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Abstract. In the first part of the paper we describe the complex geometry of
the universal Teichmüller space T , which may be realized as an open subset in
the complex Banach space of holomorphic quadratic differentials in the unit disc.
The quotient S of the diffeomorphism group of the circle modulo Möbius trans-
formations may be treated as a smooth part of T . In the second part we consider
the quantization of universal Teichmüller space T . We explain first how to quan-
tize the smooth part S by embedding it into a Hilbert–Schmidt Siegel disc. This
quantization method, however, does not apply to the whole universal Teichmüller
space T , for its quantization we use an approach, due to Connes.

1. Introduction

The universal Teichmüller space T , introduced by Ahlfors and Bers, plays a key
role in the theory of quasiconformal maps and Riemann surfaces. It can be defined
as the space of quasisymmetric homeomorphisms of the unit circle S1 (i.e. home-
omorphisms of S1, extending to quasiconformal maps of the unit disc ∆) modulo
Möbius transformations. The space T has a natural complex structure, induced by
its realization as an open subset in the complex Banach space B2(∆) of holomor-
phic quadratic differentials in the unit disc ∆. The space T contains all classical
Teichmüller spaces T (G), where G is a Fuchsian group, as complex submanifolds.
The space S := Diff+(S1)/Möb(S1) of normalized diffeomorphisms of the circle may
be considered as a ”smooth” part of T .

Our motivation to study T comes from the string theory. Physicists have noticed
(cf. [15],[3]) that the space Ωd := C∞

0 (S1,Rd) of smooth loops in the d-dimensional
vector space Rd may be identified with the phase space of bosonic closed string
theory. By looking at a natural symplectic form ω on Ωd, induced by the standard
symplectic form (of type ”dp ∧ dq”) on the phase space, one sees that this form
can be, in fact, extended to the Sobolev completion of Ωd, coinciding with the space

Vd := H
1/2
0 (S1,Rd) of half-differentiable vector-functions. Moreover, the latter space

is the largest in the scale of Sobolev spaces Hs
0(S

1,Rd), on which ω is correctly
defined. So the form ω itself chooses the ”right” space to be defined on. From that
point of view, it seems more natural to consider Vd as the phase space of bosonic
string theory, rather than Ωd. In this paper we set d = 1 to simplify the formulas

and study the space V := V1 = H
1/2
0 (S1,R).

According to Nag–Sullivan [12], there is a natural group, attached to the space

V = H
1/2
0 (S1,R), and this is precisely the group QS(S1) of quasisymmetric home-

omorphisms of the circle. Again one can say that the space V itself chooses the
”right” group to be acted on. The group QS(S1) acts on V by reparametrization
of loops and this action is symplectic with respect to the form ω. The universal
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Teichmüller space T = QS(S1)/Möb(S1) can be identified by this action with a
space of complex structures on V , compatible with ω.

The second half of the paper is devoted to the quantization of the universal
Teichmüller space T . We start from the Dirac quantization of the smooth part
S = Diff+(S1)/Möb(S1). This is achieved by embedding of S into the Hilbert-
Schmidt Siegel disc DHS. Under this embedding the diffeomorphism group Diff+(S1)
is realized as a subgroup of the Hilbert–Schmidt symplectic group SpHS(V ), acting
on the Siegel disc by operator fractional-linear transformations. There is a holo-
morphic Fock bundle F over DHS, provided with a projective action of SpHS(V ),
covering its action on DHS. The infinitesimal version of this action is a projective
representation of the Hilbert–Schmidt symplectic Lie algebra spHS(V ) in a fibre F0

of the Fock bundle F . This defines the Dirac quantization of the Siegel disc DHS.
Its restriction to S gives a projective representation of the Lie algebra Vect(S1) of
the group Diff+(S1) in the Fock space F0, which defines the Dirac quantization of
the space S.

However, the described quantization procedure does not apply to the whole univer-
sal Teichmüller space T . By this reason we choose another approach to this problem,
based on Connes quantization. (We are grateful to Alain Connes for drawing our
attention to this approach, presented in [5].) Briefly, the idea is the following. The
QS(S1)-action on T , mentioned above, cannot be differentiated in classical sense (in
particular, there is no Lie algebra, associated to QS(S1)). However, one can define
a quantized infinitesimal version of this action by associating with any quasisym-
metric homeomorphism f ∈ QS(S1) a quantum differential dqf , being an integral
operator on V with kernel, given essentially by the finite-difference derivative of f .
In these terms the quantization of T is given by a representation of the algebra of
derivations of V , generated by quantum differentials dqf , in the Fock space F0.

I. UNIVERSAL TEICHMÜLLER SPACE

2. Group of Quasisymmetric Homeomorphisms of S1

2.1. Definition of quasisymmetric homeomorphisms.

Definition 1. A homeomorphism h : S1 → S1 is called quasisymmetric if it can be
extended to a quasiconformal homeomorphism w of the unit disc ∆.

Recall that a homeomorphism w : ∆ → w(∆), having locally L1-integrable deriva-
tives (in generalized sense), is called quasiconformal if there exists a measurable
complex-valued function µ ∈ L∞(∆) with ‖µ‖∞ := ess supz∈∆|µ(z)| =: k < 1 such
that the following Beltrami equation

(1) wz̄ = µwz

holds for almost all z ∈ ∆. The function µ is called a Beltrami differential or
Beltrami potential of w and the constant k is often indicated in the name of the
k-quasiconformal maps.

In the case when k = 0 the homeomorphism w, satisfying (1), coincides with a
conformal map from D onto w(D). For a diffeomorphism w its quasiconformality
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means that w transforms infinitesimal circles into infinitesimal ellipses, whose ec-
centricities (the ratio of the large axis to the small one) are bounded by a common
constant K < ∞, related to the above constant k = ‖µ‖∞ by the formula

K =
1 + k

1− k
.

The least possible constant K is called the maximal dilatation of w and is also
sometimes indicated in the name of K-quasiconformal maps.

The inverse of a quasiconformal map is again quasiconformal and the same is
true for the composition of quasiconformal maps. This implies that orientation-
preserving quasisymmetric homeomorphisms of S1 form a group of quasisymmetric
homeomorphisms of the circle QS(S1) with respect to composition.

Any orientation-preserving diffeomorphism h ∈ Diff+(S1) extends to a diffeomor-
phism of the closed unit disc ∆, which is evidently quasiconformal, according to
the above criterion. So Diff+(S1) ⊂ QS(S1), and we have the following chain of
embeddings

Möb(S1) ⊂ Diff+(S1) ⊂ QS(S1) ⊂ Homeo+(S1) .

Here, Möb(S1) denotes the Möbius group of fractional-linear automorphisms of the
unit disc ∆, restricted to S1.

2.2. Beurling–Ahlfors criterion. There is an intrinsic description of quasisym-
metric homeomorphisms of S1 in terms of cross ratios. Recall that the cross ratio
of four different points z1, z2, z3, z4 on the complex plane is given by the quantity

ρ = ρ(z1, z2, z3, z4) :=
z4 − z1

z4 − z2

:
z3 − z1

z3 − z2

.

The equality of two cross ratios ρ(z1, z2, z3, z4) = ρ(ζ1, ζ2, ζ3, ζ4) is a necessary and
sufficient condition for the existence of a fractional-linear map of the complex plane,
transforming the quadruple z1, z2, z3, z4 into the quadruple ζ1, ζ2, ζ3, ζ4. In the case
of quasiconformal maps the cross ratios of quadruples may change but in a con-
trolled way. This property, reformulated in the right way for orientation-preserving
homeomorphisms of S1, yields a criterion of quasisymmetricity, due to Ahlfors and
Beurling.

The required property reads as follows: for an orientation-preserving homeomor-
phism h : S1 → S1 it should exist a constant 0 < ε < 1 such that the following
inequality holds

(2)
1

2
(1− ε) ≤ ρ(h(z1), h(z2), h(z3), h(z4)) ≤ 1

2
(1 + ε)

for any quadruple z1, z2, z3, z4 ∈ S1 with cross ratio ρ(z1, z2, z3, z4) = 1
2
.

Theorem 1 (Beurling–Ahlfors, cf. [1], [9]). Suppose that h : S1 → S1 is an
orientation-preserving homeomorphism of S1. Then it can be extended to a qua-
siconformal homeomorphism w : ∆ → ∆ if and only if it satisfies condition (2).

Douady and Earle (cf. [6]) have found an explicit extension operator E, assigning
to a quasisymmetric homeomorphism h its extension to a quasiconformal homeo-
morphism w of ∆, which is conformally invariant in the sense that g(w◦h) = w◦g(h)
for any fractional-linear automorphism of ∆.

Though quasisymmetric homeomorphisms of S1, in general, are not smooth, they
enjoy certain Hölder continuity, provided by the following
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Theorem 2 (Mori, cf. [1]). Let w : ∆ → ∆ be a K-quasiconformal homeomor-
phism of the unit disc onto itself, normalized by the condition: w(0) = 0. Then the
following sharp estimate

|w(z1)− w(z2)| < 16|z1 − z2|1/K

holds for any z1 6= z2 ∈ ∆. In other words, the homeomorphism w satisfies the
Hölder condition of order 1/K in the disc ∆.

3. Universal Teichmüller Space

3.1. Definition of universal Teichmüller space.

Definition 2. The quotient space

T := QS(S1)/Möb(S1)

is called the universal Teichmüller space. It can be identified with the space of
normalized quasisymmetric homeomorphisms of S1, fixing the points ±1 and −i.

As we have pointed out earlier, there is an inclusion

Diff+(S1)/Möb(S1) ↪→ T = QS(S1)/Möb(S1) .

We consider the homogeneous space

S := Diff+(S1)/Möb(S1)

as a ”smooth” part of T .
The space T can be provided with the Teichmüller distance function, defined by

(3) dist(g, h) =
1

2
log K(h ◦ g−1)

for any quasisymmetric homeomorphisms g, h ∈ T , extended to quasiconformal
homeomorphisms of the disc ∆. Here, K(h ◦ g−1) denotes the maximal dilatation of
the quasiconformal map h◦g−1. This definition does not depend on the extensions of
g, h to ∆ and defines a metric on T . The universal Teichmüller space is a complete
connected contractible metric space with respect to the introduced distance function
(cf. [9]). Unfortunately, this metric is not compatible with the group structure on
T , given by composition of quasisymmetric homeomorphisms (cf. [9], Theor. 3.3).

The term ”universal” in the name of the universal Teichmüller space is due to the
fact that T contains, as complex submanifolds, all classical Teichmüller spaces T (G),
where G is a Fuchsian group (cf. [10]). If a Riemann surface X is uniformized by
the unit disc ∆, so that X = ∆/G, then the corresponding Techmüller space T (G)
may be identified with the quotient

T (G) = QS(S1)G/Möb(S1) ,

where QS(S1)G is the subset of G-invariant quasisymmetric homeomorphisms in
QS(S1). The universal Teichmüller space T itself corresponds to the Fuchsian group
G = {1}.

Since quasisymmetric homeomorphisms of S1 are defined in terms of quasiconfor-
mal maps of ∆, i.e. in terms of solutions of Beltrami equation in ∆, one can expect
that there is a definition of T directly in terms of Beltrami differentials. Denote
by B(∆) the set of Beltrami differentials in the unit disc ∆. It follows from above
that it can be identified (as a set) with the unit ball in the complex Banach space
L∞(∆).
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Given a Beltrami differential µ ∈ B(∆), we can extend it to a Beltrami differential
µ̌ on the extended complex plane C by setting µ̌ equal to zero outside the unit disc
∆. Then, applying the existence theorem for quasiconformal maps on the extended
complex plane C (cf. [1]), we get a normalized quasiconformal homeomorphism wµ,
satisfying Beltrami equation (1) on C with potential µ̌. This homeomorphism is
conformal on the exterior ∆− of the closed unit disc ∆ on C and fixes the points
±1,−i. The image ∆µ := wµ(∆) of ∆ under the quasiconformal map wµ is called
a quasidisc. We associate with Beltrami differential µ ∈ B(∆) the normalized
quasidisc ∆µ. Introduce an equivalence relation between Beltrami differentials in ∆
by saying that two Beltrami differentials µ and ν are equivalent if wµ|∆− ≡ wν |∆− .
Then the universal Teichmüller space T will coincide with the quotient

T = B(∆)/ ∼
of the space B(∆) of Beltrami differentials modulo introduced equivalence relation.
In other words, it coincides with the space of normalized quasidiscs in C.

3.2. Complex structure of the universal Teichmüller space. We introduce a
complex structure on the universal Teichmüller space T , using its embedding into
the space of quadratic differentials.

Given an arbitrary point [µ] of T , represented by a normalized quasidisc wµ(∆),
consider a map

(4) µ 7−→ S(wµ|∆−) ,

assigning to a Beltrami differential µ ∈ [µ] the Schwarz derivative of the confor-
mal map wµ on ∆. Due to the invariance of Schwarzian under Möbius transfor-
mations, the image of µ under the above map depends only on the class [µ] of
µ in T . Moreover, it is a holomorphic quadratic differentials in ∆−. The latter
fact follows from the transformation properties of Beltrami differentials, prescribed
by Beltrami equation (according to (1), Beltrami differential behaves as a (-1,1)-
differential with respect to conformal changes of variable). Composing the above
map with a fractional-linear biholomorphism of ∆− onto the unit disc ∆, we obtain
a map

(5) Ψ : T −→ B2(∆) , [µ] 7−→ ψ(µ) ,

associating a holomorphic quadratic differential ψ(µ) in ∆ with a point [µ] of the
universal Teichmüller space T .

The space B2(∆) of holomorphic quadratic differentials in ∆ is a complex Banach
space, provided with a natural hyperbolic norm, given by

‖ψ‖2 := sup
z∈∆

(1− |z|2)2|ψ(z)|

for a quadratic differential ψ. It can be proved (cf. [9]) that ‖ψ[µ]‖2 ≤ 6 for any
Beltrami differential µ ∈ B(∆).

The constructed map Ψ : T → B2(∆), called a Bers embedding, is a home-
omorphism of T onto an open bounded connected contractible subset in B2(∆),
containing the ball of radius 1/2, centered at the origin (cf. [9]).

Using the constructed embedding, we can introduce a complex structure on the
universal Teichmüller space T by pulling it back from the complex Banach space
B2(∆). It provides T with the structure of a complex Banach manifold. (Note that
the topology on T , induced by the map Ψ, is equivalent to the one, determined by
the Teichmüller distance function.)
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Moreover, the composition of the natural projection

B(∆) −→ T = B(∆)/ ∼
with the constructed map Ψ yields a holomorphic map

F : B(∆) −→ B2(∆)

with respect to the natural complex structure on B(∆) (cf. [10]).

II. QS-ACTION ON THE SOBOLEV SPACE OF
HALF-DIFFERENTIABLE FUNCTIONS

4. Sobolev space of half-differentiable functions on S1

4.1. Definition. The Sobolev space of half-differentiable functions on S1 is a Hilbert

space V := H
1/2
0 (S1,R), consisting of functions f ∈ L2(S1,R) with zero average over

the circle, having generalized derivatives of order 1/2 again in L2(S1,R). In terms
of Fourier series, a function f ∈ L2(S1,R) with Fourier series

f(z) =
∑

k 6=0

fkz
k , fk = f̄−k , z = eiθ ,

belongs to H
1/2
0 (S1,R) if and only if it has a finite Sobolev norm of order 1/2:

(6) ‖f‖2
1/2 =

∑

k 6=0

|k||fk|2 = 2
∑

k>0

k|fk|2 < ∞ .

The space H
1/2
0 (S1,R) is well known and widely used in classical function theory

(cf. [18]). However, our motivation to employ this space comes from its relation to
string theory (cf. below).

4.2. Kähler structure. A symplectic form on V is given by a 2-form ω : V ×V →
R, defined in terms of Fourier coefficients of ξ, η ∈ V by

(7) ω(ξ, η) = 2Im
∑

k>0

kξkη̄k .

Because of (6), this form is correctly defined on V . Moreover, H
1/2
0 (S1,R) is the

largest Hilbert space in the scale of Sobolev spaces Hs
0(S

1,R), s ∈ R, on which this
form is defined. It should be also underlined that the form ω is the only natural
symplectic form on V (we shall make this point clear in Subsection 5.1).

We return to our motivation for studying the space V . It is well known to physi-
cists (cf., e.g., [15],[3]) that the space Ωd = C∞

0 (S1,Rd) of smooth loops in the
d-dimensional vector space Rd can be identified with the phase space of bosonic
closed string theory. The space Ωd has a natural symplectic form, which coin-
cides with the image of the standard symplectic form (of type ”dp ∧ dq”) on the
phase space of closed string theory under the above identification. This form, com-
puted in terms of Fourier decompositions, coincides precisely with the form ω, given
by (7). As we have remarked, the latter form may be extended to the Sobolev

space Vd := H
1/2
0 (S1,Rd) and this space is the largest in the scale Hs

0(S
1,Rd) of

Sobolev spaces, on which ω is correctly defined. One can say that symplectic form
ω ”chooses” the Sobolev space Vd. This is in contrast to Ωd, which was taken for the
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phase space of string theory simply because it’s easier to work with smooth loops.
By this reason, we find it more natural to consider Vd as the phase space of string
theory, which motivates the study of Vd in more detail. In our analysis we set d = 1
for simplicity.

Apart from symplectic form, the Sobolev space V has a complex structure J0,
which can be given in terms of Fourier decompositions by the formula

ξ(z) =
∑

k 6=0

ξkz
k 7−→ (J0ξ)(z) = −i

∑

k>0

ξkz
k + i

∑

k<0

ξkz
k .

This complex structure is compatible with symplectic form ω and, in particular,
defines a Kähler metric g0 on V by g0(ξ, η) := ω(ξ, J0η) or, in terms of Fourier
decompositions,

g0(ξ, η) = 2Re
∑

k>0

kξkη̄k .

In other words, V has the structure of a Kähler Hilbert space.

The complexification V C = H
1/2
0 (S1,C) of V is a complex Hilbert space and the

Kähler metric g0 on V extends to a Hermitian inner product on V C, given by

(8) < ξ, η >=
∑

k 6=0

|k|ξkη̄k .

We extend the symplectic form ω and complex structure operator J0 complex lin-
early to V C.

The space V C is decomposed into the direct sum of the form

V C = W+ ⊕W− ,

where W± is the (∓i)-eigenspace of the operator J0 ∈ EndV C. In other words,

W+ = {f ∈ V C : f(z) =
∑

k>0

fkz
k} , W− = W+ = {f ∈ V C : f(z) =

∑

k<0

fkz
k} .

The subspaces W± are isotropic with respect to symplectic form ω and the splitting
V C = W+ ⊕ W− is an orthogonal direct sum with respect to the Hermitian inner
product < · , · >, given by (8).

5. Grassmann realization of T
5.1. QS-action on the Sobolev space. Note that any homeomorphism h of S1,
preserving the orientation, acts on L2

0(S
1,R) by change of variable. In other words,

there is an operator Th : L2
0(S

1,R) → L2
0(S

1,R), acting by

Th(ξ) := ξ ◦ h− 1

2π

∫ 2π

0

ξ (h(θ)) dθ .

This operator has the following remarkable property.

Proposition 1 (Nag–Sullivan [12]). The operator Th acts on V , i.e. Th : V → V , if
and only if h ∈ QS(S1). Moreover, if h extends to a K-quasiconformal homeomor-
phism of the unit disc ∆, then the operator norm of Th does not exceed

√
K + K−1,

where K = K(h) is the maximal dilatation of h.

Moreover, transformations Th with h ∈ QS(S1) generate symplectic transforma-
tions of V .
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Proposition 2 (Nag–Sullivan [12]). For any h ∈ QS(S1) we have

ω(h∗(ξ), h∗(η)) = ω(ξ, η)

for all ξ, η ∈ V . Moreover, the complex-linear extension of QS-action to the com-
plexification V C preserves the holomorphic subspace W+ if and only if h ∈ Möb(S1).
In the latter case, Th acts as a unitary operator on W+.

We have pointed out in Subsection 4.2 that the Sobolev space V is ”chosen” by
the symplectic form ω. In the same way, one can say that the space V chooses
the reparametrization group QS(S1). Indeed, this is the biggest reparametrization
group, leaving V invariant, according to Proposition 1. On the other hand, it is a
group of ”canonical transformations”, preserving the symplectic form ω, according
to Proposition 2. So we have a natural phase space (V, ω) together with a natural
group QS(S1) of its canonical transformations.

Here is an assertion, making clear in what sense ω is a unique natural symplectic
form on V .

Proposition 3 (Nag–Sullivan [12]). Suppose that ω̃ : V × V → R is a continuous
bilinear form on V such that

ω̃(h∗(ξ), h∗(η)) = ω̃(ξ, η)

for all ξ, η ∈ V and all h ∈ Möb(S1). Then ω̃ = λω for some real constant λ. In
particular, ω̃ is non-degenerate (if it is not identically zero) and invariant under the
whole group QS(S1).

5.2. Embedding of the universal Teichmüller space into an infinite-dimen-
sional Siegel disc. The Propositions 1 and 2 imply that quasisymmetric homeo-
morphisms act on the Hilbert space V by bounded symplectic operators. Hence, we
have a map

(9) T = QS(S1)/Möb(S1) −→ Sp(V )/U(W+) .

Here, Sp(V ) is the symplectic group of V , consisting of linear bounded symplectic
operators on V , and U(W+) is its subgroup, consisting of unitary operators (i.e. the
operators, whose complex-linear extensions to V C preserve the subspace W+).

In terms of the decomposition

V C = W+ ⊕W−

any linear operator A : V C → V C is written in the block form

A =

(
a b
c d

)
.

Such an operator belongs to symplectic group Sp(V ), if it has the form

A =

(
a b
b̄ ā

)

with components, satisfying the relations

(10) āta− btb̄ = 1 , ātb = btā ,

where at, bt denote the transposed operators at : W− → W−, bt : W− → W+. The
unitary group U(W+) is embedded into Sp(V ) as a subgroup, consisting of diagonal
block matrices of the form

A =

(
a 0
0 ā

)
.
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The space

Sp(V )/U(W+) ,

standing on the right hand side of (9), can be regarded as an infinite-dimensional
analogue of the Siegel disc, since it may be identified with the space of complex
structures on V , compatible with ω. Indeed, any such structure J determines a
decomposition

(11) V C = W ⊕W

of V C into the direct sum of subspaces, isotropic with respect to ω. This decomposi-
tion is orthogonal with respect to the Kähler metric gJ on V C, determined by J and
ω. The subspaces W and W are identified with the (−i)- and (+i)-eigenspaces of
the operator J on V C respectively. Conversely, any decomposition (11) of the space
V C into the direct sum of isotropic subspaces determines a complex structure J on
V C, which is equal to −iI on W and +iI on W and is compatible with ω. This
argument shows that symplectic group Sp(V ) acts transitively on the space J (V )
of complex structures J on V , compatible with ω. Moreover, a complex structure
J , obtained from a reference complex structure J0 by the action of an element A of
Sp(V ), is equivalent to J0 if and only if A ∈ U(W+). Hence,

Sp(V )/U(W+) = J (V ) .

The space on the right can be, in its turn, identified with the Siegel disc D, defined
as the set

D = {Z : W+ → W− is a symmetric bounded linear operator with Z̄Z < I} .

The symmetricity of Z means that Zt = Z and the condition Z̄Z < I means
that symmetric operator I − Z̄Z is positive definite. In order to identify J (V )
with D, consider the action of the group Sp(V ) on D, given by fractional-linear
transformations A : D → D of the form

Z 7−→ (āZ + b̄)(bZ + a)−1 ,

where A =

(
a b
b̄ ā

)
∈ Sp(V ). The isotropy subgroup at Z = 0 coincides with the

set of operators A ∈ Sp(V ) such that b = 0, i.e. with U(W+).
So the space

J (V ) = Sp(V )/U(W+)

can be identified with the Siegel disc D, and we have the following

Proposition 4 (Nag–Sullivan [12]). The map

T = QS(S1)/Möb(S1) ↪→ J (V ) = Sp(V )/U(W+) = D
is an equivariant holomorphic embedding of Banach manifolds.

For the smooth part S of the universal Teichmüller space we can obtain a stronger
version of this assertion by replacing symplectic group Sp(V ) with its Hilbert–
Schmidt subgroup SpHS(V ). By definition, this subgroup consists of bounded linear
operators A ∈ Sp(V ) with block representations

A =

(
a b
b̄ ā

)
,

in which the operator b is Hilbert–Schmidt.
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The map f 7→ Tf defines an embedding

S ↪→ SpHS(V )/U(W+) .

We identify, as above, the right hand side with a subspace JHS(V ) of the space
J (V ) of compatible complex structures on V . We call complex structures J ∈
JHS(V ) Hilbert–Schmidt. As before, the space JHS(V ) of Hilbert–Schmidt complex
structures on V can be realized as a Hilbert–Schmidt Siegel disc

DHS = {Z : W+ → W− is a symmetric Hilbert–Schmidt operator with Z̄Z < I} .

We have

Proposition 5 (Nag [11]). The map

S = Diff+(S1)/Möb(S1) ↪→ JHS(V ) = SpHS(V )/U(W+) = DHS

is an equivariant holomorphic embedding.

III. QUANTIZATION OF S

6. Statement of the Problem

6.1. Dirac quantization. We start by recalling a general definition of quantization
of finite-dimensional classical systems, due to Dirac. A classical system is given by
a pair (M,A), where M is the phase space and A is the algebra of observables.

The phase space M is a smooth symplectic manifold of even dimension 2n, pro-
vided with a symplectic 2-form ω. Locally, it is equivalent to the standard model,
given by symplectic vector space M0 := R2n together with standard symplectic form
ω0, given in canonical coordinates (pi, qi), i = 1, . . . , n, on R2n by

ω0 =
n∑

i=1

dpi ∧ dqi .

The algebra of observables A is a Lie subalgebra of the Lie algebra C∞(M,R)
of smooth real-valued functions on the phase space M , provided with the Poisson
bracket, determined by symplectic 2-form ω. In particular, in the case of standard
model M0 = (R2n, ω0) one can take for A the Heisenberg algebra heis(R2n), which
is the Lie algebra, generated by coordinate functions pi, qi, i = 1, . . . , n, and 1,
satisfying the commutation relations

{pi, pj} = {qi, qj} = 0 ,

{pi, qj} = δij for i, j = 1, . . . , n .

Definition 3. The Dirac quantization of a classical system (M,A) is an irreducible
Lie-algebra representation

r : A −→ End∗H
of the algebra of observables A in the algebra of linear self-adjoint operators, acting
on a complex Hilbert space H, called the quantization space. The algebra End∗H is
provided with the Lie bracket, given by the commutator of linear operators of the
form 1

i
[A,B]. In other words, it is required that

r ({f, g}) =
1

i
(r(f)r(g)− r(g)r(f))
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for any f, g ∈ A. We also assume the following normalization condition: r(1) = I.

For complexified algebras of observables AC or, more generally, complex invo-
lutive Lie algebras of observables (i.e. Lie algebras with conjugation) their Dirac
quantization is given by an irreducible Lie-algebra representation

r : AC −→ EndH ,

satisfying the normalization condition and the conjugation law: r(f̄) = r(f)∗ for
any f ∈ A.

We are going to apply this definition of quantization to infinite-dimensional clas-
sical systems, in which both the phase space and algebra of observables are infinite-
dimensional. For infinite-dimensional algebras of observables it is more natural to
look for their projective Lie-algebra representations. The above definition of quan-
tization will apply also to this case if one replaces the original algebra of observables
with its suitable central extension.

6.2. Statement of the problem. We start from the Dirac quantization of an
infinite-dimensional system (V,A) with the phase space, given by the Sobolev space

of half-differentiable functions V := H
1/2
0 (S1,R). The role of algebra of observables

A will be played by the semi-direct product

A = heis(V )o spHS(V ) ,

being the Lie algebra of the Lie group G = Heis(V ) o SpHS(V ). The symplectic
Hilbert–Schmidt group SpHS(V ) was introduced in Subsection 4.2, while the Heisen-
berg algebra heis(V ) and the corresponding Heisenberg group Heis(V ) are defined,
as in finite-dimensional situation. Namely, the Heisenberg algebra heis(V ) of V is a
central extension of the Abelian Lie algebra V , generated by coordinate functions.
In other words, it coincides, as a vector space, with heis(V ) = V ⊕R, provided with
the Lie bracket

[(x, s), (y, t)] := (0, ω(x, y)) , x, y ∈ V, s, t,∈ R .

Respectively, the Heisenberg group Heis(V ) is a central extension of the Abelian
group V , i.e. the direct product Heis(V ) = V × S1, provided with the group opera-
tion, given by

(x, λ) · (y, µ) :=
(
x + y, λµ eiω(x,y)

)
.

The choice of the introduced Lie algebra A for the algebra of observables is mo-
tivated by the following physical considerations. As we have pointed put, the space
Vd is a natural Sobolev completion of the space Ωd := C∞

0 (S1,Rd) of smooth loops
in Rd. In the same way, the Lie algebra A = heis(V )o spHS(V ) is a natural exten-
sion of the Lie algebra heis(Ωd)oVect(S1), where Vect(S1) is the Lie algebra of the
diffeomorphism group Diff+(S1). The algebra heis(Ωd) can be identified with the
Lie algebra of coordinate functions on Ωd, while the algebra Vect(S1) is generated
by certain quadratic functions on Ωd (cf. [3]). One can say that the Lie algebra
heis(Ωd) o Vect(S1) is an infinite-dimensional analogue of the Poincarè algebra of
the d-dimensional Minkowski space Md, where heis(Ωd) plays the role of the Lie
algebra of translations of Md, while Vect(S1) is an analogue of the Lie algebra of
hyperbolic rotations of Md.
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7. Heisenberg Representation

In this Section we recall the well known Heisenberg representation of the first
component heis(V ) of algebra of observables A. A detailed exposition of this subject
may be found in [13],[8],[2].

7.1. Fock space. Fix an admissible complex structure J ∈ J (V ). It defines a
polarization of V , i.e. a decomposition of V C into the direct sum

(12) V C = W ⊕W ,

where W (resp. W ) is the (−i)-eigenspace (resp. (+i)-eigenspace) of the complex
structure operator J . The splitting (12) is the orthogonal direct sum with respect to
the Hermitian inner product < z, w >J := ω(z, Jw), determined by J and sympletic
form ω.

The Fock space F (V C, J) is the completion of the algebra of symmetric poly-
nomials on W with respect to a natural norm, generated by < ·, · >J . In more
detail, denote by S(W ) the algebra of symmetric polynomials in variables z ∈ W
and introduce an inner product on S(W ), defined in the following way. It is given
on monomials of the same degree by the formula

< z1 · · · · · zn, z
′
1 · · · · · z′n >J=

∑

{i1,...,in}
< z1, z

′
i1

>J · · · · · < zn, z′in >J ,

where the summation is taken over all permutations {i1, . . . , in} of the set {1, . . . , n}
(the inner product of monomials of different degrees is set to zero), and extended to

the whole algebra S(W ) by linearity. The completion Ŝ(W ) of S(W ) with respect to
the introduced norm is called the Fock space of V C with respect to complex structure
J :

FJ = F (V C, J) := Ŝ(W ) .

If {wn}, n = 1, 2, . . . , is an orthonormal basis of W , then an orthonormal basis of
FJ can be given by the family of polynomials

(13) PK(z) =
1√
k!

< z,w1 >k1
J · · · · · < z, wn >kn

J , z ∈ W ,

where K = (k1, . . . , kn, 0, . . . ), ki ∈ N ∪ 0, and k! = k1! · · · · · kn!.

7.2. Heisenberg representation. There is an irreducible representation of the
Heisenberg algebra heis(V ) in the Fock space FJ = F (V C, J), defined in the following
way. Elements of S(W ) may be considered as holomorphic functions on W , if we
identify z ∈ W with a holomorphic function w̄ 7→< w, z > on W . Accordingly, FJ

may be considered as a subspace of the space O(W ) of functions, holomorphic on
W . With this convention the Heisenberg representation

rJ : heis(V ) −→ End∗FJ

of the Heisenberg algebra heis(V ) in the Fock space FJ = F (V C, J) is defined by
the formula

(14) rJ(v)f(w̄) := −∂vf(w̄)+ < w, v >J f(w̄) ,

where ∂v is the derivative in direction of v ∈ V . Extending rJ to the complexified
algebra heisC(V ), we obtain

rJ(z̄)f(w̄) := −∂z̄f(w̄)
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for v = z̄ ∈ W and

rJ(z)f(w̄) :=< w, z >J f(w̄)

for z ∈ W . We set also rJ(c) := λ · I for the central element c ∈ heis(V ), where λ is
an arbitrary fixed non-zero constant.

Introduce the creation and annihilation operators on FJ , defined for v ∈ V C by

(15) a∗J(v) :=
rJ(v)− irJ(Jv)

2
, aJ(v) :=

rJ(v) + irJ(Jv)

2
.

In particular, for z ∈ W

(16) a∗J(z)f(w̄) =< w, z >J f(w̄) ,

and for z̄ ∈ W

(17) aJ(z̄)f(w̄) = −∂z̄f(w̄) .

For an orthonormal basis {wn} of W , we define the operators

a∗n := a∗(wn) , an := a(w̄n) , n = 1, 2, . . . ,

and a0 := λ · I.
A vector fJ ∈ FJ \ {0} is called the vacuum, if anfJ = 0 for n = 1, 2, . . . . In

other words, it is a non-zero vector, annihilated by operators an. It is uniquely
defined by rJ (up to a multiplicative constant) and in the case of the initial Fock
space F0 = F (V, J0) we set f0 ≡ 1. Acting on vacuum fJ by creation operators a∗n,
we can define the action of representation rJ on any polynomial, which implies the
irreducubility of rJ .

So we have the following

Proposition 6 (cf. [13],[8],[2]). There is an irredicible Lie algebra representation

rJ : heis(V ) −→ End∗FJ

of the Heisenberg algebra heis(V ) in the Fock space FJ = F (V C, J), given by the
formula (14).

We shall see in the next Section that this representation is essentially unique.

8. Symplectic Group Action on the Fock Bundle

8.1. Shale theorem. To construct an irreducible representation of the second com-
ponent spHS(V ) of the algebra of observables A, we study an action of the Hilbert–
Schmidt symplectic group SpHS(V ) on the Fock spaces FJ . This action is provided
by the following theorem.

Theorem 3 (Shale). The representations r0 in F0 and rJ in FJ are unitary equiv-
alent if and only if J ∈ JHS(V ). In other words, for J ∈ JHS(V ) there exists a
unitary intertwining operator UJ : F0 → FJ such that

rJ(v) = UJ ◦ r0(v) ◦ U−1
J .

This theorem was proved by Shale [17] in 1962, an independent proof was given in
Berezin’s book [2], published in Russian in 1965 (Berezin obtained also an explicit
formula for the intertwining operator UJ).

The following Proposition gives a description of UJ in terms of the Hilbert–
Schmidt Siegel disc DHS, based on the identification of JHS(V ) with DHS.
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Proposition 7 (Segal [16]). There is a projective unitary action of the group SpHS(V )
on Fock spaces, defined by the unitary operator UJ , given by the formula (18) below.

Here is an idea of Segal’s construction, details may be found in [16]. Given an
admissible complex structure J ∈ JHS(V ), we identify it with a point Z in the

Siegel disc DHS. Regarding Z as an element of the symmetric square Ŝ2(W ), we can

associate with it an element eZ/2 of Ŝ(W ). The inner product of two such elements
has a simple expression

< eZ1/2, eZ2/2 >= det(1− Z̄1Z2)
−1/2 .

The normalized elements

εZ := det(1− Z̄Z)1/4eZ/2

play the role of coherent states (cf., e.g., [2]). In terms of these states the action of
the group SpHS(V ) on Fock spaces, defined by

SpHS(V ) 3 A =

(
a b
b̄ ā

)
7−→ UJ : F0 → FJ for J = A · J0 ,

is given by the formula

(18) UJ : εZ 7−→ µ det(1 + a−1b̄Z)1/2εA·Z ,

where µ : C∗ → S1 is the radial projection.

8.2. Dirac quantization of V and S. We can unite Fock spaces FJ into a Fock
bundle over DHS, having the following properties.

Proposition 8. The Fock bundle

F :=
⋃

J∈J (V )

FJ −→ J (V ) = DHS

is a Hermitian holomorphic Hilbert space bundle over DHS. It can be provided with a
projective unitary action of the group SpHS(V ), covering the natural SpHS(V )-action
on the Siegel disc DHS.

The proof of holomorphicity of the Fock bundle F → DHS is analogous to the
proof of holomorphicity of the determinant bundle over the Hilbert–Schmidt Grass-
mannian, given in [13]. Note that the Fock bundle is trivial, since the Siegel disc
DHS is contractible (even convex), so the statement follows from the Hilbert space
version of the Oka principle (cf. [4]). An explicit trivialization of F → DHS is
provided by the action (18). This action defines a projective unitary action of the
group SpHS(V ) on F , covering the SpHS(V )-action on Siegel disc DHS.

The infinitesimal version of this action yields a projective representation of the
symplectic algebra spHS(V ) in the Fock space F0. We present an explicit description
of this representation, due to Segal.

Recall that symplectic algebra spHS(V ) is the Lie algebra of symplectic Hilbert–
Schmidt group SpHS(V ), which consists of linear operators A in V C, having the
following block representations

A =

(
α β
β̄ ᾱ

)
.
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Here, α is a bounded skew-Hermitian operator and β is a symmetric Hilbert–Schmidt
operator on F0. The complexified Lie algebra spHS(V )C consists of operators of the
form

A =

(
α β
γ̄ −αt

)
,

where α is a bounded operator, while β and γ̄ are symmetric Hilbert–Schmidt op-
erators on F0.

The projective representation of complexified symplectic algebra spHS(V )C is given
by the formula

(19) spHS(V )C 3 A =

(
α β
γ̄ −αt

)
7−→ ρ(A) = Dα +

1

2
Mβ +

1

2
M∗

γ .

Here, Dα is the derivation of F0 in α-direction, defined by

Dαf(w̄) =< αw, ∂w̄ > f(w̄) .

The operator Mβ is the multiplication operator on F0, defined by

Mβf(w̄) =< β̄w, w̄ > f(w̄) ,

and the operator M∗
γ is the adjoint of Mγ: M∗

γf(w̄) =< γ∂w, ∂w̄ > f(w̄).
This is a projective representation with cocycle

(20) [ρ(A1), ρ(A2)]− ρ([A1, A2]) =
1

2
tr(γ̄2β1 − γ̄1β2)I ,

intertwined with the Heisenberg representation r0 of heis(V ) in F0.
Thus we have the following

Proposition 9 (Segal [16]). There is a projective unitary representation

ρ : spHS(V ) −→ End∗F0 ,

given by formula (19) with cocycle (20). This representation intertwines with the
Heisenberg representation r0 of heis(V ) in F0.

The Heisenberg representation r0 in the Fock space F0, described in Proposition 6,
and symplectic representation ρ, constructed in Proposition 9, define together Dirac

quantization of the system (V, Ã), where Ã is the central extension of A, determined
by (20).

The constructed Lie-algebra representation of spHS(V ) in the Fock space F0 may
be also considered as Dirac quantization of a classical system, consisting of the phase
space DHS = SpHS(V )/U(W+) and the algebra of observables, given by the central
extension of Lie algebra spHS(V ).

The restriction of this construction to the smooth part S = Diff+(S1)/Möb(S1) of
the universal Teichmüller space T = QS(S1)/Möb(S1) yields the Dirac quantization
of S. Namely, we have the following
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Proposition 10. The restriction of the Fock bundle F → DHS to S is a Hermitian
holomorphic Hilbert space bundle

F :=
⋃
J∈S

FJ −→ S

over S. This bundle is provided with a projective unitary action of the diffeomor-
phism group Diff+(S1), covering the natural Diff+(S1)-action on S.

The Diff+(S1)-action on the Fock bundle, mentioned in Proposition, was explicitly
constructed in [?]. The infinitesimal version of this action yields a unitary projective
representation of the Lie algebra Vect(S1) in the Fock space F0. We can consider
this construction as Dirac quantization of the phase space S, provided with the
algebra of observables, given by the central extension of the Lie algebra Vect(S1),
called the Virasoro algebra.

IV. QUANTIZATION OF T

9. Dirac versus Connes quantization

Unfortunately, the method, used in previous Chapter for the quantization of S,
does not apply to the whole space T . Though we still can embed T into the
Siegel disc D, we are not able to construct a projective action of symplectic group
Sp(V ) on Fock spaces. According to theorem of Shale, it is possible only for the
Hilbert–Schmidt subgroup SpHS(V ) of Sp(V ). So one should look for another way
of quantizing the universal Teichmüller space T . We are going to use for that the
”quantized calculus” of Connes and Sullivan, presented in Ch.IV of the Connes’
book [5] and [12].

Recall that in Dirac’s approach we quantize a classical system (M,A), consisting
of the phase space M and the algebra of observables A, which is a Lie algebra,
consisting of smooth functions on M . The quantization of this system is given by
a representation r of A in a Hilbert space H, sending the Poisson bracket {f, g}
of functions f, g ∈ A into the commutator 1

i
[r(f), r(g)] of the corresponding opera-

tors. In Connes’ approach the algebra of observables A is an associative involutive
algebra, provided with an exterior differential d. Its quantization is, by definition,
a representation π of A in a Hilbert space H, sending the differential df of a func-
tion f ∈ A into the commutator [S, π(f)] of the operator π(f) with a self-adjoint
symmetry operator S with S2 = I. The differential here is understood in the sense
of non-commutative geometry, i.e. as a linear map d : A → Ω1(A), satisfying the
Leibnitz rule (cf. [5]).

In the following table we compare Connes and Dirac approaches to quantization.
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Dirac approach Connes approach

C
la

ss
ic

al
sy

st
em

(M,A) where: (M, A) where:

M – phase space M – phase space
A – involutive Lie algebra A – involutive associative

of observables algebra of observables with
differential d : A → Ω1(A)

Q
u
an

ti
za

ti
on

Lie-algebra representation representation

r : A → EndH , π : A → EndH ,
sending sending

{f, g} 7→ 1
i
[r(f), r(g)] df 7→ [S, π(f)] ,

where S = S∗, S2 = I

Reformulating the notion of Connes quantization of algebra of observables A, one
can say that it is a representation of the algebra Der(A) of derivations of A in the
Lie algebra End H. Recall that a derivation of an algebra A is a linear map: A → A,
satisfying the Leibnitz rule. Clearly, derivations of an algebra A form a Lie algebra,
since the commutator of two derivations is again a derivation.

If all observables are smooth real-valued functions on M , the two approaches
are equivalent to each other. Indeed, the differential df of a smooth function f
is symplectically dual to the Hamiltonian vector field Xf and this establishes a
relation between the associative algebra A of functions f on M and the Lie algebra
A of Hamiltonian vector fields on M . (This Lie algebra is isomorphic for a simply
connected M to a Lie algebra of Hamiltonians, associated with A.) A symmetry
operator S is determined by a polarization H = H+⊕H− of the quantization space
H. Evidently, S = iJ , where J is the complex structure operator, defining the
polarization H = H+ ⊕ H−. (By this reason we do not make distinction between
symmetry and complex structure operators.)

In the case when the algebra of observables A contains non-smooth functions, its
Dirac quantization is not defined in the classical sense. In Connes approach the
differential df of a non-smooth observable f ∈ A is also not defined classically, but
its quantum counterpart dqf , given by

dqf := [S, π(f)] ,

may still be defined, as it is demonstrated by the following example, borrowed from
[5].

Suppose that A is the algebra L∞(S1,C) of bounded functions on the circle S1.
Any function f ∈ A defines a bounded multiplication operator in the Hilbert space
H = L2(S1,C):

Mf : v ∈ H 7−→ fv ∈ H .

The operator S is given by the Hilbert transform S : L2(S1,C) → L2(S1,C):

(Sf)(eiϕ) =
1

2π
V.P.

∫ 2π

0

K(ϕ, ψ)f(eiψ)dψ ,
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where the integral is taken in the principal value sense and K(ϕ, ψ) is the Hilbert
kernel

(21) K(ϕ, ψ) = 1 + i cot
ϕ− ψ

2
.

The differential df of a general observable f ∈ A is not defined in the classical sense,
but its quantum analogue

dqf := [S,Mf ]

is correctly defined as an operator in H for functions f ∈ V . Namely, we have the
following

Proposition 11 (Nag–Sullivan [12]). A function f ∈ V if and only if the corre-
sponding quantum differential dqf is a Hilbert–Schmidt operator on H (and on V ).
Moreover, the Hilbert–Schmidt norm of dqf coincides with the V -norm of f .

Indeed, the commutator dqf := [S,Mf ] is an integral operator on H with the
kernel, given by K(ϕ, ψ)(f(ϕ) − f(ψ)). This operator is Hilbert–Schmidt if and
only if its kernel is square integrable on S1 × S1, i.e.

∫ 2π

0

∫ 2π

0

|f(ϕ)− f(ψ)|2
sin2 1

2
(ϕ− ψ)

dϕ dψ < ∞ .

This inequality is equivalent to the condition f ∈ V (cf. [12]).

The quantum differential dqf = [S,Mf ] of a function f ∈ V is an integral operator
on V , given by

(22) dqf(v)(eiϕ) =
1

2π

∫ 2π

0

k(ϕ, ψ)v(eiψ)dψ

with the kernel, given by

k(ϕ, ψ) := K(ϕ, ψ)(f(ϕ)− f(ψ)) ,

where K(ϕ, ψ) is defined by (21).
Note that the quasiclassical limit of this operator, defined by taking the value of

the kernel on the diagonal (i.e. by taking the limit for s → t), coincides (up to a
constant) with the multiplication operator v 7→ f ′v, so the quantization means in
this case essentially the replacement of the derivative by its finite-difference analogue.

The correspondence between functions f ∈ A and operators Mf on H has the
following remarkable properties (cf. [14]):

(1) The differential dqf is a finite rank operator if and only if f is a rational
function.

(2) The differential dqf is a compact operator if and only if the function f belongs
to the class VMO(S1).

(3) The differential dqf is a bounded operator if and only if the function f
belongs to the class BMO(S1).

This list may be supplemented by further function-theoretic properties of elements
of A, having curious operator-theoretic characterizations (cf. [5]).
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10. Quantization of the universal Teichmüller space

We apply these ideas to the universal Teichmüller space T . In Subsection 5.1 we
have defined a natural action of quasisymmetric homeomorphisms on V . As we have
remarked, this action does not admit the differentiation, so classically there is no
Lie algebra, associated with QS(S1) or, in other words, there is no classical algebra
of observables, associated to T . (The situation is similar to that in the example
above.) We would like to define a quantum algebra of observables, associated to T .

The quantum infinitesimal version of QS(R)-action on HR is given by the integral
operator dqf , defined by formula (22). We extend this operator dqf to the Fock
space F0 by defining it first on elements of the basis (13) of F0 with the help of
Leibnitz rule, and then extending to the whole symmetric algebra S(W0) by linear-
ity. The completion of the obtained operator yields an operator dqf on F0. The
operators dqf with f ∈ QS(R), constructed in this way, generate a quantum Lie
algebra Derq(QS), associated with T . We consider it as a quantum Lie algebra of
observables, associated with T . We can also consider the constructed Lie algebra
Derq(QS) as a replacement of the (non-existing) classical Lie algebra of the group
QS(R).

Compare now the main steps of Connes quantization of T with the analogous
steps in Dirac quantization of DHS (returning again to the case of S1).

In the case of DHS:

(1) we start with the SpHS(V )-action on DHS;
(2) then, using Shale theorem, extend this action to a projective unitary action

of SpHS(V ) on Fock spaces F (V, J);
(3) an infinitesimal version of this action yields a projective unitary representa-

tion of symplectic Lie algebra spHS(V ) in the Fock space F0.

In the case of T :

(1) we have an action of QS(S1) on the space V ; however, in contrast with Dirac
quantization of DHS, the step (2) in case of T is impossible, since by Shale
theorem we cannot extend the action of QS(S1) to Fock spaces F (V, S);

(2) we define instead a quantized infinitesimal action of QS(S1) on V , given by
quantum differentials dqf ;

(3) extending operators dqf to the Fock space F0, we obtain a quantum Lie
algebra Derq(QS), generated by extended operators dqf on F0.

Conclusion. The Connes quantization of the universal Teichmüller space T con-
sists of two steps:

(1) The first step (”the first quantization”) is the construction of quantized in-
finitesimal QS(S1)-action on V , given by quantum differentials dqf with
f ∈ QS(S1).

(2) The second step (”the second quantization”) is the extension of quantum
differentials dqf to the Fock space F0. The extended operators dqf with f ∈
QS(S1) generate the quantum algebra of observables Derq(QS), associated
with T .

Note that the correspondence principle for the constructed Connes quantization
of T means that this quantization, being restricted to S, coincides with Dirac quan-
tization of S.
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