting (4.11) in (4.2) and (4.3) we obtain

$$
\begin{align*}
I_{k 1}= & \sum_{s=1}^{S-1} I_{k 1 s}+\frac{1}{2 \pi} \int_{-\delta}^{\delta} \Phi_{0}(\theta) f_{k, S}^{(\lambda)}(\theta) e^{-i n \theta} d \theta+Q_{2}(k, \lambda, n) \\
= & \sum_{s=1}^{S-1} \sum_{\ell=0}^{L-1} \frac{A_{k, \ell, s}}{\lambda^{s+1} t_{k}^{n} n^{\alpha_{k} s+\ell+1}}+\sum_{s=1}^{S-1} Q_{5}(s, k, L, \lambda, n) \\
& +\frac{1}{2 \pi} \int_{-\delta}^{\delta} \Phi_{0}(\theta) f_{k, S}^{(\lambda)}(\theta) e^{-i n \theta} d \theta+Q_{2}(k, \lambda, n) \tag{4.12}
\end{align*}
$$

for every $L, S \in \mathbb{N}$. The function $\Phi_{0}(\theta) f_{k, S}^{(\lambda)}(\theta)$ belongs to $C^{\left[\alpha_{k} S\right]}[-\delta, \delta]$ and thus by Theorem 4.1, the integral on the right side of (4.12) is $o\left(1 / n^{\left[\alpha_{k} S\right]}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$.

Fix $S \in \mathbb{N}$ such that $\left[\alpha_{1} S\right]>\mu$. Then, the integral on the right side of (4.12) is $o\left(1 / n^{\mu}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$ for every $k \in\{1, \ldots, K\}$.

Now fix $L \in \mathbb{N}$ such that $\alpha_{1}+L+1>\mu$. Thus, $Q_{5}(s, k, L, \lambda, n)=O\left(1 / n^{\mu}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$ for every $k \in\{1, \ldots, K\}$. Therefore, the finite $\operatorname{sum} \sum_{s=1}^{S-1} Q_{5}(s, k, L, \lambda, n)$ is $O\left(1 / n^{\mu}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$ for every $k \in\{1, \ldots, K\}$.

In summary,

$$
I_{k 1}=\sum_{s=1}^{S-1} \sum_{\ell=0}^{L-1} \frac{A_{k, \ell, s}}{\lambda^{s+1} t_{k}^{n} n^{\alpha_{k} s+\ell+1}}+Q_{6}(k, \lambda, n)
$$

where $Q_{6}(S, k, L, \lambda, n)=O\left(1 / n^{\mu}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$ for every $k \in\{1, \ldots, K\}$. Finally, avoiding the unnecessary terms of the sum we finish the proof.

Proof of Theorem 1.1. Combine (2.1), (3.2), (4.3), and (4.7).

5 Individual eigenvalues

In order to find the eigenvalues of the matrices $T_{n}(a)$, we need to solve the equations $D_{n}(a-\lambda)=0$. We start this Section by locating the zeros of $D_{n}(a-\lambda)$.

Let W_{0} be a small open neighborhood of zero in \mathbb{C} and $\omega_{n}:=\exp (-2 \pi i / n)$. Let

$$
\begin{equation*}
I_{n}:=\left\{j \in\{0, \ldots, n-1\}: a\left(\omega_{n}^{j}\right) \notin W_{0}\right\} . \tag{5.1}
\end{equation*}
$$

Recall that $\lambda=a\left(t_{\lambda}\right)$. Take an integer $j \in I_{n}$. Using the representations

$$
\frac{1}{t_{\lambda}^{2} a^{\prime}\left(t_{\lambda}\right)}=\frac{1}{\omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}+O\left(\left|t_{\lambda}-\omega_{n}^{j}\right|\right), \quad \frac{1}{a^{2}\left(t_{\lambda}\right)}=\frac{1}{a^{2}\left(\omega_{n}^{j}\right)}+O\left(\left|t_{\lambda}-\omega_{n}^{j}\right|\right)
$$

where t_{λ} belongs to a small neighborhood of ω_{n}^{j}, we see that the determinant $D_{n}(a-\lambda)$ in (1.1) equals $\left(-h_{0}\right)^{n+1}$ times

$$
\begin{equation*}
\mathcal{I}_{1}-\mathcal{I}_{2}+O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)+O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha_{1}+1}}\right)+R_{1}(\lambda, n) \tag{5.2}
\end{equation*}
$$

where t_{λ} belongs to a small neighborhood of ω_{n}^{j},

$$
\mathcal{I}_{1}:=\frac{1}{t_{\lambda}^{n} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}, \quad \mathcal{I}_{2}:=\sum_{(k, \ell, s) \in \mathcal{L}_{\mu}} \frac{A_{k, \ell, s}}{a^{s+1}\left(\omega_{n}^{j}\right) t_{k}^{n} n^{\alpha_{k} s+\ell+1}}=\frac{A_{1,0,1}\left(1+Q_{8}(\lambda, n)\right)}{a^{2}\left(\omega_{n}^{j}\right) n^{\alpha_{1}+1}}
$$

with $Q_{8}(\lambda, n)=O\left(1 / n^{\zeta}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$. Here $\mathcal{L}_{\mu}, A_{k, \ell, s}$, and ζ are as in Theorem 1.1. Expression (5.2) makes sense only when t_{λ} is sufficiently close to ω_{n}^{j} and thus it is necessary to know whether there is a zero of $D_{n}(a-\lambda)$ close to ω_{n}^{j}. Let $t_{\lambda}:=\rho e^{i \phi}$. It is easy to verify that $\mathcal{T}_{1}-\mathcal{T}_{2}=0$ if and only if

$$
\begin{equation*}
\rho=\left(\frac{\left|a\left(\omega_{n}^{j}\right)\right|^{2}\left|1+Q_{9}(n)\right| n^{\alpha_{1}+1}}{\left|A_{1,0,1} a^{\prime}\left(\omega_{n}^{j}\right)\right|}\right)^{1 / n} \tag{5.3}
\end{equation*}
$$

and

$$
\phi=\phi_{s}=\frac{1}{n} \arg \left(\frac{a^{2}\left(\omega_{n}^{j}\right)\left(1+Q_{9}(n)\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)-\frac{2 \pi s}{n}
$$

where $s \in\{0, \ldots, n-1\}$ and $Q_{9}(\lambda, n)=O\left(1 / n^{\zeta}\right)$ as $n \rightarrow \infty$, uniformly with respect to $\lambda \in a(W) \backslash W_{0}$. When n tends to infinity, (5.3) shows that ρ remains greater than 1 and $\rho \rightarrow 1$. The function $\mathcal{I}_{1}-\mathcal{T}_{2}$ has n zeros with respect to $\lambda \in \mathcal{D}(a)$ given by

$$
a\left(\rho e^{i \phi_{0}}\right), \quad \ldots, \quad a\left(\rho e^{i \phi_{n-1}}\right) .
$$

As Lemma 3.1 establishes a 1-1 correspondence between λ and t_{λ}, the function $D_{n}(a-\lambda)$ is analytic with respect to $\lambda \in a(W) \backslash W_{0}$, that is, analytic with respect to $t_{\lambda} \in W \backslash a^{-1}\left(W_{0}\right)$. We can therefore suppose that $\mathcal{T}_{1}-\mathcal{T}_{2}$ has n zeros with respect to t_{λ} in the exterior of $\overline{\mathbb{D}}$ given by

$$
z_{0}:=\rho e^{i \phi_{0}}, \quad \ldots, \quad z_{n-1}:=\rho e^{i \phi_{n-1}} .
$$

We take the function "arg" in the interval $(-\pi, \pi]$. Thus, $z_{j}=e^{i \phi_{j}}$ is the nearest zero to ω_{n}^{j}. Consider the open neighbor$\operatorname{hood} E_{j}$ of z_{j} sketched in Figure 4.

The boundary of E_{j} is $\Gamma:=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$. We have chosen radial segments Γ_{2} and Γ_{4} so that their length is $1 / n^{\varepsilon}$ with $\varepsilon \in\left(0, \min \left\{1, \alpha_{1}, \gamma-\alpha_{1}\right\}\right)$ and $\gamma=\min \left\{\alpha_{j}: \alpha_{j}>\alpha_{1}\right\}$ and all the points in Γ_{2} have the common argument $\left(\phi_{j+1}+\phi_{j}\right) / 2$, while all the points in Γ_{4} have the common argument $\left(\phi_{j-1}+\phi_{j}\right) / 2$. As we can see in Figure 4, these points run from the unit circle \mathbb{T} to $\left(1+1 / n^{\varepsilon}\right) \mathbb{T}$. Note also that $\Gamma_{1} \subset\left(1+1 / n^{\varepsilon}\right) \mathbb{T}$ and $\Gamma_{3} \in \mathbb{T}$. Recall g_{n} from (5.1). We put $\operatorname{diam}\left(E_{j}\right):=\sup \left\{\left|z_{1}-z_{2}\right|: z_{1}, z_{2} \in E_{j}\right\}$.

Figure 4. The neighborhood E_{j} of z_{j} in the complex plane.

Theorem 5.1. Suppose $a(t)=t^{-1} h(t)$ is a symbol with properties 1 to 4 . Let $\varepsilon \in\left(0, \min \left\{1, \alpha_{1}, \gamma-\alpha_{1}\right\}\right)$ be a constant. Then, there is a family of sets $\left\{E_{j}\right\}_{j \in y_{n}}$ in \mathbb{C} such that

1. $\left\{E_{j}\right\}_{j \in J_{n}}$ is a family of pairwise disjoint open sets,
2. $\operatorname{diam}\left(E_{j}\right) \leq 2 / n^{\varepsilon}$,
3. $\omega_{n}^{j} \in \partial E_{j}$,
4. $D_{n}\left(a-a\left(t_{\lambda}\right)\right)=D_{n}(a-\lambda)$ has exactly one zero in each E_{j}.

Proof. Assertions 1, 2, and 3 can be deduced from the above construction. We prove assertion 4 by studying the behavior of $\left|D_{n}(a-\lambda)\right|$ in dependence on $t_{\lambda} \in \Gamma$. For $t_{\lambda} \in \Gamma_{1}$ we have, as $n \rightarrow \infty$,

$$
\begin{gathered}
\left|\mathcal{I}_{1}\right|_{\Gamma_{1}}=\frac{1}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}\left(1+\frac{1}{n^{\varepsilon}}\right)^{-n}=\frac{\exp \left(-n^{1-\varepsilon}\right)}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}+O\left(\frac{\exp \left(-n^{1-\varepsilon}\right)}{n^{2 \varepsilon-1}}\right), \\
\left|\mathcal{T}_{2}\right|_{\Gamma_{1}}=\frac{1}{n^{\alpha_{1}+1}}\left|\frac{A_{1,0,1}\left(1+Q_{8}(n)\right)}{a^{2}\left(\omega_{n}^{j}\right)}\right|, \\
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)\right|_{\Gamma_{1}}=O\left(\frac{\exp \left(-n^{1-\varepsilon}\right)}{n^{\varepsilon}}\right), \quad\left|O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha_{1}+1}}\right)\right|_{\Gamma_{1}}=O\left(\frac{1}{n^{\alpha_{1}+\varepsilon+1}}\right),
\end{gathered}
$$

and $\left|R_{1}\left(n, t_{\lambda}\right)\right|_{\Gamma_{1}}=O\left(1 / n^{\mu}\right)$. When n goes to infinity, the absolute value of \mathcal{T}_{2} decreases at polynomial speed over Γ_{1}, while the absolute values of the remaining terms in (5.2) are smaller over Γ_{1}. Thus,

$$
\left|\frac{D_{n}(a-\lambda)}{h_{0}^{n+1}}\right|_{\Gamma_{1}}=\frac{1}{n^{\alpha_{1}+1}}\left|\frac{A_{1,0,1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|+O\left(\frac{1}{n^{\alpha_{1}+\varepsilon+1}}\right) \text { as } n \rightarrow \infty .
$$

For $t_{\lambda} \in \Gamma_{3}$, as $n \rightarrow \infty$, we get

$$
\begin{gathered}
\left|\mathcal{T}_{1}\right| \Gamma_{3}=\frac{1}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}, \quad\left|\mathcal{T}_{2}\right|_{\Gamma_{3}}=\frac{1}{n^{\alpha_{1}+1}}\left|\frac{A_{1,0,1}\left(1+Q_{8}(n)\right)}{a^{2}\left(\omega_{n}^{j}\right)}\right| \\
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)\right|_{\Gamma_{3}}=O\left(\frac{1}{n}\right), \quad\left|O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha_{1}+1}}\right)\right|_{\Gamma_{3}}=O\left(\frac{1}{n^{\alpha_{1}+2}}\right),
\end{gathered}
$$

and $\left|R_{1}\left(n, t_{\lambda}\right)\right|_{\Gamma_{3}}=O\left(1 / n^{\mu}\right)$. When n goes to infinity, the modulus of \mathcal{T}_{1} remains constant over Γ_{3}, while the moduli of the remaining terms in (5.2) are smaller there. Consequently,

$$
\left|\frac{D_{n}(a-\lambda)}{h_{0}^{n+1}}\right|_{\Gamma_{3}}=\frac{1}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}+O\left(\frac{1}{n}\right) \text { as } n \rightarrow \infty .
$$

As for the radial segments Γ_{2} and Γ_{4}, we start by showing that \mathcal{I}_{1} and $-\mathcal{I}_{2}$ have the same argument there. Since z_{j} is a zero of $\mathcal{T}_{1}-\mathcal{I}_{2}$, we deduce that

$$
\arg \left(\frac{1}{z_{j}^{n} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)=\arg \left(\frac{A_{1,0,1}\left(1+Q_{8}(n)\right)}{a^{2}\left(\omega_{n}^{j}\right) n^{\alpha_{1}+1}}\right)
$$

as $n \rightarrow \infty$ and thus

$$
\begin{equation*}
-n \phi_{j}+\arg \left(\frac{1}{\omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)=\arg \left(\frac{A_{1,0,1}\left(1+Q_{8}(n)\right)}{a^{2}\left(\omega_{n}^{j}\right)}\right) . \tag{5.4}
\end{equation*}
$$

For $t_{\lambda} \in \Gamma_{2}$ we have

$$
\begin{aligned}
\arg \left(\mathcal{T}_{1}\right) & =\arg \left(\frac{1}{t_{\lambda}^{n} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)=-\frac{n}{2}\left(\phi_{j-1}+\phi_{j}\right)+\arg \left(\frac{1}{\omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \\
& =\frac{n}{2}\left(\phi_{j}-\phi_{j-1}\right)+\arg \left(\frac{A_{1,0,1}\left(1+Q_{8}(n)\right)}{a^{2}\left(\omega_{n}^{j}\right)}\right) \\
& =\pi+\arg \left(\frac{A_{1,0,1}\left(1+Q_{8}(n)\right)}{a^{2}\left(\omega_{n}^{j}\right)}\right)=\arg \left(-\mathcal{T}_{2}\right) .
\end{aligned}
$$

Here the third line is due to (5.4). In addition, as $n \rightarrow \infty$,

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)\right|_{\Gamma_{2}}=O\left(\frac{1}{n^{\varepsilon}\left|t_{\lambda}\right|^{n}}\right), \quad\left|O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha_{1}+1}}\right)\right|_{\Gamma_{2}}=O\left(\frac{1}{n^{\alpha_{1}+\varepsilon+1}}\right),
$$

and $\left|R_{1}\left(n, t_{\lambda}\right)\right|_{\Gamma_{2}}=O\left(1 / n^{\mu}\right)$. Furthermore,

$$
\left|\frac{D_{n}(a-\lambda)}{h_{0}^{n+1}}\right|_{\Gamma_{2}}=\frac{1}{\left|t_{\lambda}^{n} a^{\prime}\left(\omega_{n}^{j}\right)\right|}+O\left(\frac{1}{n^{\varepsilon}\left|t_{\lambda}\right|^{n}}\right)+\frac{1}{n^{\alpha_{1}+1}}\left|\frac{A_{1,0,1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|+O\left(\frac{1}{n^{\alpha_{1}+\varepsilon+1}}\right)
$$

over Γ_{2} as $n \rightarrow \infty$. The situation is similar for the segment Γ_{4}.

Figure 5. The absolute value of $D_{n}(a-\lambda) / h_{0}^{n+1}$ over E_{j}.

Figure 5 resumes our analysis of $\left|D_{n}(a-\lambda) / h_{0}^{n+1}\right|$. From the previous study of $\left|D_{n}(a-\lambda)\right|$ over Γ we infer that for every sufficiently large n we have

$$
\left|\mathcal{T}_{1}-\mathcal{I}_{2}\right|_{\Gamma} \geq \frac{1}{2 n^{\alpha_{1}+1}}\left|\frac{A_{1,0,1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|
$$

and

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)+O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha_{1}+1}}\right)+R_{1}\left(n, t_{\lambda}\right)\right|_{\Gamma} \leq O\left(\frac{1}{n^{\alpha_{1}+\varepsilon+1}}\right) .
$$

Hence, by Rouché's theorem, $D_{n}(a-\lambda) /\left(-h_{0}\right)^{n+1}$ and $\mathcal{T}_{1}-\mathcal{T}_{2}$ have the same number of zeros in E_{j}, that is, a unique zero.

As a consequence of Theorem 5.1, we can iterate the variable t_{λ} in the equation $D_{n}(a-\lambda)=0$, where $D_{n}(a-\lambda)$ is given by (1.1). In this fashion we find the unique eigenvalue of $T_{n}(a)$ which is located close to $a\left(\omega_{n}^{j}\right)$.

Proof of Theorem 1.2. The equation $D_{n}(a-\lambda)=0$ with $D_{n}(a-\lambda)$ given by (1.1) is equivalent to the equation

$$
\begin{equation*}
t_{\lambda}^{-n}=\frac{A_{1,0,1} t_{\lambda}^{2} a^{\prime}\left(t_{\lambda}\right)}{a^{2}\left(t_{\lambda}\right) n^{\alpha_{1}+1}}\left(1+\frac{1}{A_{1,0,1}} \sum_{\substack{(k, \ell, s) \in \mathcal{L}_{\mu} \\(k,, s) \neq(1,0,1)}} \frac{A_{k, \ell, s}}{a^{s-1}\left(t_{\lambda}\right) t_{k}^{n} n^{\alpha_{k} s+\ell-\alpha_{1}}}+Q_{10}\left(n, t_{\lambda}\right)\right) \tag{5.5}
\end{equation*}
$$

where $Q_{10}\left(n, t_{\lambda}\right)=O\left(1 / n^{\mu-\alpha_{1}-1}\right)$ as $n \rightarrow \infty$, uniformly with respect to $t_{\lambda} \in W \backslash a^{-1}\left(W_{0}\right)$. Recall from Theorem 1.1 that $\gamma=\min \left\{\alpha_{j}: \alpha_{j}>\alpha_{1}\right\}$ and $\zeta=\min \left\{1, \alpha_{1}, \gamma-\alpha_{1}\right\}$. As μ is any real positive number, we can develop (5.5) with an arbitrary error bound, but to make our calculations reasonable and readable, we limit ourselves to $\mu=2 \zeta+\alpha_{1}+1$. Equation (5.5) is an implicit expression for t_{λ}. We manipulate it to obtain a few asymptotic terms for t_{λ}. Remember that λ belongs to $\mathcal{D}(a) \backslash W_{0}$; see Figure 3. We can choose W so thin that $\lambda=a\left(t_{\lambda}\right), a^{\prime}\left(t_{\lambda}\right)$, and t_{λ} are bounded and not too close to zero. After taking the nth root for the main branch specified by the argument in $(-\pi, \pi]$ and expanding in (5.5),

$$
\begin{align*}
t_{\lambda_{j, n}}= & \omega_{n}^{j} n^{\left(\alpha_{1}+1\right) / n}\left(1+\sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(t_{\lambda_{j, n}}\right)}{A_{1,0,1} t_{\lambda_{j, n}}^{2} a^{\prime}\left(t_{\lambda_{j, n}}\right)}\right) \frac{1}{m!n^{m}}+Q_{11}(j, n)\right) \\
& \times\left(1-\frac{1}{A_{1,0,1}} \sum_{\substack{(k, \ell, s) \in \mathcal{L}_{\mu} \\
(k, \ell, s) \neq(1,0,1)}} \frac{A_{k, \ell, s}^{s-1}\left(t_{\left.\lambda_{j, n}\right)} t_{k}^{n} n^{\alpha_{k} s+\ell-\alpha_{1}+1}\right.}{}+Q_{12}(j, n)\right) \tag{5.6}
\end{align*}
$$

where Q_{11} and Q_{12} are $O\left(1 / n^{2 \zeta+1}\right)$ as $n \rightarrow \infty$, uniformly with respect to $j \in \mathcal{I}_{n}$. After multiplying in (5.6) we obtain

$$
\begin{align*}
t_{\lambda_{j, n}}= & \omega_{n}^{j} n^{\left(\alpha_{1}+1\right) / n}\left(1+\sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(t_{\lambda_{j, n}}\right)}{A_{1,0,1} t_{\lambda_{j, n}}^{2} a^{\prime}\left(t_{\lambda_{j, n}}\right)}\right) \frac{1}{m!n^{m}}\right. \\
& \left.-\frac{1}{A_{1,0,1}} \sum_{\substack{(k, \ell, s) \in \mathcal{L}_{\mu} \\
(k, \ell, s) \neq(1,0,1)}} \frac{A_{k, \ell, s}}{a^{s-1}\left(t_{\lambda_{j, n}}\right) t_{k}^{n} n^{\alpha_{k} s+\ell-\alpha_{1}+1}}+Q_{13}(j, n)\right), \tag{5.7}
\end{align*}
$$

where $Q_{13}\left(n, t_{\lambda}\right)=O\left(1 / n^{2 \zeta+1}\right)$ as $n \rightarrow \infty$, uniformly with respect to $t_{\lambda} \in W \backslash a^{-1}\left(W_{0}\right)$. Note that, as $n \rightarrow \infty$,

$$
\begin{equation*}
n^{\left(\alpha_{1}+1\right) / n}=\exp \left(\left(\alpha_{1}+1\right) \frac{\log n}{n}\right)=1+\left(\alpha_{1}+1\right) \frac{\log n}{n}+O\left(\frac{\log ^{2} n}{n^{2}}\right) \tag{5.8}
\end{equation*}
$$

Thus, our first approximation for $t_{\lambda_{j, n}}$ is

$$
t_{\lambda_{j, n}}=\omega_{n}^{j}+Q_{14}(j, n),
$$

where $Q_{14}(j, n)=O(\log n / n)$ as $n \rightarrow \infty$, uniformly with respect to $j \in I_{n}$. Replacing $t_{\lambda_{j, n}}$ by this approximation in (5.7) we obtain

$$
\begin{aligned}
t_{\lambda_{j, n}}= & \omega_{n}^{j} n^{\left(\alpha_{1}+1\right) / n}\left(1+\sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \frac{1}{m!n^{m}}\right. \\
& \left.-\frac{1}{A_{1,0,1}} \sum_{\substack{(k, \ell, s) \in \mathcal{L}_{\mu} \\
(k, \ell, s) \neq(1,0,1)}} \frac{\left.A_{k, \ell, s} a_{k}^{s a^{s-1}\left(\omega_{n}^{j}\right) n^{\alpha_{k} s+\ell-\alpha_{1}+1}}+R_{2}(j, n)\right)}{}\right)
\end{aligned}
$$

where $R_{2}(j, n)=O\left(1 / n^{2 \zeta+1}\right)+O\left(\log n / n^{2}\right)$ as $n \rightarrow \infty$, uniformly with respect to $j \in \mathcal{I}_{n}$.
Proof of Theorem 1.3. Inserting (5.8) in (1.2) we obtain

$$
\begin{align*}
t_{\lambda_{j, n}}= & \omega_{n}^{j}\left(1+\left(\alpha_{1}+1\right) \frac{\log n}{n}+\sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \frac{1}{m!n^{m}}\right. \\
& \left.-\frac{1}{A_{1,0,1}} \sum_{\substack{(k, \ell, s) \in \mathcal{L}_{\mu} \\
(k, \ell, s) \neq(1,0,1)}} \frac{A_{k, \ell, s}^{n} t_{k}^{s-1}\left(\omega_{n}^{j}\right) n^{\alpha_{k} s+\ell-\alpha_{1}+1}}{}+Q_{15}(j, n)\right) \tag{5.9}
\end{align*}
$$

where $Q_{15}(j, n)=O\left(1 / n^{2 \zeta+1}\right)+O\left(\log ^{2} n / n^{2}\right)$ as $n \rightarrow \infty$, uniformly with respect to $j \in \mathcal{I}_{n}$.
Since the symbol a is analytic in a small neighborhood of each $t_{\lambda_{j, n}}$, we have $\lambda_{j, n}=a\left(t_{\lambda_{j, n}}\right)=a\left(\omega_{n}^{j}+z\right)=a\left(\omega_{n}^{j}\right)+$ $a^{\prime}\left(\omega_{n}^{j}\right) z+O\left(|z|^{2}\right)$. Thus, applying the symbol a to (5.9), we get

$$
\begin{aligned}
\lambda_{j, n}= & a\left(\omega_{n}^{j}\right)+\left(\alpha_{1}+1\right) \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \frac{\log n}{n} \\
& +\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \sum_{m=1}^{[1+2 \zeta]} \log ^{m}\left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \frac{1}{m!n^{m}} \\
& -\frac{\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{A_{1,0,1}} \sum_{\substack{(k, \ell, s) \in \mathcal{L}_{u} \\
(k, \ell, s) \neq(1,0,1)}} \frac{A_{k, \ell, s} t_{k}^{-n}}{a^{s-1}\left(\omega_{n}^{j}\right) n^{\alpha_{k} s+\ell-\alpha_{1}+1}}+\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) Q_{15}(j, n)+Q_{16}(j, n),
\end{aligned}
$$

where $Q_{16}(j, n)=O\left(\log ^{2} n / n^{2}\right)$ as $n \rightarrow \infty$, uniformly with respect to $j \in I_{n}$.

Figure 6. The absolute value of the difference between the eigenvalues of $T_{256}\left(t^{-1}(1-t)^{0.6}(1+t)^{0.9}\right)$ obtained with Matlab and formula (6.2). The red, blue, and green dots correspond to the approximations of (6.2) with 2, 3, and 4 terms, respectively.

6 Examples

In this Section we consider two particular situations for symbols with two and three singularities. In these situations we employ our formulas for $t_{\lambda_{j, n}}$ and $\lambda_{j, n}$, and with the aid of Matlab, we calculate the corresponding numerical errors.

Example 6.1. Consider the symbol $a(t)=t^{-1}(1-t)^{0.6}(1+t)^{0.9}$ with two singularities. In this case equations (1.2) and (1.3) become

$$
\begin{equation*}
t_{\lambda_{j, n}}=\omega_{n}^{j} n^{1.6 / n}\left(1+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)-\frac{(-1)^{n} A_{2,0,1}}{A_{1,0,1} n^{1.3}}+R_{2}(j, n)\right) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{align*}
\lambda_{j, n}= & a\left(\omega_{n}^{j}\right)+1.6 \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \frac{\log n}{n}+\frac{\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \\
& -\frac{(-1)^{n} A_{2,0,1} \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{A_{1,0,1} n^{1.3}}+R_{3}(j, n), \tag{6.2}
\end{align*}
$$

respectively. Here

$$
A_{1,0,1}=2^{0.9} \sin (0.6 \pi) \Gamma(1.6) / \pi, \quad A_{2,0,1}=2^{0.6} \sin (0.9 \pi) \Gamma(1.9) / \pi,
$$

and R_{2}, R_{3} are $O\left(1 / n^{1.6}\right)$ as $n \rightarrow \infty$, uniformly with respect to $j \in \mathcal{I}_{n}$. Table 1 shows the data, see also Figures 2 and 6 .

Example 6.2. Consider now the symbol

$$
a(t)=t^{-1}(1-t)^{0.4}\left(1-t / e^{2 i}\right)^{0.6}\left(1-t / e^{4 i}\right)^{0.7}
$$

n	256	512	1024	2048	4096
(6.1) with 1 term	1.1×10^{-2}	6.8×10^{-3}	3.3×10^{-3}	1.7×10^{-3}	8.4×10^{-4}
(6.1) with 2 terms	2.6×10^{-3}	7.9×10^{-4}	2.3×10^{-4}	7.1×10^{-5}	2.2×10^{-5}
(6.1) with 3 terms	2.5×10^{-3}	7.9×10^{-4}	2.2×10^{-4}	6.6×10^{-5}	1.9×10^{-5}
(6.2) with 2 term	1.4×10^{-2}	7.1×10^{-3}	3.5×10^{-3}	1.7×10^{-3}	8.5×10^{-4}
(6.2) with 3 terms	1.6×10^{-3}	5.8×10^{-4}	2.2×10^{-4}	7.5×10^{-5}	2.6×10^{-5}
(6.2) with 4 terms	1.4×10^{-3}	4.4×10^{-4}	1.8×10^{-4}	6.0×10^{-5}	2.0×10^{-5}

Table 1. The table shows the maximum error obtained with formulas (6.1) and (6.2) for the eigenvalues of the matrices $T_{n}\left(t^{-1}(1-t)^{0.6}(1+t)^{0.9}\right)$ for different values of n. The data was obtained by comparison with the solutions given by Matlab, taking into account only the 90% best approximated eigenvalues.
with three singularities. In this case equations (1.2) and (1.3) read

$$
\begin{align*}
t_{\lambda_{j, n}}= & \omega_{n}^{j} n^{1.4 / n}\left(1+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)\right. \\
& \left.-\frac{A_{2,0,1} e^{-2 n i}}{A_{1,0,1} n^{1.2}}-\frac{A_{3,0,1} e^{-4 n i}}{A_{1,0,1} n^{1.3}}+R_{2}(j, n)\right) \tag{6.3}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{j, n}= & a\left(\omega_{n}^{j}\right)+1.4 \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \frac{\log n}{n}+\frac{\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{A_{1,0,1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \\
& -\frac{A_{2,0,1} e^{-2 n i} \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{A_{1,0,1} n^{1.2}}-\frac{A_{3,0,1} e^{-4 n i} \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{A_{1,0,1} n^{1.3}}+R_{3}(j, n) \tag{6.4}
\end{align*}
$$

respectively. Here

$$
\begin{aligned}
& A_{1,0,1}=\sin (0.4 \pi) \Gamma(1.4)\left(1-e^{-2 i}\right)^{0.6}\left(1-e^{-4 i}\right)^{0.7} / \pi, \\
& A_{2,0,1}=\sin (0.6 \pi) \Gamma(1.6)\left(1-e^{2 i}\right)^{0.4}\left(1-e^{-2 i}\right)^{0.7} /\left(\pi e^{4 i}\right), \\
& A_{3,0,1}=\sin (0.7 \pi) \Gamma(1.7)\left(1-e^{4 i}\right)^{0.4}\left(1-e^{2 i}\right)^{0.6} /\left(\pi e^{8 i}\right),
\end{aligned}
$$

and R_{2}, R_{3} are $O\left(1 / n^{1.4}\right)$ as $n \rightarrow \infty$, uniformly with respect to $j \in I_{n}$. Table 2 shows the data, see also Figure 2 .

n	256	512	1024	2048	4096
(6.3) with 1 term	2.5×10^{-2}	1.1×10^{-2}	6.2×10^{-3}	3.1×10^{-3}	1.6×10^{-3}
(6.3) with 2 terms	1.0×10^{-2}	3.0×10^{-3}	9.0×10^{-4}	2.8×10^{-4}	9.5×10^{-5}
(6.3) with 4 terms	7.8×10^{-3}	2.4×10^{-3}	6.8×10^{-4}	2.3×10^{-4}	7.8×10^{-5}
(6.4) with 2 terms	2.6×10^{-2}	1.2×10^{-2}	6.4×10^{-3}	3.2×10^{-3}	1.6×10^{-3}
(6.4) with 3 terms	9.2×10^{-3}	2.0×10^{-3}	6.3×10^{-4}	2.1×10^{-4}	7.8×10^{-5}
(6.4) with 5 terms	5.7×10^{-3}	1.8×10^{-3}	5.2×10^{-4}	1.9×10^{-4}	7.0×10^{-5}

Table 2. The table shows the maximum error obtained with formulas (6.3) and (6.4) for the eigenvalues of the matrices $T_{n}\left(t^{-1}\left(1-t / e^{2 i}\right)^{0.4}\left(1-t / e^{4 i}\right)^{0.6}\left(1-t / e^{6 i}\right)^{0.7}\right)$ for different values of n. The data was obtained by comparison with the solutions given by Matlab, taking into account only the 90% best approximated eigenvalues.

Tables 1 and 2 reveal that the maximum error of (1.2) with one term is reduced by nearly $n / 80$ times when considering the second term; see also Figure 6.

References

[1] E. Basor and K. E. Morrison, The Fisher-Hartwig conjecture and Toeplitz eigenvalues. Linear Alg. Appl. 202 (1993), pp 129-142.
[2] J. M. Bogoya, Toward the limiting set of a Toeplitz operator with non-rational symbol. Master thesis, CINVESTAV del I.P.N., Ciudad de México, 2008.
[3] J. M. Bogoya, A. Böttcher, and S. M. Grudsky, Asymptotics of individual eigenvalues of large Hessenberg Toeplitz matrices. Preprint, ISSN 1614-8835, 2010.
[4] A. Böttcher and S. Grudsky, Asymptotic spectra of dense Toeplitz matrices are unstable. Numerical Algorithms 33 (2003), pp 105-112.
[5] A. Böttcher and S. M. Grudsky, Spectral Properties of Banded Toeplitz Matrices. SIAM, Philadelphia 2005.
[6] A. Böttcher, S. M. Grudsky, and E. A. Maksimenko, Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J. Comput. Appl. Math. 233 (2010), pp 2245-2264.
[7] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices. Universitext, Springer-Verlag, New York 1999.
[8] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators. 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York 2006.
[9] H. Dai, Z. Geary, and L. P. Kadanoff, Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices. J. Stat. Mech. Theory Exp., P05012 (2009), 25 pp .
[10] K. M. Day, Measures associated with Toeplitz matrices generated by the Laurent expansion of rational functions. Trans. Amer. Math. Soc. 209 (1975), pp 175-183.
[11] A. Erdélyi, Asymptotic Expansions. Dover Publications, New York 1956.
[12] U. Grenander and G. Szegő, Toeplitz Forms and Their Applications. University of California Press, Berkeley and Los Angeles 1958.
[13] M. V. Fedoryuk, The Saddle-Point Method. Nauka, Moscow, 1977 [Russian].
[14] I. I. Hirschman, Jr., The spectra of certain Toeplitz matrices. Illinois J. Math. 11 (1967), pp 145-159.
[15] M. Kac, W. L. Murdock, and G. Szegő, On the eigenvalues of certain Hermitian forms. J. Rational Mech. Anal. 2 (1953), pp 767-800.
[16] S.-Y. Lee, H. Dai, and E. Bettelheim, Asymptotic eigenvalue distribution of large Toeplitz matrices. arXiv:0708.3124v1.
[17] A. Yu. Novosel'tsev and I. B. Simonenko, Dependence of the asymptotics of extreme eigenvalues of truncated Toeplitz matrices on the rate of attaining the extremum by the symbol. St. Petersburg Math. J. 16 (2005), pp 713-718.
[18] P. Schmidt and F. Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand. 8 (1960), pp 15-38.
[19] S. Serra Capizzano, On the extreme spectral properties of Toeplitz matrices generated by L^{1} functions with several minima/maxima. BIT 36 (1996), pp 135-142.
[20] S. Serra Capizzano, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices. Linear Algebra Appl. 270 (1998), pp 109-129.
[21] S. V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations. Trans. Amer. Math. Soc. 99 (1961), pp 153-192.
[22] S. V. Parter, On the extreme eigenvalues of Toeplitz matrices. Trans. Amer. Math. Soc. 100 (1961), pp 263-276.
[23] P. Tilli, Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl. 239 (1999), pp 390-401.
[24] E. E. Tyrtyshnikov and N. L. Zamarashkin, Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships. Linear Alg. Appl. 270 (1998), pp 15-27.
[25] H. Widom, On the eigenvalues of certain Hermitian operators. Trans. Amer. Math. Soc. 88 (1958), pp 491-522.
[26] H. Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index. Oper. Theory: Adv. Appl. 48 (1990), pp 387-421.
[27] N. L. Zamarashkin and E. E. Tyrtyshnikov, Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function. Sb. Math. 188 (1997), pp 1191-1201.
[28] P. Zizler, R. A. Zuidwijk, K. F. Taylor, and S. Arimoto, A finer aspect of eigenvalue distribution of selfadjoint band Toeplitz matrices. SIAM J. Matrix Anal. Appl. 24 (2002), pp 59-67.

[^0]: *We acknowledge support of this work by a grant of the DAAD, by CONACYT grants 219345, 80503, 102800, and by PROMEP (México) "Proyecto de Redes".
 ${ }^{\dagger}$ E-mail address: mbogoya@math.cinvestav.mx
 ${ }^{\text {E E-mail address: }}$ aboettch@ mathematik.tu-chemnitz.de
 ${ }^{\text {§ }}$ E-mail address: grudsky@math.cinvestav.mx
 ${ }^{\text {II }}$ E-mail address: maximenko@esfm.ipn.mx

