Spectra of Toeplitz operators and compositions of Muckenhoupt weights with Blaschke products

Sergei Grudsky and Eugene Shargorodsky

Abstract. We discuss the optimality of a sufficient condition from [12] for a point to belong to the essential spectrum of a Toeplitz operator with a bounded measurable coefficient. Our approach is based on a new sufficient condition for a composition of a Muckenhoupt weight with a Blaschke product to belong to the same Muckenhoupt class.

Mathematics Subject Classification (2000). 47B35, 45E10, 30D50.

Keywords. Toeplitz operators, cluster values, Blaschke products, Muckenhoupt weights.

1. Introduction and main results

Let $\mathbb{T} = \{\zeta \in \mathbb{C} : |\zeta| = 1\}$ be the unit circle. A number $c \in \mathbb{C}$ is called a *(left, right) cluster value* of a measurable function $a : \mathbb{T} \to \mathbb{C}$ at a point $\zeta \in \mathbb{T}$ if $1/(a-c) \notin L^{\infty}(W)$ for every neighbourhood (left semi-neighbourhood, right semi-neighbourhood) $W \subset \mathbb{T}$ of ζ . Cluster values are invariant under changes of the function on measure zero sets. We denote the set of all left (right) cluster values of a at ζ by $a(\zeta - 0)$ (by $a(\zeta + 0)$), and use also the following notation $a(\zeta) = a(\zeta - 0) \cup a(\zeta + 0)$, $a(\mathbb{T}) = \bigcup_{\zeta \in \mathbb{T}} a(\zeta)$. It is easy to see that $a(\zeta - 0)$, $a(\zeta + 0)$, $a(\zeta)$ and $a(\mathbb{T})$ are closed sets. Hence they are all compact if $a \in L^{\infty}(\mathbb{T})$.

Let $H^p(\mathbb{T})$, $1 \leq p \leq \infty$ denote the Hardy space, that is $H^p(\mathbb{T}) := \{f \in L^p(\mathbb{T}) : f_n = 0 \text{ for } n < 0\}$, where f_n is the *n*th Fourier coefficient of f. Let $T(a) : H^p(\mathbb{T}) \to H^p(\mathbb{T}), 1 denote the Toeplitz operator generated by a function <math>a \in L^\infty(\mathbb{T})$, i.e. $T(a)f = P(af), f \in H^p(\mathbb{T})$, where P is the Riesz

The first author was partially supported by CONACYT project U46936-F,Mexico.

projection:

$$Pg(\zeta) = \frac{1}{2}g(\zeta) + \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{g(w)}{w - \zeta} dw, \quad \zeta \in \mathbb{T}.$$

 $P: L^p(\mathbb{T}) \to H^p(\mathbb{T}), 1 is a bounded projection and$

$$P\left(\sum_{n=-\infty}^{+\infty}g_n\zeta^n\right)=\sum_{n=0}^{+\infty}g_n\zeta^n.$$

If $a(\zeta)$ consists of at most two points for each $\zeta \in \mathbb{T}$, in particular if a is continuous or piecewise continuous, then the spectrum of T(a) can be described in terms of $a(\zeta \pm 0), \zeta \in \mathbb{T}$ (see [3, 4, 13]). This is no longer possible if $a(\zeta)$ is allowed to contain more than two points (see [2, 4.71-4.78] and [10]). It is no longer sufficient to know the values of a in this case, it is important to know "how these values are attained" by a.

Since a complete description of the essential spectrum of T(a) in terms of the cluster values of $a \in L^{\infty}(\mathbb{T})$ is impossible, it is natural to try finding "optimal" sufficient conditions for a point λ to belong to the essential spectrum. Results of this sort were obtained in [11, 12]. In order to state them we need the following notation.

Let $K \subset \mathbb{C}$ be an arbitrary compact set and $\lambda \in \mathbb{C} \setminus K$. Then the set

$$\sigma(K;\lambda) = \left\{ \frac{w-\lambda}{|w-\lambda|} \mid w \in K \right\} \subseteq \mathbb{T}$$

is compact as a continuous image of a compact set. Hence the set $\Delta_{\lambda}(K) :=$ $\mathbb{T} \setminus \sigma(K;\lambda)$ is open in \mathbb{T} . So, $\Delta_{\lambda}(K)$ is the union of an at most countable family of open arcs.

We call an open arc of \mathbb{T} *p*-large if its length is greater than or equal to $\frac{2\pi}{\max\{p,q\}}, \text{ where } q = \frac{p}{p-1}, 1$ The following result has been proved in [12].

Theorem 1.1. Let $1 , <math>a \in L^{\infty}(\mathbb{T})$, $\lambda \in \mathbb{C} \setminus a(\mathbb{T})$ and suppose that, for some $\zeta \in \mathbb{T}$,

(i) $\Delta_{\lambda}(a(\zeta - 0))$ (or $\Delta_{\lambda}(a(\zeta + 0))$) contains at least two p-large arcs, (ii) $\Delta_{\lambda}(a(\zeta+0))$ (or $\Delta_{\lambda}(a(\zeta-0))$ respectively) contains at least one p-large arc. Then λ belongs to the essential spectrum of $T(a): H^p(\mathbb{T}) \to H^p(\mathbb{T})$.

A weaker result (with $\Delta_{\lambda}(a(\zeta))$ in place of $\Delta_{\lambda}(a(\zeta \pm 0))$ in condition (ii)) was proved in [11] where it was also shown that condition (i) is optimal in the following sense: for any compact $K \subset \mathbb{C}$ and $\lambda \in \mathbb{C} \setminus K$ such that $\Delta_{\lambda}(K)$ contains at most one p-large arc there exists $a \in L^{\infty}(\mathbb{T})$ such that $a(-1 \pm 0) = a(\mathbb{T}) = K$ and $T(a) - \lambda I : H^r(\mathbb{T}) \to H^r(\mathbb{T})$ is invertible for any $r \in [\min\{p,q\}, \max\{p,q\}].$ A question that has been open since [11] is whether or not condition (ii) can be dropped, i.e. whether condition (i) alone is sufficient for λ to belong to the essential spectrum of $T(a): H^p(\mathbb{T}) \to H^p(\mathbb{T})$. The following result gives a negative answer to this question.

Theorem 1.2. There exists $a \in L^{\infty}(\mathbb{T})$ such that $a(1-0) = \{\pm 1\}$, $|a| \equiv 1$, $T(a) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible for any $p \in (1,2)$, and $T(1/a) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible for any $p \in (2, +\infty)$.

The proof of Theorem 1.2 relies on an argument which is related to the following question. Suppose v is an inner function, i.e. v is a nonconstant function in $H^{\infty}(\mathbb{T})$ such that |v| = 1 almost everywhere on \mathbb{T} . If $b \in L^{\infty}(\mathbb{T})$, then $b \circ v \in L^{\infty}(\mathbb{T})$ and the question is whether or not the invertibility of $T(b) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ implies that of $T(b \circ v) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$.

An equivalent form of this question is in terms A_p classes (see [1, Section 1]). We say that a measurable function $\rho : \mathbb{T} \to [0, +\infty]$ satisfies the A_p condition if

$$\sup_{I} \left(\frac{1}{|I|} \int_{I} \rho^{p}(\zeta) |d\zeta| \right)^{\frac{1}{p}} \left(\frac{1}{|I|} \int_{I} \rho^{-q}(\zeta) |d\zeta| \right)^{\frac{1}{q}} = C_{p} < \infty, \tag{1.1}$$

where $I \subset \mathbb{T}$ is an arbitrary arc and |I| denotes its length. The question is whether or not $\rho \in A_p$ implies $\rho \circ v \in A_p$.

Although the answer is positive in the case p = 2 (see, e.g., [1, Section 2]), it turns out that for every $p \in (1, +\infty) \setminus \{2\}$ there exist a Blaschke product Band $\rho \in A_p$ such that $\rho \circ B \notin A_p$ (see [1, Theorem 9]). Equivalently, there exists $b \in L^{\infty}(\mathbb{T})$ such that $T(b) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible, but $T(b \circ B) : H^p(\mathbb{T}) \to$ $H^p(\mathbb{T})$ is not invertible (see [1, Theorem 12]).

We prove a result in the opposite direction, namely we describe a class of Blaschke products for which the implications

$$\begin{split} \rho \in A_p &\implies \rho \circ B \in A_p ,\\ T(b) : H^p(\mathbb{T}) \to H^p(\mathbb{T}) \text{ is invertible } \implies \\ T(b \circ B) : H^p(\mathbb{T}) \to H^p(\mathbb{T}) \text{ is invertible} \end{split}$$

do hold.

Vol. 99 (9999)

Consider the Blaschke product

$$B(e^{i\theta}) = \prod_{k=1}^{\infty} \frac{r_k - e^{i\theta}}{1 - r_k e^{i\theta}}, \quad \theta \in [-\pi, \pi],$$
(1.2)

where $r_k \in (0, 1)$ and $\sum_{k=1}^{\infty} (1 - r_k) < 1$.

Theorem 1.3. Suppose $r_1 \leq r_2 \leq \cdots \leq r_n \leq \cdots$, and

$$\inf_{k \ge 1} \frac{1 - r_{k+1}}{1 - r_k} > 0.$$
(1.3)

If ρ satisfies the A_p condition, then $\rho \circ B$ also satisfies the A_p condition.

Corollary 1.4. Let $1 , <math>a \in L^{\infty}(\mathbb{T})$, and let a Blaschke product B satisfy the conditions of Theorem 1.3. Then $T(a) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible if and only if $T(a \circ B) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible.

Proof. The invertibility of $T(a \circ B)$ implies that of T(a) according to [1, Theorem 12]. The opposite implication follows from Theorem 1.3 (see [1, Section 1]).

2. Auxiliary results on inner and outer functions

According to the canonical factorisation theorem (see, e.g., [5, Theorem 2.8]), any function from $H^p(\mathbb{T}) \setminus \{0\}$ has a unique, modulo a constant factor, representation as the product of an outer function from $H^p(\mathbb{T})$ and an inner function.

A function $F \in H^p(\mathbb{T})$ is called an *outer function* if

v

$$F(z) = e^{ic} \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \phi(t) \, dt\right), \quad |z| < 1,$$
(2.1)

where c is a real number, $\phi \ge 0$, $\log \phi \in L^1([-\pi,\pi])$, and $\phi \in L^p([-\pi,\pi])$.

A function $v \in H^{\infty}(\mathbb{T})$ is called an *inner function* if |v| = 1 almost everywhere on \mathbb{T} . Any inner function v admits a unique factorisation of the form

$$(z) = e^{ic}B(z)S(z)$$

where c is a real number, B is a Blaschke product

$$B(z) = z^m \prod_k \frac{\overline{z_k}}{|z_k|} \frac{z_k - z}{1 - \overline{z_k} z}$$

with $m \in \mathbb{N} \cup \{0\}$, $z_k = r_k \exp(i\theta_k) \neq 0$, $\theta_k \in (-\pi, \pi]$, $r_k = |z_k| < 1$, $\sum_k (1-r_k) < 1$, and S is a singular inner function

$$S(z) = \exp\left(-\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \, d\mu(t)\right)$$

with a nonnegative measure μ which is singular with respect to the standard Lebesgue measure on $[-\pi, \pi]$.

We are particularly interested in the case where v has a unique discontinuity at z = 1 and infinitely many zeros z_k . In this case, $\lim_{k\to\infty} z_k = 1$, the singular measure μ is supported by the point t = 0, and

$$S(z) = \exp\left(\kappa \frac{z+1}{z-1}\right), \quad \kappa = \text{const} > 0$$

(see [7, Ch. II, Theorems 6.1 and 6.2]). We will also assume that $B(0) \neq 0$. Then

$$B\left(e^{i\theta}\right) = \prod_{k=1}^{\infty} \frac{\overline{z_k}}{|z_k|} \frac{z_k - e^{i\theta}}{1 - \overline{z_k} e^{i\theta}}, \quad \theta \in [-\pi, \pi].$$
(2.2)

Theorem 2.1. ([6, Theorem 2.8]) Suppose B has the form (2.2) and $\lim_{k\to\infty} z_k = 1$. Then one can choose a branch of $\arg B(e^{i\tau})$ which is continuous and increasing on $(0, 2\pi)$, and which satisfies the following condition

$$\lim_{\tau \to 0+0} \arg B\left(e^{i\tau}\right) =: A_{+} < 0, \quad \lim_{\tau \to 2\pi-0} \arg B\left(e^{i\tau}\right) =: A_{-} > 0.$$

Moreover, at lest one of these limits is infinite and

$$\arg B\left(e^{i\theta}\right) = \begin{cases} -2\left(\sum_{\theta_k \ge \theta} (\pi + \varphi_k(\theta)) + \sum_{\theta_k < \theta} \varphi_k(\theta)\right), & \theta \in (0, \pi], \\ 2\left(\sum_{\theta_k \le \theta} (\pi - \varphi_k(\theta)) - \sum_{\theta_k > \theta} \varphi_k(\theta)\right), & \theta \in [-\pi, 0), \end{cases}$$
(2.3)

Toeplitz operators and Blaschke products

where

$$\varphi_k(\theta) = \arctan\left(\varepsilon_k \cot\frac{\theta - \theta_k}{2}\right), \quad \varepsilon_k = \frac{1 - r_k}{1 + r_k}.$$
 (2.4)

Theorem 2.2. (See [6, Theorem 2.10 and the end of the proof of Theorem 5.9].) Suppose a real valued function η is continuous on $[-\pi, \pi] \setminus \{0\}$ and

$$\lim_{t \to 0 \pm 0} \left(\eta(t) \mp \pi \log |t| \right) = 0.$$

Then the function $e^{i\eta}$ admits the following representation

$$e^{i\eta(t)} = B\left(e^{it}\right)g\left(B\left(e^{it}\right)\right)d\left(e^{it}\right), \quad t \in [-\pi,\pi],$$

where $g, d \in C(\mathbb{T})$, the index of g is 0, and B is the infinite Blaschke product with the zeros

$$z_k = \frac{2 - \exp(-k + 1/2)}{2 + \exp(-k + 1/2)}.$$

We finish this section with an example of an outer function which is used in the proof of Theorem 1.2.

Example 2.3. Consider the function

$$h(z) = \exp\left(-i c \log\left(i \frac{1-z}{2}\right)\right),$$

where c > 0 and log denotes the branch of logarithm which is analytic in the complex plane cut along $(-\infty, 0]$ and real valued on $(0, +\infty)$. It is clear that h is analytic inside the unit disk, and since

$$\operatorname{Im}\left(i\,\frac{1-z}{2}\right) > 0, \quad |z| < 1,$$

h satisfies the following estimate

$$1 < |h(z)| < e^{c\pi}, \quad |z| < 1.$$

Hence $h, 1/h \in H^{\infty}(\mathbb{T})$ and h is an outer function (see [7, Ch. II, Corollary 4.7]). It is also clear that $h \in C^{\infty}(\mathbb{T} \setminus \{1\})$, and since

$$i\frac{1-e^{i\theta}}{2} = e^{i\frac{\theta}{2}}\,\sin\frac{\theta}{2}\,,$$

we have

$$|h(e^{i\theta})| = \begin{cases} \exp\left(c\frac{\theta}{2}\right), & \theta \in (0,\pi], \\ \exp\left(c\left(\frac{\theta}{2} + \pi\right)\right), & \theta \in [-\pi,0), \\ \arg h(e^{i\theta}) = -c\log\left|\sin\frac{\theta}{2}\right|. \end{cases}$$
(2.5)

3. Proof of Theorem 1.3

Suppose the conditions of Theorem 1.3 are satisfied and let

$$A(\theta) := \arg B\left(e^{i\theta}\right), \quad A(\pm\pi) = 0.$$

The proof of Theorem 1.3 relies upon analysis of the properties of A. The corresponding results are collected in the following two lemmas. Since A admits the representation (2.3), (2.4) (with $\theta_k = 0$ for all k = 1, 2, ...), it is convenient to rewrite (1.3) in the following equivalent form

$$\inf_{k \ge 1} \frac{\varepsilon_{k+1}}{\varepsilon_k} =: c_0 > 0. \tag{3.1}$$

Lemma 3.1. a) The derivative A' is increasing on $[-\pi, 0)$ and decreasing on $(0, \pi]$. b)¹

$$\frac{c_1}{4|\sin\frac{\theta}{2}|} \le A'(\theta) \le \frac{|A(\theta)|}{|\sin\theta|}, \quad \forall \theta \in [-\pi,\pi] \setminus \{0\}, \quad c_1 := \min\{c_0,\varepsilon_1\}.$$

$$\frac{A'(\theta/c)}{A'(\theta)} < c^2, \quad \forall \theta \in [-\pi,\pi] \setminus \{0\}, \quad \forall c > 1.$$

Proof. Let

$$A_k(\theta) := \arctan\left(\varepsilon_k \cot \frac{\theta}{2}\right)$$

Then

c)

$$A(\theta) = -2\sum_{k=1}^{\infty} A_k(\theta), \quad A'(\theta) = -2\sum_{k=1}^{\infty} A'_k(\theta)$$

(see (2.3), (2.4)). a) Since

$$\begin{aligned} -A'_k(\theta) &= \frac{\varepsilon_k}{2\sin^2\frac{\theta}{2}} \frac{1}{1 + \left(\varepsilon_k \cot\frac{\theta}{2}\right)^2} = \frac{\varepsilon_k}{2\left(\sin^2\frac{\theta}{2} + \left(\varepsilon_k \cos\frac{\theta}{2}\right)^2\right)} \\ &= \frac{\varepsilon_k}{2\left((1 - \varepsilon_k^2)\sin^2\frac{\theta}{2} + \varepsilon_k^2\right)}, \end{aligned}$$

A' is increasing on $[-\pi, 0)$ and decreasing on $(0, \pi]$.

b) The equality

$$-A'_k(\theta) = \frac{\varepsilon_k}{2\sin^2\frac{\theta}{2}} \frac{1}{1 + \left(\varepsilon_k \cot\frac{\theta}{2}\right)^2} = \frac{1}{\sin\theta} \frac{\varepsilon_k \cot\frac{\theta}{2}}{1 + \left(\varepsilon_k \cot\frac{\theta}{2}\right)^2}$$

implies

$$\left|\frac{A_k'(\theta)}{A_k(\theta)}\right| = \frac{1}{|\sin \theta|} \frac{u_k}{(1+u_k^2)\arctan u_k}, \quad u_k = \varepsilon_k \cot \frac{|\theta|}{2}$$

¹We will not use the upper estimate for $A'(\theta)$.

Since

$$\sup_{u \in (0,+\infty)} \frac{u}{(1+u^2) \arctan u} = \lim_{u \to 0+0} \frac{u}{(1+u^2) \arctan u} = 1$$

we get the second inequality in b). Let us prove the first one.

It is clear that

$$A'(\theta) \ge \frac{1}{\sin \theta} \frac{\varepsilon_{k_0} \cot \frac{\theta}{2}}{1 + \left(\varepsilon_{k_0} \cot \frac{\theta}{2}\right)^2} = \frac{1}{|\sin \theta|} \frac{u_{k_0}}{1 + u_{k_0}^2}, \quad u_{k_0} = \varepsilon_{k_0} \cot \frac{|\theta|}{2}$$

for any $k_0 \in \mathbb{N}$. Let k_0 be the smallest natural number such that $u_{k_0} \leq 1$. If $k_0 > 1$, then (3.1) implies

$$c_0 \le \frac{\varepsilon_{k_0}}{\varepsilon_{k_0-1}} = \frac{u_{k_0}}{u_{k_0-1}} \le u_{k_0} \le 1.$$

Hence

$$\frac{u_{k_0}}{1+u_{k_0}^2} \geq \frac{c_0}{2}$$

and

$$A'(\theta) \ge \frac{c_0}{2|\sin \theta|} \ge \frac{c_0}{4|\sin \frac{\theta}{2}|} \,.$$

If $k_0 = 1$, then

$$A'(\theta) \ge \frac{\varepsilon_1}{2\sin^2\frac{\theta}{2}} \ \frac{1}{1 + \left(\varepsilon_1 \cot\frac{\theta}{2}\right)^2} \ge \frac{\varepsilon_1}{4\sin^2\frac{\theta}{2}} \ge \frac{\varepsilon_1}{4|\sin\frac{\theta}{2}|} \,.$$

This proves the first inequality in b).

c) Since $\sin \vartheta \leq c \sin \frac{\vartheta}{c}$ and $\cot \frac{\vartheta}{c} > \cot \vartheta$, $\forall \vartheta \in (0, \pi/2]$, we have

$$\frac{A'_k(\theta/c)}{A'_k(\theta)} = \frac{\sin^2 \frac{\theta}{2}}{\sin^2 \frac{\theta}{2c}} \frac{1 + \left(\varepsilon_k \cot \frac{\theta}{2}\right)^2}{1 + \left(\varepsilon_k \cot \frac{\theta}{2c}\right)^2} < c^2.$$

Lemma 3.2. Suppose $\vartheta_0, \vartheta_1, \vartheta_2 \in [-\pi, \pi] \setminus \{0\}$, $\operatorname{sign} \vartheta_0 = \operatorname{sign} \vartheta_1 = \operatorname{sign} \vartheta_2$, $|\vartheta_0| > |\vartheta_1| > |\vartheta_2|$, and

$$|A(\vartheta_1) - A(\vartheta_0)| = 2\pi = |A(\vartheta_2) - A(\vartheta_1)|.$$

Then

a) $|\vartheta_0 - \vartheta_1| \leq c_2 |\vartheta_0|$, where the constant $c_2 \in (0,1)$ depends only on c_1 from Lemma 3.1-b);

b)

$$1 \le \frac{|\vartheta_0 - \vartheta_1|}{|\vartheta_1 - \vartheta_2|} \le c_3,$$

where c_3 depends only on c_1 .

Proof. a) Let $\tilde{\vartheta} \in (\vartheta_1, \vartheta_0)$ be such that

$$|A(\tilde{\vartheta}) - A(\vartheta_0)| = \frac{c_1}{4}.$$

Then, according to the mean value theorem, there exists $\vartheta^* \in (\tilde{\vartheta}, \vartheta_0)$ such that

$$\left|A'(\vartheta^*)\left(\tilde{\vartheta}-\vartheta_0\right)\right|=\frac{c_1}{4}.$$

It follows from Lemma 3.1-b) that

$$\frac{c_1}{4\left|\sin\frac{\vartheta^*}{2}\right|}\left|\vartheta_0 - \tilde{\vartheta}\right| \le \frac{c_1}{4} \implies \left|\vartheta_0 - \tilde{\vartheta}\right| \le \left|\sin\frac{\vartheta^*}{2}\right| \le \left|\sin\frac{\vartheta_0}{2}\right| \le \frac{|\vartheta_0|}{2}$$

Since $\left|\vartheta_0 - \tilde{\vartheta}\right| \le |\vartheta_0|/2$, the monotonicity of A implies

$$|A(\vartheta_0/2) - A(\vartheta_0)| \ge \frac{c_1}{4}.$$

Similarly

$$|A(\vartheta_0/2^j) - A(\vartheta_0/2^{j-1})| \ge \frac{c_1}{4}, \quad j \in \mathbb{N}.$$

Let $M = [8\pi/c_1] + 1$. Then

$$|A(\vartheta_0/2^M) - A(\vartheta_0)| = \sum_{j=1}^M |A(\vartheta_0/2^j) - A(\vartheta_0/2^{j-1})| \ge M \frac{c_1}{4} > \frac{8\pi}{c_1} \frac{c_1}{4} = 2\pi$$

Hence $\vartheta_1 \in (\vartheta_0/2^M, \vartheta_0)$ and

$$|\vartheta_0 - \vartheta_1| < |\vartheta_0 - \vartheta_0/2^M| = (1 - 2^{-M}) |\vartheta_0|.$$

This proves a) with $c_2 = 1 - 2^{-M} = 1 - 2^{-([8\pi/c_1]+1)}$.

b) According to the mean value theorem, there exist $\varphi_1 \in (\vartheta_1, \vartheta_0)$ and $\varphi_2 \in (\vartheta_2, \vartheta_1)$ such that

$$\frac{|\vartheta_0 - \vartheta_1|}{|\vartheta_1 - \vartheta_2|} = \frac{|A'(\varphi_2)|}{|A'(\varphi_1)|} \,.$$

It follows from part a) that

$$1 \ge \frac{\varphi_2}{\varphi_1} > \frac{\vartheta_2}{\vartheta_0} = \frac{\vartheta_2}{\vartheta_1} \ \frac{\vartheta_1}{\vartheta_0} \ge (1 - c_2)^2 = 2^{-2([8\pi/c_1]+1)}.$$

It is now left to use Lemma 3.1-a), c). One can take $c_3 = 2^{4([8\pi/c_1]+1)}$.

Proof of Theorem 1.3. Let $\theta_j \in (-\pi, \pi]$ be the points such that

$$A(\theta_j) = -2\pi j, \quad j = 0, \pm 1, \pm 2, \dots$$
(3.2)

and let

$$I_j = \gamma \left(\exp(i\theta_{j+1}), \exp(i\theta_j) \right), \quad j = 0, \pm 1, \pm 2, \dots,$$

where $\gamma(\zeta, \zeta') \subset \mathbb{T}$ is the arc described by a point moving from ζ to ζ' in the counterclockwise direction.

Any arc $I \subset \mathbb{T}$ admits the representation:

$$I = \left(\bigcup_{j \in \mathcal{J}} I_j\right) \bigcup \left(\bigcup_{j \in \tilde{\mathcal{J}}} \tilde{I}_j\right),$$

where the set \mathcal{J} is finite or infinite, the set $\tilde{\mathcal{J}}$ contains at most two elements, and the arcs \tilde{I}_j have one of the following forms: a) if $\mathcal{J} \neq \emptyset$, then

 $\tilde{I}_j = \gamma \left(\exp(i\theta_j), \exp(i\tilde{\theta}_j) \right) \text{ or } \gamma \left(\exp(i\tilde{\theta}_j), \exp(i\theta_j) \right)$

and

$$|A(\theta_j) - A(\tilde{\theta}_j)| < 2\pi;$$

b) if $\mathcal{J} = \emptyset$, then $\tilde{\mathcal{J}}$ contains one element and

$$\tilde{I}_j = \gamma \left(\exp(i\tilde{\theta}_{j+1}), \exp(i\tilde{\theta}_j) \right),$$

where

$$|A(\tilde{\theta}_{j+1}) - A(\tilde{\theta}_j)| < 4\pi$$

Case b). Suppose $\mathcal{J} = \emptyset$,

$$I = \tilde{I}_j = \gamma \left(\exp(i\tilde{\theta}_{j+1}), \exp(i\tilde{\theta}_j) \right), \quad |A(\tilde{\theta}_{j+1}) - A(\tilde{\theta}_j)| < 4\pi.$$

Since I may contain the point -1, but does not contain in our case the point 1, it is convenient to switch from the function A defined on $[-\pi, \pi] \setminus \{0\}$ to the following function defined on $(0, 2\pi)$:

$$\mathcal{A}(\psi) = \begin{cases} A(\psi), & \text{if } \psi \in (0,\pi], \\ A(\psi - 2\pi), & \text{if } \psi \in (\pi, 2\pi). \end{cases}$$
(3.3)

Let $\psi_0 < \psi_1$ be such that $\mathcal{A}(\psi_0) = A(\tilde{\theta}_{j+1})$ and $\mathcal{A}(\psi_1) = A(\tilde{\theta}_j)$.

Using the change of variable $u = \mathcal{A}(\psi)$ we get

$$\begin{split} \Delta_p &:= \frac{1}{|I|} \int_I \rho^p(B(\zeta)) |d\zeta| = \frac{1}{\psi_1 - \psi_0} \int_{\psi_0}^{\psi_1} \rho^p\big(\exp(i\mathcal{A}(\psi))\big) d\psi \\ &= \frac{1}{\psi_1 - \psi_0} \int_{\mathcal{A}(\psi_0)}^{\mathcal{A}(\psi_1)} \rho^p(\exp(iu)) \frac{du}{\mathcal{A}'(\psi(u))} \\ &\leq \frac{\max_{\psi \in [\psi_0, \psi_1]} (\mathcal{A}'(\psi))^{-1}}{\psi_1 - \psi_0} \int_{\mathcal{A}(\psi_0)}^{\mathcal{A}(\psi_1)} \rho^p(\exp(iu)) du. \end{split}$$

According to the mean value theorem there exists $\psi^* \in (\psi_0, \psi_1)$ such that

$$\mathcal{A}'(\psi^*)(\psi_1 - \psi_0) = \mathcal{A}(\psi_1) - \mathcal{A}(\psi_0).$$

It is now easy to derive from Lemmas 3.1 and 3.2 that

$$\begin{aligned} \Delta_p &\leq \frac{\mathcal{A}'(\psi^*)}{\min_{\psi \in [\psi_0,\psi_1]} \mathcal{A}'(\psi)} \left(\frac{1}{\mathcal{A}(\psi_1) - \mathcal{A}(\psi_0)} \int_{\mathcal{A}(\psi_0)}^{\mathcal{A}(\psi_1)} \rho^p(\exp(iu)) du \right) \\ &\leq \frac{c_4}{\mathcal{A}(\psi_1) - \mathcal{A}(\psi_0)} \int_{\mathcal{A}(\psi_0)}^{\mathcal{A}(\psi_1)} \rho^p(\exp(iu)) du, \end{aligned}$$

where the constant c_4 depends only on c_1 from Lemma 3.1-b). Similarly,

$$\frac{1}{|I|} \int_{I} \rho^{-q}(B(\zeta)) |d\zeta| \le \frac{c_4}{\mathcal{A}(\psi_1) - \mathcal{A}(\psi_0)} \int_{\mathcal{A}(\psi_0)}^{\mathcal{A}(\psi_1)} \rho^{-q}(\exp(iu)) du.$$

Hence

$$\left(\frac{1}{|I|}\int_{I}\rho^{p}(B(\zeta))|d\zeta|\right)^{\frac{1}{p}}\left(\frac{1}{|I|}\int_{I}\rho^{-q}(B(\zeta))|d\zeta|\right)^{\frac{1}{q}} \leq c_{4}\left(\frac{1}{\mathcal{A}(\psi_{1})-\mathcal{A}(\psi_{0})}\int_{\mathcal{A}(\psi_{0})}^{\mathcal{A}(\psi_{1})}\rho^{p}(\exp(iu))du\right)^{\frac{1}{p}} \times \left(\frac{1}{\mathcal{A}(\psi_{1})-\mathcal{A}(\psi_{0})}\int_{\mathcal{A}(\psi_{0})}^{\mathcal{A}(\psi_{1})}\rho^{-q}(\exp(iu))du\right)^{\frac{1}{q}} \leq 2c_{4}C_{p}$$

(see (1.1)). The factor 2 appears in the right-hand side because $\mathcal{A}(\psi_1) - \mathcal{A}(\psi_0)$ may be larger than 2π but is less than $2 \times 2\pi$.

Case a). Let $\mathcal{J}_0 \subset \mathbb{Z}$ be the smallest set such that

$$I \subseteq \bigcup_{j \in \mathcal{J}_0} I_j \,.$$

It follows from Lemma 3.2-b) that

$$\sum_{j \in \mathcal{J}_0} |I_j| \le c_5 \sum_{j \in \mathcal{J}} |I_j| \le c_5 |I|, \tag{3.4}$$

where the constant c_5 depends only on c_1 from Lemma 3.1-b).

Let us estimate

$$\Lambda_{j,p} = \int_{I_j} \rho^p(B(\zeta)) |d\zeta|.$$

This is similar but easier than the estimate for Δ_p in the case b), because we do not need to deal with the function (3.3) now. Since $A(\theta_j) - A(\theta_{j+1}) = 2\pi$, we have

$$\Lambda_{j,p} \le \frac{c_4|I_j|}{2\pi} \int_{-2\pi(j+1)}^{-2\pi j} \rho^p(\exp(iu)) du = \frac{c_4|I_j|}{2\pi} \|\rho\|_{L^p(\mathbb{T})}^p.$$

Hence

$$\int_{I} \rho^{p}(B(\zeta)) |d\zeta| \leq \int_{\bigcup_{j \in \mathcal{J}_{0}} I_{j}} \rho^{p}(B(\zeta)) |d\zeta| = \sum_{j \in \mathcal{J}_{0}} \int_{I_{j}} \rho^{p}(B(\zeta)) |d\zeta|$$
$$\leq \sum_{j \in \mathcal{J}_{0}} \frac{c_{4}|I_{j}|}{2\pi} \|\rho\|_{L^{p}(\mathbb{T})}^{p} = \frac{c_{4}}{2\pi} \|\rho\|_{L^{p}(\mathbb{T})}^{p} \sum_{j \in \mathcal{J}_{0}} |I_{j}| \leq \frac{c_{4}c_{5}}{2\pi} \|\rho\|_{L^{p}(\mathbb{T})}^{p} |I|$$

(see (3.4)). Similarly

$$\int_{I} \rho^{-q}(B(\zeta)) |d\zeta| \le \frac{c_4 c_5}{2\pi} \|\rho^{-1}\|_{L^q(\mathbb{T})}^q |I|.$$

Hence

$$\left(\frac{1}{|I|} \int_{I} \rho^{p}(B(\zeta)) |d\zeta| \right)^{\frac{1}{p}} \left(\frac{1}{|I|} \int_{I} \rho^{-q}(B(\zeta)) |d\zeta| \right)^{\frac{1}{q}} \leq \frac{c_{4}c_{5}}{2\pi} \|\rho\|_{L^{p}(\mathbb{T})} \|\rho^{-1}\|_{L^{q}(\mathbb{T})} \leq c_{4}c_{5}C_{p}.$$

Remark 3.3. The proof of Theorem 1.3 can be easily extended to any inner function v such that $\arg v(e^{i\tau})$ has a continuous and increasing branch on $(0, 2\pi)$, and $A(\theta) := \arg v(e^{i\theta})$ has the following property

$$\frac{\max_{\theta \in [\theta_{j+1}, \theta_{j-1}]} A'(\theta)}{\min_{\theta \in [\theta_{j+1}, \theta_{j-1}]} A'(\theta)} \le m < +\infty, \quad \forall j \in \mathbb{Z},$$
(3.5)

where θ_j 's are defined by (3.2). Indeed, (3.5) is exactly what is needed for the case b) in the proof of Theorem 1.3. The case a) relies also on Lemma 3.2-b) which in turn follows from (3.5).

The above applies for example to the singular inner function

$$S(\zeta) = \exp\left(\kappa \frac{\zeta + 1}{\zeta - 1}\right), \quad \kappa = \text{const} > 0.$$

Indeed,

$$A(\theta) = \arg S(e^{i\theta}) = -\kappa \cot \frac{\theta}{2}$$

and it is not difficult to see that (3.5) holds in this case. This corresponds to the case of the so-called periodic discontinuity which was considered in [9].

4. Proof of Theorem 1.2

Proof. Let $a_0 \in L^{\infty}(\mathbb{T})$ be defined by

$$a_0(e^{i\tau}) = \exp\left(i\frac{\tau}{2}\right), \quad \tau \in (0, 2\pi).$$

Then a_0 is continuous on $\mathbb{T} \setminus \{1\}$, $a_0(1 \pm 0) = \pm 1$, $T(a_0) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible for any $p \in (1, 2)$, and $T(1/a_0) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible for any $p \in (2, +\infty)$ (see [8, 9.3, 9.8] or [2, 5.39]). Let $h_0 = h \exp\left(-i\frac{\pi}{2}\log 2\right)$, where h is the function from Example 2.3 with $c = \frac{\pi}{2}$. Then

$$h_0(e^{it}) = |h(e^{it})| e^{i\varphi(t)}, \quad t \in [-\pi, \pi].$$

where

$$\varphi(t) = -\frac{\pi}{2} \log \left| 2\sin\frac{t}{2} \right|$$

(see (2.5)).

Let f be a 2π -periodic function such that $f \in C^{\infty}([-\pi,\pi] \setminus \{0\})$, $f(t) = \varphi(t)$ if $-\pi/2 \le t < 0$, and f(t) = -f(-t) if $0 < t \le \pi/2$. Then

$$e^{2if(t)} = B\left(e^{it}\right)g\left(B\left(e^{it}\right)\right)d\left(e^{it}\right), \quad t \in [-\pi,\pi], \tag{4.1}$$

where $g, d \in C(\mathbb{T})$, the index of g is 0, and B is the infinite Blaschke product with the zeros

$$z_k = \frac{2 - \exp(-k + 1/2)}{2 + \exp(-k + 1/2)}$$

(see Theorem 2.2). Since the index of g is 0, there exists $g_0 \in C(\mathbb{T})$ such that $g_0^2 = g$. Let $d_0 \in C(\mathbb{T})$ be such that $d_0^2(e^{it}) = d(e^{it})$ for $t \in [-\pi/2, \pi/2]$, $d_0(e^{it}) \neq 0$ for $t \in [-\pi, \pi]$ and the index of d_0 is 0.

Consider the function $a \in L^{\infty}(\mathbb{T})$ defined by

$$a(e^{it}) = a_0 \left(B\left(e^{it}\right) \right) \left(\frac{g_0 \left(B\left(e^{it}\right) \right) d_0 \left(e^{it}\right) |h_0(e^{it})|}{h_0(e^{it})} \right).$$
(4.2)

It follows from (4.1) and from the definition of the function f that $a^2(e^{it}) = 1$ if $-\pi/2 \leq t < 0$. It is clear that the second factor in the right-hand side of (4.2) is continuous on $\{e^{it} | -\pi/2 \leq t < 0\}$, whereas the first one has infinitely many discontinuities in any left semi-neighbourhood of 1. Hence a takes values 1 and -1 in any left semi-neighbourhood of 1. So, $a(1-0) = \{\pm 1\}$.

The operator $T(a^{\pm 1}) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible if and only if $T(a_0^{\pm 1} \circ B) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible (see, e.g., [6, Theorem 2.1, Propositions 2.3, 4.1 and 5.4]). The latter operator is indeed invertible because $T(a_0^{\pm 1}) : H^p(\mathbb{T}) \to H^p(\mathbb{T})$ is invertible and B satisfies (1.3) (see Corollary 1.4).

References

- A. Böttcher and S. Grudsky, On the composition of Muckenhoupt weights and inner functions. J. Lond. Math. Soc., II. Ser. 58, No.1 (1998), 172-184.
- [2] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators. Springer-Verlag, 1990.
- [3] K. F. Clancey, One dimensional singular integral operators on L^p. J. Math. Anal. Appl. 54 (1976), 522-529.
- [4] K. F. Clancey, Corrigendum for the article "One dimensional singular integral operators on L^p". J. Math. Anal. Appl. 99 (1984), 527-529.
- [5] P. L. Duren, Theory of H^p Spaces. Academic Press, 1970 & Dover, 2000.

- [6] V. Dybin and S.M. Grudsky, Introduction to the theory of Toeplitz operators with infinite index. Birkhäuser Verlag, 2002.
- [7] J. B. Garnett, Bounded Analytic Functions. Academic Press, 1981.
- [8] I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations I & II. Birkhäuser Verlag, 1992.
- [9] S.M. Grudskij and A.B. Khevelev, On invertibility in $L^2(R)$ of singular integral operators with periodic coefficients and a shift. Sov. Math. Dokl. 27, 486-489 (1983).
- [10] E. Shargorodsky, On singular integral operators with coefficients from $P_n\mathbb{C}$. Tr. Tbilis. Mat. Inst. Razmadze **93** (1990), 52-66 (Russian).
- [11] E. Shargorodsky, On some geometric conditions of Fredholmity of one-dimensional singular integral operators. Integral Equations Oper. Theory 20, No.1 (1994), 119-123.
- [12] E. Shargorodsky, A remark on the essential spectra of Toeplitz operators with bounded measurable coefficients. Integr. Equat. Oper. Th. 57 (2007), 127-132.
- [13] I. M. Spitkovskij, Factorization of matrix-functions belonging to the classes $\tilde{A}_n(p)$ and TL. Ukr. Math. J. **35** (1983), 383-388 (translation from Ukr. Mat. Zh. **35**, No.4 (1983), 455-460).

Sergei Grudsky Departamento de Matematicas CINVESTAV del I.P.N. Apartado Postal 14-740 07000, Mexico, D.F. MEXICO e-mail: grudsky@math.cinvestav.mx

Eugene Shargorodsky Department of Mathematics King's College London Strand, London WC2R 2LS UK e-mail: eugene.shargorodsky@kcl.ac.uk