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Abstract

We study the structure of the C∗-algebra generated by Toeplitz operators with
piece-wise continuous symbols, putting a special emphasis to Toeplitz operators with
unbounded symbols. We show that none of a finite sum of finite products of the initial
generators is a compact perturbation of a Toeplitz operator. At the same time the
uniform closure of the set of such sum of products contains a huge amount of Toeplitz
operators with bounded and unbounded symbols drastically different from symbols of
the initial generators.

1 Preliminaries

In the paper we continue the detailed study of the C∗-algebra generated by Toeplitz operators
Ta with piece-wise continuous symbols a acting on the Bergman space A2(D) on the unit
disk D in C, which was initiated in [4, 6].

We start by recalling of the necessary definitions and results of [4].
Let D be the unit disk on the complex plane and γ = ∂D be its boundary. Consider the

space L2(D) with the standard Lebesgue plane measure dv(z) = dxdy, z = x+ iy ∈ D, and

∗This work was partially supported by CONACYT Project 60160, México.
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its Bergman subspace A2(D) which consists of all functions analytic in D. It is well known
that the orthogonal Bergman projection B of L2(D) onto A2(D) has the form

(Bϕ)(z) =
1

π

∫

D

ϕ(ζ) dv(ζ)

(1− zζ)2
.

Given a function a ∈ L∞, the Toeplitz operator Ta with symbol a is defined as follows

Ta : ϕ ∈ A2(D) 7−→ B(aϕ) ∈ A2(D).

As was already mentioned in [6], considering Toeplitz operators with piece-wise contin-
uous symbols, it turns out that both the curves supporting symbol discontinuities and the
number of such curves meeting at a boundary point of discontinuity do not play actually
any essential role for the Toeplitz operator algebra studied. We can start from very different
sets of symbols and obtain exactly the same operator algebra as a result. Thus, without loss
of generality, we will use the same setup as in [4].

We fix a finite number of distinct points T = {t1, ..., tm} on the boundary γ of the unit
disk D, and let

δ = min
k 6=j

{|tk − tj|, 1}.
Denote by `k, k = 1, ...,m, the part of the radius of D starting at tk and having length δ/3;
and let L =

⋃m
k=1 `k. We denote by PC(D, T ) the set (algebra) of all functions piece-wise

continuous on D which are continuous in D\L and have one-sided limit values at every point
of L. In particular, every function a ∈ PC(D, T ) has at each point tk ∈ T two (different, in
general) limit values:

a−(tk) = a(tk − 0) = lim
γ3t→tk, t≺tk

a(t) and a+(tk) = a(tk + 0) = lim
γ3t→tk, tÂtk

a(t),

where the signs ± correspond to the standard orientation of the boundary γ of D.
For each k = 1, ...,m, we denote by χk = χk(z) the characteristic function of the half-disk

obtained by cutting D by the diameter passing through tk ∈ T , and such that χ+
k (tk) = 1,

and thus χ−k (tk) = 0.
In [4] we define the functions vk = vk(z), k = 1, ...,m, as follows. For each k = 1, ...,m,

we introduce two neighborhoods of the point tk:

V ′
k = {z ∈ D : |z − tk| < δ

6
} and V ′′

k = {z ∈ D : |z − tk| < δ

3
},

and fix a continuous function vk = vk(z) : D→ [0, 1] such that

vk|V ′k ≡ 1, vk|D\V ′′k
≡ 0.
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But in this paper we need to make the functions vk = vk(z) more specific. For each k =
1, ...,m, introduce the Möbius transformation

αk(z) = i
tk − z

z + tk
, (1.1)

which maps the unit disk D onto the upper half-plane Π, sending the point tk to 0 and the
opposite point −tk to ∞. We assume now that each vk = vk(z) is a C∞-function and that
the function vk(α

−1
k (z)) = v̂k(r) depends only on r, the radial part of a point z = reiθ ∈ Π.

We denote by T (PC(D, T )) the C∗-algebra generated by all Toeplitz operators Ta whose
symbols a belong to PC(D, T ). It is well known that this algebra is irreducible and contains
the entire ideal K of all compact on A2(D) operators.

Recall that the main reason caused a quite complicated structure of T (PC(D, T )) was
that the semi-commutator [Ta, Tb) = TaTb − Tab, for a, b ∈ PC(D, T ), is not compact in
general (while the commutator [Ta, Tb] = TaTb − TbTa is always compact).

This implies that the algebra T (PC(D, T )), apart of its initial generators Ta with a ∈
PC(D, T ), contains all elements of the form

p∑

k=1

qk∏
j=1

Taj,k
(1.2)

and the uniform limits of sequences of such elements.
In what follows we will need the description of the (Fredholm) symbol algebra

Sym T (PC(D, T )) = T (PC(D, T ))/K of the algebra T (PC(D, T )), which we now proceed
to characterize.

Let γ̂ be the boundary γ, cut at the points tk ∈ T . The pair of points of γ̂ which
correspond to the point tk ∈ T , k = 1, ...,m, will be denoted by tk − 0 and tk + 0, following
the positive orientation of γ. LetX =

⊔m
k=1 ∆k be the disjoint union of segments ∆k = [0, 1]k.

Denote by Γ the union γ̂ ∪X with the following point identification

tk − 0 ≡ 0k, tk + 0 ≡ 1k,

where tk ± 0 ∈ γ̂, 0k and 1k are the boundary points of ∆k, k = 1, ...,m.

Theorem 1.1 ([7, 8, 9]) The symbol algebra Sym T (PC(D, T )) = T (PC(D, T ))/K of the
algebra T (PC(D, T )) is isomorphic and isometric to the algebra C(Γ). The homomorphism

sym : T (PC(D, T )) −→ Sym T (PC(D, T )) ∼= C(Γ)
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is generated by the mapping of generators of T (PC(D, T ))

sym : Ta 7−→
{
a(t), t ∈ γ̂
a(tk − 0)(1− x) + a(tk + 0)x, x ∈ [0, 1]k

,

where tk ∈ T , k = 1, 2, ...,m.

The following results were, in particular, obtained in [4].

Theorem 1.2 Each operator A ∈ T (PC(D, T )) admits the canonical representations

A = TsA
+

m∑

k=1

Tvk
fA,k(Tχk

)Tvk
+K

= TsA
+

m∑

k=1

Tuk
fA,k(Tχk

) +K ′

= TsA
+

m∑

k=1

fA,k(Tχk
)Tuk

+K ′′,

where uk(z) = vk(z)
2; K, K ′, K ′′ are compact operators,

fA,k(x) = (symA)|∆k
, x ∈ [0, 1]k, k = 1, ...,m,

sA(t) = (symA)(t)−
m∑

k=1

v2
k(t)[fA,k(0)(1− χk(t)) + fA,k(1)χk(t)], (1.3)

We mention that sA(t) is a function continuous on γ and that sA(tk) = 0 for all tk ∈ T .
Next two theorems characterize Toeplitz operators with bounded measurable symbols in

the algebra T (PC(D, T )).

Theorem 1.3 An operator A ∈ T (PC(D, T )) is a compact perturbation of a Toeplitz ope-
rator if and only if each operator fA,k(Tχk

), k = 1, ...,m, is a Toeplitz operator.

Theorem 1.4 Let A = Ta + K ∈ T (PC(D, T )), thus, for each k = 1, ...,m, the operator
fA,k(Tχk

) is Toeplitz, i.e., fA,k(Tχk
) = Tak

, for some ak ∈ L∞(D). Then the symbol a of the
operator Ta is as follows

a(z) = sA(z) +
m∑

k=1

ak(z)v
2
k(z),
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where sA(z) is given by (1.3).
The functions fA,k(x), x ∈ [0, 1], and the symbols ak(z) of the Toeplitz operators Tak

=
fA,k(Tχk

), k = 1, ...,m, are connected by the formula

fA,k(x) =
2x2

π

ln(1− x)− lnx

(1− x)− x

∫ π

0

âk(θ)

(
1− x

x

) 2θ
π

dθ,

where âk(θ) = ak(α
−1
k (eiθ)), where θ is the angular part of z = reiθ ∈ Π, and αk is given

by (1.1).

Anticipating and motivating a further study we give an example showing how monstrous
the symbols of Toeplitz operators from T (PC(D, T )) can be .

Example 1.5 Consider the algebra T (PC(D, T0)) for the special case of the discontinuity
set T0 = {t1, t2}, where t2 = −t1. Then the Toeplitz operator

Tχ1 = Ts + Tχ1v2
1
+ T(1−χ2)v2

2
+K,

where s(z) is a function continuous on D whose restriction on γ coincides with

χ1(t)− χ1(t)v
2
1(t)− (1− χ2(t))v

2
2(t) = χ1(t)(1− v2

1(t)− v2
2(t))

and K is a compact operator, obviously belongs to the algebra T (PC(D, T0)). And thus
for each function f(x) ∈ C[0, 1] the operator f(Tχ1) belongs to the algebra T (PC(D, T0)) as
well.

Introduce the space L2(Π), with the usual Lebesgue plane measure, and its Bergman
subspace A2(Π) which consists of all functions analytic in Π. For each tk ∈ T , the operator

(Vkϕ)(z) = − 2itk
(z + tk)2

ϕ (αk(z)) (1.4)

is obviously the unitary operator both from L2(Π) onto L2(D), and from A2(Π) onto A2(D),
and its inverse (and adjoint) has the form

(V −1
k ϕ)(w) = − 2itk

(w + i)2
ϕ

(
α−1

k (w)
)
.

It is obvious that
VkTχk

V −1
k = Tχ+ ,

5



where χ+ is the characteristic function of the right quarter-plane in Π, and that this unitary
equivalence implies that

f(Tχk
) = V −1

k f(Tχ+)Vk (1.5)

Now for t1 ∈ T0, let a0(z) be a function on the unit disk such that

â0(θ) = a0(α
−1
1 (eiθ)) = (sin θ)−β sin(sin θ)−α,

where 0 ≤ β < 1 and α > 0.
By Example 6.4 of [4] the Toeplitz operator Tba0 is bounded on A2(Π) and belongs to the

algebra generated by Tχ+ Moreover for the function

f0(x) =
2x2

π

ln(1− x)− ln x

(1− x)− x

∫ π

0

(sin θ)−β sin(sin θ)−α

(
1− x

x

) 2θ
π

dθ,

which belongs to C[0, 1] and obeys the property f0(0) = f0(1) = 0, we have that Tba0 =
f0(Tχ+). Thus the Toeplitz operator

Ta0 = f0(Tχ1) = V −1
1 f0(Tχ+)V1 = V −1

1 Tba0V1

belongs to the algebra T (PC(D, T0)).
We note that the symbol a0(z) is quite horrible, being unbounded and oscillating near

every point of γ \T and having quite a complicated angular behavior approaching the points
of T . At the same time the (Fredholm) symbol of the operator Ta0 has quite a respectable
form:

symTa0 =





0, t ∈ γ̂
f0(x), x ∈ ∆1 = [0, 1]
f0(1− x), x ∈ ∆2 = [0, 1]

.

We describe now some results of [10] which we will use in the paper.
Passing to polar coordinates on the upper half-plane Π we have

L2(Π) = L2(R+, rdr)⊗ L2([0, π], dθ) := L2(R+, rdr)⊗ L2(0, π).

We introduce two operators: the unitary operator

U = M ⊗ I : L2(R+, rdr)⊗ L2(0, π) −→ L2(R)⊗ L2(0, π),

where the Mellin transform M : L2(R+, rdr) −→ L2(R) is given by

(Mψ)(λ) =
1√
2π

∫

R+

r−iλ ψ(r) dr,
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and the isometric imbedding R0 : L2(R) −→ A2
1 ⊂ L2(R× [0, π]), which is given by

(R0f)(λ, θ) = f(λ) ·
√

2λ

1− e−2πλ
e−(λ+i)θ.

The adjoint operator R∗0 : L2(R× [0, π]) −→ L2(R) has the form

(R∗0ψ)(λ) =

√
2λ

1− e−2πλ

∫ π

0

ψ(λ, θ) e−(λ−i)θ dθ.

Now the operator R = R∗0U maps the space L2(Π) onto L2(R), and its restriction

R|A2(Π) : A2(Π) −→ L2(R)

is an isometric isomorphism. The adjoint operator

R∗ = U∗R0 : L2(R) −→ A2(Π) ⊂ L2(Π)

is an isometric isomorphism of L2(R) onto the Bergman subspace A2(Π) of the space L2(Π).
We have

RR∗ = I : L2(R) −→ L2(R) and R∗R = BΠ : L2(Π) −→ A2(Π),

where BΠ is the orthogonal Bergman projection of L2(Π) onto A2(Π).
Denote by H(L1(0, π)) the space of all functions homogeneous of zero order on the upper

half-plane whose restrictions onto the upper half of the unit circle (angle parameterized by
θ ∈ (0, π)) belong to L1(0, π). Writing a = a(θ) we will often mean both a function from
L1(0, π) and its homogeneous extention on the upper half-plane.

Theorem 1.6 ([10]) Let a = a(θ) ∈ H(L1(0, π)) such that the Toeplitz operator Ta is
bounded. Then Ta, acting on A2(Π), is unitary equivalent to the multiplication operator
γaI = RTaR

∗, acting on L2(R). The function γa(λ) is given by

γa(λ) =
2λ

1− e−2πλ

∫ π

0

a(θ) e−2λθ dθ, λ ∈ R. (1.6)

In particular, for a = χ+(θ), we have (see [6])

γχ+(λ) =
1

e−πλ + 1
, λ ∈ R, (1.7)
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and
Tχ+ = R∗γχ+(λ)R.

We mention as well, see for details [6], that the C∗-algebra with identity T+ generated by
the Toeplitz operator Tχ+ is isomorphic and isomorphic to C(R), and that this isomorphism
is generated by the assignment

Tχ+ 7−→ γχ+(λ).

In particular this implies that for every Toeplitz operator Ta, with a = a(θ) ∈ H(L1(0, π))
in the algebra T+ the corresponding function γa(λ), given by (1.6), must belong to C(R),
where R = R ∪ {±∞} is the two point compactification of R.

We note that for general symbols c = c(r, θ) the Toeplitz operator Tc is no longer unitary
equivalent to a multiplication operator. The operator RTcR

∗ now has a much more compli-
cated structure: it turns out to be a pseudodifferential operator with a certain compount (or
double) symbol. The next theorem clarifies this statement for bounded symbols of a special
and important case: c = c(r, θ) = a(θ)v(r). The case of unbounded a(θ) will be treated in
Theorem 2.4.

Theorem 1.7 Given a bounded symbol a(θ)v(r), the Toeplitz operator Tav acting on A2(Π)
is unitary equivalent to the pseudodifferential operator A1 = RTavR

∗, acting on L2(R). The
operator A1 is given by

(A1f)(λ) =
1

2π

∫

R
dξ

∫

R
a1(x, y, ξ)e

i(x−y)ξf(y)dy, x ∈ R, (1.8)

where its compound symbol a1(x, y, ξ) has the form

a1(x, y, ξ) = c(x, y) γa

(
x+ y

2

)
ṽ(ξ)

with

c(x, y) =
1− e−π(x+y)

x+ y

√
2x

1− e−2πx

√
2y

1− e−2πy
, (1.9)

and ṽ(ξ) = v(e−ξ).

Proof. We have

(A1f)(λ) = (RTa(θ)v(r)R
∗f)(λ) = (R(R∗R)a(θ)v(r)(R∗R)R∗f)(λ)

= ((RR∗)Ra(θ)v(r)R∗(RR∗)f)(λ) = (Ra(θ)v(r)R∗f)(λ)

= (R∗0a(θ)(M ⊗ I)v(r)(M−1 ⊗ I)R0f)(λ)
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=

√
2λ

1− e−2πλ

∫ π

0

e−(λ−i)θa(θ)dθ
1√
2π

∫

R+

r−iλv(r)dr

· 1√
2π

∫

R
riα−1f(α)

√
2α

1− e−2πα
e−(α+i)θdα

=
1√
2π

∫

R+

r−iλv(r)dr
1√
2π

∫

R
riα−1f(α)dα

·
√

2λ

1− e−2πλ

√
2α

1− e−2πα

∫ π

0

e−(λ+α)θ a(θ)dθ.

The last integral gives
∫ π

0

e−(λ+α)θ a(θ)dθ =
1− e−π(λ+α)

λ+ α
γa

(
λ+ α

2

)
,

and thus we have

(A1f)(λ) = (RTa(θ)v(r)R
∗f)(λ)

=
1

2π

∫

R+

dr

∫

R
c(λ, α) γa

(
λ+ α

2

)
v(r) r−i(λ−α)−1f(α)dα,

where

c(λ, α) =
1− e−π(λ+α)

λ+ α

√
2λ

1− e−2πλ

√
2α

1− e−2πα
. (1.10)

Changing variables, λ = x, α = y, and r = e−ξ, we finally have

(A1f)(x) =
1

2π

∫

R
dξ

∫

R
a1(x, y, ξ)e

i(x−y)ξf(y)dy, x ∈ R,

with

a1(x, y, ξ) = c(x, y) γa

(
x+ y

2

)
ṽ(ξ),

where c(x, y) is given by (1.10), and ṽ(ξ) = v(e−ξ). ¤

2 Semi-commutators involving unbounded symbols

The following classical semi-commutator property

[Ta, Tb) = TaTb − Tab ∈ K, for all a ∈ L∞(D), b ∈ C(D),
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played an essential role in [4]. The question on compactness of the semicommutator for
unbounded a is quite delicate and does not have any universal answer. At the next two
examples we show that the compactness result does not valid for general, and even special,
unbounded symbols a and arbitrary b ∈ C(D). At the same time we will prove it for a certain
special and important for us case of unbounded symbols a and a special chose of b ∈ C(D).

The first example is a minor modification of Example 7 from [3], to which we address for
further details.

Example 2.1 Let

a(z) = a(r) = (1− r2)−β sin(1− r2)−α ∈ L1(D)

and
b(z) = b(r) = (1− r2)ε sin(1− r2)−α ∈ C(D)

where z = reiθ, 0 < ε < β < 1. Then both Ta and Tb are bounded and compact.
The product ab has the form

a(r)b(r) =
(1− r2)−(β−ε)

2
− (1− r2)−(β−ε) cos 2(1− r2)−α

2
= c1(r)− c2(r).

Then the operator Tc1 is unbounded, while the operator Tc2 is compact. That is, the operator
Tab is not bounded, and the (unbounded) semi-commutator is not compact.

In what follows we will deal with the class of unbounded symbols which, considered in
the upper half-plane setting, are the functions a(θ) ∈ H(L1(0, π)), where z = reiθ ∈ Π, for
which the corresponding Toeplitz operators Ta are bounded.

The second example shows that even for such specific symbols a(θ) the semi-commutator
is not compact for each b(z) ∈ C(Π).

Example 2.2 Let
a(z) = a(θ) = θ−β sin θ−α

and
b(z) = w(r) θε sin θ−α,

where z = reiθ, 0 < ε < β < 1, α > 0, and w(r) is a [0, 1]-valued C∞- function such that

w(r) ≡




0, r ∈ [0, δ1]
1, r ∈ [δ2, δ3]
0, r ∈ [δ4,+∞]

,
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and 0 < δ1 < δ2 < δ3 < δ4 < +∞.
The operator Ta is bounded by results of Example 6.3 of [4]; the operator Tb is bounded

as well because of b(z) ∈ C(Π). The product ab has the form

a(θ)b(z) =
w(r)θ−δ

2
− w(r)θ−δ cos 2θ−α

2
= c1(z)− c2(z),

where δ = β − ε ∈ (0, 1).
The Toeplitz operator Tc2 is bounded by Theorem 2.4. To prove that the semi-commuta-

tor [Ta, Tb) is not compact, it is sufficient to show, for example, that the operator Tc1 is
unbounded. Let aδ(θ) = θ−δ, then

γaδ
(λ) =

2λ

1− e−2πλ

∫ π

0

θ−δe−2λθdθ =
(2λ)δ

1− e−2πλ

∫ 2πλ

0

u−δe−udu.

It is clear that if λ→ +∞ than we have the asymptotics

γaδ
(λ) = c0λ

δ + o(1), (2.1)

∂γaδ
(λ)

∂λ
= δc0λ

δ−1 + o(1), (2.2)

where c0 = 2δΓ(1− δ).
We will use now the representation (1.8) for the operator A1 = RTc1R

∗. Denoting

ŵ(x− y) =
1

2π

∫

R
w̃(ξ)ei(x−y)ξ dξ,

where w̃(ξ) = w(e−ξ), we have

(A1f)(x) =

∫

R
c(x, y)γaδ

(
x+ y

2

)
ŵ(x− y)f(y)dy,

where the function c(x, y) is given by (1.9).
We show now that the operator A1 is unbounded on L2(R). Introduce the family of

functions

fx0(y) =

{
ε−1/2, y ∈ Iε = [x0 − ε/2, x0 + ε/2]
0, y ∈ R \ Iε ,

where ε = ε(x0) = x
−δ/2
0 . It is clear that ‖fx0‖L2(R) = 1.

Let x ∈ Iε; denoting

K(x, y) = c(x, y)γaδ

(
x+ y

2

)
ŵ(x− y)
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we have

(A1fx0)(x) = ε−1/2

∫ x0+ε/2

x0−ε/2

K(x, y)dy

= ε1/2K(x, x) + ε−1/2

∫ x0+ε/2

x0−ε/2

(K(x, y)−K(x, x))dy = I1(x) + I2(x).

When x0 → +∞, for the first summand we have

I1(x) = 1 · γaδ
(x) · ŵ(0) · ε1/2(x0)

= ŵ(0)c0

(
xδ · x−δ/4

0 + o(1)
)

= ŵ(0)c0

(
x

3δ/4
0 + o(1)

)
. (2.3)

As w̃(ξ) ≥ 0, we have that w̃(0) > 0.
Now for the second summand we have

|I2(x)| ≤ ε3/2 sup
y∈Iε

∣∣∣∣
∂K

∂y
(x, y)

∣∣∣∣ .

Both functions ∂c
∂y

(x, y) and ∂ bw
∂y

(x− y) are uniformly bounded on x. The former is bounded
by Theorem 4.2, while the latter is bounded as the Fourier transform of a function with a
compact support. Thus we have that

|I2(x)| ≤ const ε3/2 sup
y∈Iε

(∣∣∣∣
∂γaδ

∂y

(
x+ y

2

)∣∣∣∣ +

∣∣∣∣γaδ

(
x+ y

2

)∣∣∣∣
)
.

Asymptotics (2.1) and (2.2) imply that for x0 → +∞ we have

|I2(x)| ≤ const ε3/2xδ ≤ const
(
x
−δ/2
0

)3/2

xδ
0 = const x

δ/4
0 . (2.4)

Comparing (2.3) and (2.4), for sufficiently large x0 and x ∈ Iε, we have that

|(A1fx0)(x)| ≥
|ŵ(0)| c0

2
x

3δ/4
0 .

Thus

‖A1fx0‖L2(R) ≥
(( |ŵ(0)| c0

2
x

3δ/4
0

)2 ∫ x0+ε/2

x0−ε/2

dx

)1/2

≥ const
(
x

3δ/2
0 · ε(x0)

)1/2

= const x
δ/2
0 .

This obviously yields unboundedness of the operator A1, which in turn implies unbounded-
ness of Tab.
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Now as a special choice of functions continuous on D we select any vk(z), k = 1, 2, ...,m,
considered in the upper half-plane setting as a function v = v(r), where z = reiθ ∈ Π,
as introduced in Section 1. That is, v is a [0, 1]-valued C∞-function such that for some
0 < δ1 < δ2 < +∞, we have

v(r) ≡
{

1, r ∈ [0, δ1]
0, r ∈ [δ2,+∞]

. (2.5)

Our aim is to prove that for each a(θ) ∈ H(L1(0, π)), for which the corresponding Toeplitz
operator Ta is bounded, the semi-commutator TaTv − Tav is compact. To do this we first
represent the operators TaTv and Tav in the form of pseudodifferential operators with certain
compound (or double) symbols and then use the next result, which can be found, for example,
in [5, Theorem 4.2 and Theorem 4.4].

Denote by V (R) the set of all absolutely continuous functions on R of bounded total
variation, and by Cb(R2, V (R)) the set of all functions a : R2×R→ C such that u 7→ a(u, ·)
is a bounded continuous V (R)-valued function on R2. Then, for a ∈ Cb(R2, V (R)), we define

cmC
u (a) = max

{‖a(u+ ∆u, ·)− a(u, ·)‖C : ∆u ∈ R2, ‖∆u‖ ≤ 1
}
,

and denote by EC
2 the subset of all functions in Cb(R2, V (R)) such that the V (R)-valued

function u 7→ a(u, ·) is uniformly continuous on R2 and the following conditions hold,

lim
‖u‖→∞

cmC
u (a) = 0 and lim

|h|→0
sup
u∈R2

‖a(u, ·)− ah(u, ·)‖V = 0, (2.6)

where ah(u, ·) = a(u, ξ + h), for all (u, ξ) ∈ R2 × R.

Theorem 2.3 ([5]) If ∂j
ξ∂

k
ya(x, y, ξ) ∈ Cb(R×R, V (R)) for all k, j = 0, 1, 2, then the pseu-

dodifferential operator A with compound symbol a(x, y, ξ) defined on functions f ∈ C∞0 (R)
by the iterated integral

(Af)(x) =
1

2π

∫

R
dξ

∫

R
a(x, y, ξ)ei(x−y)ξf(y)dy, x ∈ R, (2.7)

extends to a bounded linear operator on every Lebesgue space Lp(R), p ∈ (1,∞).
If ∂j

ξ∂
k
ya(x, y, ξ) ∈ EC

2 for all k, j = 0, 1, 2, then the pseudodifferential operator (2.7) with
compound symbol

r(x, y, ξ) = a(x, y, ξ)− a(x, x, ξ)

is compact on every Lebesgue space Lp(R), p ∈ (1,∞).
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Considering semicommutators, we prove first that for our selection of symbols a(θ) and
v(r) the Toeplitz operator Tav is bounded.

Theorem 2.4 For each a(θ) ∈ H(L1(0, π)) such that the Toeplitz operator Ta is bounded
and the [0, 1]-valued C∞-function v = v(r) of the form (2.5), the Toeplitz operator Tav is
bounded on A2(Π).

Proof. We mention first that the boundedness of Ta is equivalent (by Theorem 1.6) to
the boundedness of the corresponding function

γa(λ) =
2λ

1− e−2πλ

∫ π

0

a(θ) e−2λθ dθ, λ ∈ R.

The C∞-functions with compact support in R+ obviously form a dense set in L2(R+). Taking
any such function f we consider

(A1f)(λ) =
1

2π

∫

R
dξ

∫

R
a1(x, y, ξ)e

i(x−y)ξf(y)dy, x ∈ R,

where the compound symbol a1(x, y, ξ) has the form

a1(x, y, ξ) = c(x, y) γa

(
x+ y

2

)
ṽ(ξ)

with

c(x, y) =
1− e−π(x+y)

x+ y

√
2x

1− e−2πx

√
2y

1− e−2πy
,

and ṽ(ξ) = v(e−ξ). We note that c(x, x) ≡ 1.
The boundedness of the operator A1 follows from Theorem 2.3, Theorems 4.1 - 4.4, and

the fact that ṽ(ξ) is a C∞-function with a compact support.
By the calculations of Theorem 1.7 we have that Tav = R∗A1R. Thus the Toeplitz

operator Tav is bounded on A2(Π). ¤

Now we are ready to prove that the semicommutator TaTv − Tav is compact.

Theorem 2.5 For each a(θ) ∈ H(L1(0, π)) such that the Toeplitz operator Ta is bounded
and the [0, 1]-valued C∞-function v = v(r) of the form (2.5), the semicommutator TaTv−Tav

is compact.
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Proof. Calculation analogous to that of Theorem 1.7 yield

(A2f)(x) = RTaTvR
∗f = (RaR∗)(RvR∗)f

= γa(x) (RvR∗)f =
1

2π

∫

R
dξ

∫

R
a2(x, y, ξ)e

i(x−y)ξf(y)dy, x ∈ R,

with
a2(x, y, ξ) = c(x, y) γa(x) ṽ(ξ),

where c(x, y) is given by (1.9), and ṽ(ξ) = v(e−ξ).
Thus the operator R∗(Tav − TaTv)R = A1 −A2 can be represented as a difference of two

pseudodifferential operators having the compound symbols

r1(x, y, ξ) = a1(x, y, ξ)− a1(x, x, ξ)

= c(x, y) γa

(
x+ y

2

)
ṽ(ξ)− γa(x) ṽ(ξ)

and

r2(x, y, ξ) = a2(x, y, ξ)− a2(x, x, ξ)

= c(x, y) γa(x) ṽ(ξ)− γa(x) ṽ(ξ).

The compactness of each of the last pseudodifferential operators easily follows from Theorem
2.3, Theorems 4.1 - 4.4, and the fact that ṽ(ξ) is a C∞-function with a compact support.
Indeed, the above property of ṽ(ξ) guarantees that both a1(x, y, ξ) and a2(x, y, ξ), as well
as their two consecutive derivatives on ξ satisfy the second property in (2.6); while the
properties

lim
(x,y)→∞

∂kd1,2

∂yk
(x, y) = 0, for k = 1, 2,

where d1(x, y) = c(x, y) γa

(
x+y

2

)
and d2(x, y) = c(x, y) γa(x) imply the first equqlity in (2.6).

¤

The above result leads directly to the following extension (of the sufficient part) of The-
orem 1.3.

Corollary 2.6 Let the operator A ∈ T (PC(D, T )) be such that in its canonical representa-
tion

A = TsA
+

m∑

k=1

Tvk
fA,k(Tχk

)Tvk
+K
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all operators fA,k(Tχk
) are Toeplitz with possibly unbounded symbols ak, k = 1, ...,m, cor-

respondingly. Then A = Ta + KA is a compact perturbation of the Toeplitz operator Ta,
where

a(z) = sA(z) +
m∑

k=1

ak(z)v
2
k(z),

where sA(z) is given by (1.3).

We note that Corollary 2.6 immediately unhides via property (1.5) many Toeplitz op-
erators in T (PC(D, T )) having unbounded symbols. Indeed, recall in this connection the
following result ([4, Theorem 6.2]).

For any L1-symbol a(θ) ∈ H(L1(0, π)) we define the following averaging functions, cor-
responding to the endpoints of [0, π],

C(1)
a (θ) =

∫ θ

0

a(u)du, D(1)
a (θ) =

∫ π

π−θ

a(u)du

and

C(p)
a (θ) =

∫ θ

0

C(p−1)
a (u)du, D(p)

a (θ) =

∫ π

π−θ

D(p−1)
a (u)du,

for each p = 2, 3, ....
Next statement gives the conditions on some regular behavior of L1-symbols near end-

points 0 and π guaranteeing that the corresponding Toeplitz operators is a certain continuous
function of Tχ+ , and thus belong to the algebra T+.

Theorem 2.7 Let a(θ) ∈ H(L1(0, π)) and for some p, q ∈ N,

lim
θ→0

θ−pC(p)
a (θ) = cp (∈ C) and lim

θ→π
θ−q D(q)

a (θ) = dq (∈ C). (2.8)

Then γa(λ) ∈ C(R), and thus Ta ∈ T+.

The conditions (2.8) are obviously satisfied, with p = q = 1, for example, for any function
a(θ) ∈ H(L1(0, π)) which has limits at the endpoints of [0, π]. Of course, the existence of
symbol limits at the endpoints by no means is necessary for the Toeplitz operator Ta to be an
element of T+. As Example 1.5 shows, the corresponding symbol can even be unbounded near
each of the endpoints 0 and π. Many further particular symbols can be given, for example,
by combining polynomial growth with logarithmic and itterated logarithmic growth, then by
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considering linear combinations of different symbols, etc. The following symbol may serve
as an illustrative example,

a(θ) =
n∑

k=1

ckθ
−βk lnλk θ−1 sin

(
θ−αk lnµk θ−1

)
,

where ck ∈ C, 0 < βk < 1, αk > 0, λk ∈ R, µk ∈ R, k = 1, ..., n.
We mention especially that when speaking about a compact perturbation of a Toeplitz

operator, say Ta, one should always remember that the coset Ta +K contains many Toeplitz
operators of the form Ta+k for which the Toeplitz operator Tk is compact; and that all
such operators have the same image symTa+k = symTa in the (Fredholm) symbol algebra
Sym T (PC(D, T )). At the same time the properties of the functions a and a + k can be
extremely different. Indeed, even having as nice as possible a, say a ∈ C(D), one can always
add, for example, the function

k(z) = (1− r2)−β sin(1− r2)−α + (1− r)χQ(z), z = reiθ,

where the first summand is taken from Example 2.1 and Q is the set of all points z =
r1 + ir2 ∈ D with rational r1 and r2. This converts the initial symbol a to the symbol a+ k,
which does not have a limit at every point of D, and moreover is unbounded near every point
of the boundary.

That is, whenspeaking about the representation A = Ta + K it is preferable to have a
symbol a with less unnecessary singularities. It seems that the option given by Theorem 1.4
and Corollary 2.6 may be optimal in this respect.

3 Toeplitz or not Toeplitz

The key question in the description of Toeplitz operators in T (PC(D, T )) is whether the
operators of the form f(Tχk

), where f(x) ∈ C[0, 1] and k = 1, 2, ...,m, are Toeplitz or not.
By (1.5) this question is reduces to the following question in the upper half-plane setting:
given f(x) ∈ C[0, 1], whether the operator f(Tχ+) is Toeplitz or not. The last questions is in
turn equivalent to: whether the function γ(λ) ∈ C(R), which is connected with f(x) ∈ C[0, 1]
by (see (1.7))

γ(λ) = f

(
1

e−πλ + 1

)
,

admits the representation (1.6) for some a(θ) ∈ L1(0, π), i.e.,

γ(λ) = γa(λ) =
2λ

1− e−2πλ

∫ π

0

a(θ) e−2λθ dθ, λ ∈ R. (3.1)
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The statements of the next theorem are necessary for the existence of the above repre-
sentation for a given function γ(λ) ∈ C(R).

Theorem 3.1 Let a(θ) ∈ L1(0, π). Then the function γa(λ) is analytic in the whole complex
plane with the exception of the points λn = in, where n = ±1,±2, ..., where γa(λ) has simple
poles. Moreover, for any fixed and sufficiently small δ the function γa(λ) admits on the set

C \
⋃

Z\{0}
Kn(δ), where Kn(δ) = {λ ∈ C : |λ− in| < δ},

the following estimate
|γa(λ)| ≤ const |λ|,

where const depends on δ.

Proof. The function

βa(λ) =

∫ π

0

a(θ) e−2λθ dθ, λ = x+ iy,

is obviously analytic in C, and for large |λ| admits the estimate

|βa(λ)| ≤
∫ π

0

|a(θ)| e−2xθ dθ.

Thus for x > 0 we have
|βa(λ)| ≤ ‖a(θ)‖L1 ,

while for x < 0 we have

|βa(λ)| ≤ e−2πx

∫ π

0

|a(θ)| e2x(π−θ) dθ

= e−2πx

∫ π

0

|a(θ)| dθ ≤ e−2πx ‖a(θ)‖L1 .

The theorem statements now follow from

γa(λ) =
2λ

1− e−2πλ
βa(λ).

¤

To give a sufficient condition for the representation (3.1) we start with some definitions
(see [1] for details).
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An entire function ϕ(λ) is called a function of exponential type if it obeys an estimate

|ϕ(λ)| ≤ AeB|λ|,

where the positive constants A and B do not depend on λ ∈ C. The infimum of all constants
B for which this estimate holds is called the type of the function ϕ(λ).

We denote by Lσ
2 the set of all functions of exponential type less than or equal than σ

whose restrictions to R belong to L2(R).
An analytic function on the upper half-plane ϕ(λ) is said to belong to the Hardy space

H2(R) if

sup
y>0

∫

R
|ϕ(x+ iy)|2dx <∞.

The proof of the next theorem can be found, for example, in [1, Theorem 1.4].

Theorem 3.2 Let ϕ(z) ∈ L2π
2 ∩H2(R). Then there exists a function a(θ) ∈ L2(0, 2π) such

that

ϕ(z) =

∫ 2π

0

a(θ) eizθ dθ, λ ∈ C.

As L2(0, 2π) ⊂ L1(0, 2π), the theorem can be used as a sufficient condition for the
existence of representation (3.1). Indeed, given a function γ(λ), introduce

ϕ(z) = i
1− eiπz

z
γ

(
− iz

2

)
.

If this function ϕ(z) belongs to L2π
2 ∩H2(R) then γ(λ) does admit representation (3.1). That

is, there a function a(θ) ∈ L1(0, 2π) such that γ(λ) = γa(λ) and

Ta = R∗γ(λ)R = f(Tχ+),

where

f(x) = γ
(
γ−1

χ+
(x)

)
= γ

(
− 1

π
ln

1− x

x

)
.

Theorem 3.3 Let

p(x) =
n∑

k=1

akx
k, an 6= 0,

be a polynomial of degree n ≥ 2 with complex coefficients. Then the bounded operator p(Tχ+)
is not a Toeplitz operator.
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Proof. The operator p(Tχ+) belongs to the algebra generated by all Toeplitz operators
on the upper half-plane with homogeneous L∞-symbols a(θ) of zero order. Thus by [2]
the operator p(Tχ+) being Toeplitz must have a symbol which belongs to H(L1(0, π)). The
corresponding function γ(λ), that is, such that p(Tχ+) = R∗γ(λ)R, obviously has the form

γ(λ) = p
(
γχ+(λ)

)
= p

(
1

e−πλ + 1

)
.

But this function has poles of order n at the points λn = i(2n − 1), where n ∈ Z. Thus
by Theorem 3.1 there is no function a(θ) ∈ H(L1(0, π)) for which the representation (3.1)
holds. ¤

Corollary 3.4 Let A be an operator of the algebra T (PC(D, T )) having the form

A =

p∑
i=1

qi∏
j=1

Tai,j
,

where all ai,j ∈ PC(D, T ). Then A is a compact perturbation of a Toeplitz operator if and
only if A is a compact perturbation of one of the initial generators of T (PC(D, T )), which
is a Toeplitz operator Ta with a ∈ PC(D, T ).

Proof. By Corollary 4.3 of [4], or Theorem 1.2 of this paper, the operator A admits the
canonical representation

A =

p∑
i=1

qi∏
j=1

Tai,j
= TsA

+
m∑

k=1

Tvk
pA,k(Tχk

)Tvk
+KA,

where sA = sA(z) ∈ C(D), pA,k = pA,k(x), k = 1, ...,m, are some polynomials, and KA

is a compact operator. Thus by Theorem 1.3, A is a compact perturbation of a Toeplitz
operator if and only if each pA,k(Tχk

), k = 1, ...,m, is a Toeplitz operator, or by (1.5) if
and only if each pA,k(Tχ+), k = 1, ...,m, is a Toeplitz operator. By Theorem 3.3 the last
statement is equivalent to the fact that the degree of each polynomial pA,k(x), k = 1, ...,m,
must be lessthen or equal to one, which in turn is equivalent to the fact that A is a compact
perturbation of a Toeplitz operator Ta with a ∈ PC(D, T ). ¤

We summarize now the results obtained on Toeplitz operators of the algebra T (PC(D, T )).
By its construction, the C∗-algebra T (PC(D, T )) consists of its initial generators, Toeplitz
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operators Ta with symbols a ∈ PC(D, T ), then of all elements of the form

p∑
i=1

qi∏
j=1

Tai,j
,

forming thus a nonclosed algebra, and finally of all elements of the uniform closure of the
nonclosed algebra. The information on Toeplitz operators is as follows.

- All initial generators are Toeplitz operators.

- None of the elements of the nonclosed algebra which does not reduce to a compact
perturbation of an initial generator can be (a compact perturbation of) a Toeplitz
operator. Thus at this stage we have not increased the quantity of Toeplitz operators.

- The uniform closure of the nonclosed algebra contains a huge amount of Toeplitz
operators, with bounded and even unbounded symbols, which are drastically different
from the initial generators. All these Toeplitz operators are uniform limits of sequences
of non-Toeplitz operators.

- The uniform closure, apart of Toeplitz operators, contains much more non-Toeplitz
operators (this is a consequence of Theorem 3.1).

At the same time each operator in the C∗-algebra T (PC(D, T )) admits a very transparent
canonical representation (given in Theorem 1.2).

4 Appendix: Technical statements

We prove here of several statements whose results were used in Theorems 2.4 and 2.5.
We start with some properties of the function (see (1.9))

c(x, y) =
1− e−π(x+y)

x+ y

√
2x

1− e−2πx

√
2y

1− e−2πy
, x, y ∈ R.

Theorem 4.1 The function c(x, y) is bounded in R2; i.e.,

sup
(x,y)∈R2

|c(x, y)| <∞.
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Proof. Introduce the function

f(u) =

√
u

1− e−u
.

Then

c(x, y) =
f(2πx) f(2πy)

f 2(π(x+ y))
.

Let D1 = [1,+∞) and D−1 = (−∞,−1]. We obviously have the following asymptotics in
the above domains:

f(u) = u1/2
(
1 +O(e−u)

)
, u ∈ D1, (4.1)

f(u) = |u|1/2eu/2 (1 +O(eu)) , u ∈ D−1, (4.2)

f−2(u) = u−1
(
1 +O(e−u)

)
, u ∈ D1, (4.3)

f−2(u) = |u|−1e−u (1 +O(eu)) , u ∈ D−1. (4.4)

In what follows the relation ϕ(u) ∼ ψ(u) means that

0 < c ≤ ϕ(u)

ψ(u)
≤ C <∞,

for all u in the domain under consideration. We note as well that if u belongs to any bounded
domain in R, then

f(u) ∼ 1 and f−2(u) ∼ 1. (4.5)

We will prove the statement of the theorem considering successively all possible locations
of x and y on R. The symmetry of c(x, y) with respect to its arguments implies that it is
sufficient to consider only the following cases:

1. x, y ∈ [−1, 1]. Then x+ y ∈ [−2, 2], and by (4.5) we have that c(x, y) ∼ 1.

2. x ∈ [−1, 1], y ∈ D1. Then either x+ y ∈ D1 and thus by (4.2) and (4.4) we have

c(x, y) ∼ 1 · (2πy)1/2

π(x+ y)
∼ y−1/2,

or y ∈ [1, 2] and thus, as in the first case, c(x, y) ∼ 1.

3. x ∈ [−1, 1], y ∈ D−1. Then either x+ y ∈ D−1 and thus by (4.1) and (4.3) we have

c(x, y) ∼ 1 · |2πy|1/2eπy

|πy|eπ(x+y)
∼ y−1/2,

or y ∈ [−2,−1] and again c(x, y) ∼ 1.
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4. x ∈ D1, y ∈ D−1. Then we have the following three possibilities for x+ y:

(a) x+y ∈ [−1, 1]. Then by (4.1), (4.2), and (4.5), assuming that x+y = δ ∈ [−1, 1],
we have

c(x, y) ∼ (2πx)1/2 · (2π|y|)1/2eπy · 1 ∼ (δ + y)1/2|y|1/2eπy ∼ |y|eπy.

(b) x+ y ∈ D1. Then by (4.1), (4.2), and (4.3) we have

c(x, y) ∼ (2πx)1/2 · (2π|y|)1/2eπy

π(x+ y)
∼

{
x1/2|y|1/2eπy

x
, x ≥ 2|y|

|y|1/2|y|1/2eπy

1
, x < 2|y|

∼
{

|y|1/2eπy

x1/2 , x ≥ 2|y|
|y|eπy, x < 2|y| .

(c) x+ y ∈ D−1. Then by (4.1), (4.2), and (4.4) we have

c(x, y) ∼ (2πx)1/2 · (2π|y|)1/2eπy

π|x+ y|eπ(x+y)
∼ x1/2|y|1/2e−πx

|x+ y|

∼
{

|x|1/2e−πx

y1/2 , |y| ≥ 2x

xe−πx, |y| < 2x
.

5. x ∈ D1, y ∈ D1. Then x+ y ∈ D1 and thus by (4.1) and (4.3) we have

c(x, y) =
(2πx)1/2(2πy)1/2

π(x+ y)

(
1 +O(e−x) +O(e−y)

)

=
2x1/2y1/2

x+ y

(
1 +O(e−x) +O(e−y)

)
.

As 2x1/2y1/2 ≤ x+ y, the boundedness of c(x, y) is obvious.

6. x ∈ D−1, y ∈ D−1. Then x+ y ∈ D−1 and thus by (4.2) and (4.4) we have

c(x, y) =
(2π|x|)1/2eπx(2π|y|)1/2eπy

π|x+ y|eπ(x+y)

(
1 +O(e−|x|) +O(e−|y|)

)

=
2|x|1/2|y|1/2

|x|+ |y|
(
1 +O(e−|x|) +O(e−|y|)

)
.

23



The theorem is proved. ¤

Theorem 4.2 Both functions ∂c
∂x

(x, y) and ∂c
∂y

(x, y) are bounded in R2, and moreover

lim
(x,y)→∞

∂c

∂x
(x, y) = 0 and lim

(x,y)→∞
∂c

∂y
(x, y). (4.6)

Proof. We start with the asymptotics of the derivatives of f(u). We have

f ′(u) =
1

2

√
1− e−u

u
· 1− e−u + ue−u

(1− e−u)2
,

thus, as is easy to see,

f ′(u) = u−1/2
(
1 +O(ue−u)

)
, u ∈ D1, (4.7)

f ′(u) = |u|1/2eu/2 (1 +O(eu)) , u ∈ D−1. (4.8)

Then

∂c

∂y
(x, y) = f(2πx) · 2πf ′(2πy)f 2(π(x+ y))− 2πf(2πy)f(π(x+ y))f ′(π(x+ y))

f 4(π(x+ y))

= 2π c(x, y)

(
f ′(2πy)
f(2πy)

− f ′(π(x+ y))

f(π(x+ y))

)
. (4.9)

We check now the boundedness of the logarithmic derivative of f . By (4.1) and (4.7) we
have

f ′(2πy)
f(2πy)

=
(2πy)−1/2

(2πy)1/2

(
1 +O(ye−2πy)

)

= (2πy)−1
(
1 +O(ye−2πy)

)
, y ∈ D1,

and by (4.2) and (4.8),

f ′(2πy)
f(2πy)

=
(2π|y|)1/2eπy

(2π|y|)1/2eπy

(
1 +O(e2πy)

)

= 1 +O(e2πy), y ∈ D−1.

Thus the function ∂c
∂y

(x, y) is bounded in R2.
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To prove the second equality in (4.6) we note that if both |y| → ∞, and |x + y| → ∞,
and moreover sign y = sign(x + y) then the result follows from (4.9) and boundedness of
c(x, y). If both |y| → ∞, and |x + y| → ∞, but sign y = −sign(x + y) then by case 4.b of
Theorem 4.1 we have that c(x, y) → 0. If (x, y) →∞ while y belongs to a bounded domain,
then x + y is unbounded and we are in the situation of the cases 2 or 3 of Theorem 4.1,
when c(x, y) → 0. Finally, if (x, y) → ∞ but x + y is bounded, then as in the case 4.a of
Theorem 4.1 we have that c(x, y) → 0. In the last three cases the result follows from (4.9),
boundedness of the logarithmic derivates, and c(x, y) → 0.

Boundedness of ∂c
∂x

(x, y) and the first equality in (4.6) follow from the above and the
symmetry of c(x, y) with respect to x and y. ¤

Theorem 4.3 The function ∂2c
∂y2 (x, y) is bounded in R2, and moreover

lim
(x,y)→∞

∂2c

∂y2
(x, y) = 0.

Proof. For the second derivative of f , after elementary calculations, we have

f ′′(u) = u−3/2
(
1 +O(ue−u)

)
, u ∈ D1, (4.10)

f ′′(u) = |u|1/2eu/2 (1 +O(eu)) , u ∈ D−1. (4.11)

Differentiating (4.9) we have

∂2c

∂y2
(x, y) = 2π

∂c

∂y
(x, y)

(
f ′(2πy)
f(2πy)

− f ′(π(x+ y))

f(π(x+ y))

)

− 2π2 c(x, y)

[
2

(
f ′′(2πy)
f(2πy)

−
(
f ′(2πy)
f(2πy)

)2
)

−
(
f ′′(π(x+ y))

f(π(x+ y))
−

(
f ′(π(x+ y))

f(π(x+ y))

)2
)]

.

We note that by Theorem 4.2 the first summand is bounded and tends to 0 as (x, y) →∞.
Considering the second summand we have that if |x + y| → ∞ and y → ∞ then formulas
(4.1), (4.2), (4.7), (4.8), (4.10), and (4.11), for u = 2πy or u = π(x+ y), yield

f ′′(u)
f(u)

−
(
f ′(u)
f(u)

)2

=

{
u−2 (1 +O(ue−u))− u−2 (1 +O(ue−u)) , u ∈ D1

(1 +O(eu))− (1 +O(eu)) , u ∈ D−1

=

{
O(u−1e−u), u ∈ D1

O(eu), u ∈ D−1
.
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If (x, y) →∞, but |x + y| is bounded, then we are in the situation of the case 4.a of Theo-
rem 4.1, and thus c(x, y) → 0 as (x, y) → ∞. Finally, if (x, y) → ∞, but y is bounded,
then we are in the situation of the cases 2 or 3 of Theorem 4.1, and thus c(x, y) → 0 as
(x, y) →∞. ¤

Theorem 4.4 Let a(θ) ∈ L1(0, π) be such that

γa(λ) =
2λ

1− e−2πλ

∫ π

0

a(θ)e−2λθ dθ ∈ L∞(R).

Then, for each k = 1, 2, ...,

lim
λ→±∞

djγa

dλj
(λ) = 0.

Proof. Let k = 1. Then

dγa

dλ
(λ) =

2

1− e−2πλ

∫ π

0

a(θ)e−2λθ dθ +
4πλe−2πλ

(1− e−2πλ)2

∫ π

0

a(θ)e−2λθ dθ

− 4λ

1− e−2πλ

∫ π

0

θa(θ)e−2λθ dθ = I1(λ) + I2(λ) + I3(λ).

We consider first the behaviour of the derivative when λ→ +∞. We have

I1(λ) =
2

λ
γa(λ) and I2(λ) =

2πe−2πλ

1− e−2πλ
γa(λ),

and thus the first two summands tend to 0 as λ→ +∞.
Consider now the last summand,

|I3(λ)| ≤ 2

∫ δ

0

|a(θ)|(2λθ)e−2λθdλ+ 4πλe−2λδ

∫ π

δ

|a(θ)|dθ

≤
∫ δ

0

|a(θ)|dθ + 4πλe−2λδ

∫ π

0

|a(θ)|dθ.

Then for any ε > 0 we can select both δ small enough and λ0 = λ0(δ) large enough, such
that ∫ δ

0

|a(θ)|dθ < ε/2
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and

4πλe−2λδ

∫ π

0

|a(θ)|dθ < ε/2,

for all λ ≥ λ0(δ). That is, limλ→+∞ I3(λ) = 0.
The case when λ→ −∞ follows from the above and the equality

γa(θ)(λ) = γa(π−θ)(−λ).

The cases when k > 1 are considered analogously. ¤
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