
2nd Reading

October 4, 2017 6:7 1750042

International Journal of Neural Systems, Vol. 27, No. 8 (2017) 1750042 (13 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129065717500423

Spiking Neural P Systems with Communication on Request

Linqiang Pan
Key Laboratory of Image Information Processing

and Intelligent Control of Education Ministry of China
School of Automation, Huazhong University of Science and Technology

Wuhan 430074, Hubei, P. R. China
and Zhengzhou University of Light Industry

Zhengzhou 450002, Henan, P. R. China
lqpan@mail.hust.edu.cn

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
P. O. Box 1-764, RO-014700 Bucharest, Romania

gpaun@us.es

Gexiang Zhang∗

Robotics Research Center, Xihua University
Chengdu 610039, P. R. China

Key Laboratory of Fluid and Power Machinery (Xihua University)
Ministry of Education, Chengdu 610039, P. R. China

School of Electrical Engineering
Southwest Jiaotong University, Chengdu 610031, P. R. China

zhgxdylan@126.com

Ferrante Neri
Centre for Computational Intelligence

School of Computer Science and Informatics
De Montfort University, The Gateway

Leicester LE1 9BH, England, UK
fneri@dmu.ac.uk

Accepted 10 August 2017
Published Online 5 October 2017

Spiking Neural P Systems are Neural System models characterized by the fact that each neuron mimics

a biological cell and the communication between neurons is based on spikes. In the Spiking Neural P

systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked

by means of a regular expression). In these P systems, a specified number of spikes are consumed and

a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to

the evolving neuron.

In the present work, a novel communication strategy among neurons of Spiking Neural P Systems is

proposed. In the resulting models, called Spiking Neural P Systems with Communication on Request, the

spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by

means of a regular expression). Unlike the traditional Spiking Neural P systems, no spikes are consumed

or created: the spikes are only moved along synapses and replicated (when two or more neurons request

the contents of the same neuron).

∗Corresponding author.

1750042-1

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0129065717500423


2nd Reading

October 4, 2017 6:7 1750042

L. Pan et al.

The Spiking Neural P Systems with Communication on Request are proved to be computationally
universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this
work, further research questions are listed to be open problems.

Keywords: Bio-inspired computing; membrane computing; P system; artificial neural network; spiking
neural network.

1. Introduction

Membrane Computing is a branch of Natural Com-
puting that abstracts computational models from the
structure and the functioning of biological cells,1,2

with a particular emphasis on their parallel and dis-
tributed computational features. These models are
known under the name of P Systems.

A P system can be seen as a multicompartmen-
tal computing model (with the compartments delim-
ited by membranes) characterized by the following
points3–6:

• Its structure (i.e. membrane structure) which can
be a hierarchical arrangement of membranes (thus,
represented by means of a tree) or as a net of mem-
branes and thus, represented by a general graph,

• its multisets, i.e. the molecules placed inside each
membrane, with their multiplicity,

• its evolutionary rules that govern the operations
on the multisets or the passage of the molecules
across membranes.

Among the P systems, a Neural-like P System is
a construct where the cells correspond to neurons,
linked by synapses,1 with a strong analogy between
Neural-Like P systems7 and neural networks.8–12

This paper focuses on a subclass of Neural-Like
P systems, namely Spiking Neural (SN) P Sys-
tems.13,14 SN P systems are a Membrane Computing
version of the Spiking Neural Networks (SNNs).15,16

In SNNs the communication among neurons is trig-
gered by means of impulses of identical shape
(spikes) or by sequences of spikes.17–20 The training
of a SNN is usually a complex task.21

SNNs have a wide application potential. Mod-
ern interesting applications of SNN include, e.g.
epilepsy examination,22–24 medical diagnostics,25

pattern recognition,26,27 neurosurgery,28 information
processing,29 and liquid-state machine circuitry.30

SN P systems have some common features with
SNNs: a neuron fires only when its potential or the
number of spikes inside it reaches a specific value; the
concept of time is incorporated into the information

encoding and processing. In terms of features of mod-
els, SN P systems fall into the third generation of
neural network models.

Briefly, SN P systems have the following struc-
ture and functioning. Neurons (in the form of a mem-
brane) are placed in the nodes of a graph (whose
edges are called synapses) and they contain a num-
ber of spikes. Identical objects denoted by a evolve
by means of rules of the form E/ac→ ap: if the con-
tents of the neuron are described by the regular
expression E (over the alphabet {a}), then c spikes
are consumed and p spikes are produced. The pro-
duced spikes are sent to all neurons: the synapse of
each neuron points from the evolving neuron to each
neighbor neuron. The p spikes are replicated in such
a way that each destination neuron receives p spikes.
In each time unit, each neuron that can use a rule
should use one, while neurons in the system func-
tion in parallel with each other. When a computa-
tion halts, i.e. no further rule in the system can be
applied, a result of the computation is obtained. In
this work, the computation result is defined in the
form of the number of spikes present in a specified
neuron in the halting configuration.

Many variants of SN P systems have been con-
sidered in recent years, based on biological facts,31–33

computer science motivations,34,35 and mathemati-
cal motivations.36–38 Most of the obtained classes of
SN P systems are computationally universal, that
is, they can simulate any Turing machine. Further-
more, several small computationally universal SN P

systems have been constructed.39 It has also been
shown that, under certain conditions, solutions to
computationally hard problems can be obtained in
a polynomial time within this framework.40,41 Suc-
cessful applications of SN P systems have been pre-
sented in the areas of optimization7 and fault diagno-
sis.42–45 The interested reader can consult the above
mentioned bibliography or the chapter46 dedicated
to SN P systems.

1750042-2

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

Spiking Neural P Systems with Communication on Request

The aforementioned “standard” SN P systems
and their variants are communicating on command:
the initiative for communication belongs to the emit-
ting neuron. Taking the inspiration from the area of
Parallel-Cooperating Grammar Systems,47 it is nat-
ural to consider also the reverse case: the communi-
cation on request. The spikes should be moved from
a neuron to another one when the receiving neuron
requests that.

Request-response is an important concept in
software engineering. A request–response interac-
tion (also called request-reply) is one of the three-
event-based interaction types in an event-based
system. The interactions among the agents in an
event based system are governed by events, princi-
pally those interactions that are request-response,
message-passing, or publish-subscribe.48 A request-
response interaction happens between two agents.
Agent A makes a request to agent B by sending agent
B a request, indicating the type of request along
with the details of the request. Agent B processes
the request and responds by sending a reply back to
agent A. In a request-response interaction, there are
potentially four events48: (1) the act of sending the
request by agent A; (2) the receipt of the request by
agent B; (3) the act of sending the reply by agent
B; and (4) the receipt of the reply by agent A. For
synchronous request-response interactions, especially
those that occur over short periods of time, these four
events are normally all combined together and con-
sidered one event. There are several particular cases.

Request-response is one of the basic methods
computers used to communicate with each other,
in which the first computer sends a request for
some data and the second computer responds to
the request.49 For example, browsing a web page
is an example of request-response communication.
Request-response can be seen as a telephone call, in
which someone is called and they answer the call.
Request-response is a message exchange pattern in
which a requestor sends a request message to a replier
system which receives and processes the request, ulti-
mately returning a message in response.49

The class of SN P systems, we introduce here,
namely, SN P Systems with Communications by
Request (shortly called SNQ P systems), have only
rules for requesting spikes from the neighboring neu-
rons, the action being again dependent on the con-
tents of the neuron. Basically, the rules are of the

form E/Q(an1 , j1) · · · (anm , jm), with the meaning
that, if the neuron where this rule resides (say, neu-
ron i) has a number of spikes described by the regular
expression E, then it asks (this is the meaning of Q)
n1 spikes from neuron j1, n2 spikes from neuron j2,
and so on. If the neurons j1, . . . , jm cannot satisfy the
requests (they contain less spikes than requested),
then the rule cannot be applied. Also queries of the
form (a∞, j) can be formulated, with the meaning
that all spikes from neuron j are requested, no mat-
ter how many they are, maybe none. When sev-
eral neurons request simultaneously spikes from the
same neuron, the queries should be identical, and the
requested spikes are replicated. Details will be given
in the next section.

We want to stress an important feature of this
variant of SN P systems, SNQ P systems: no spike
is consumed, they are only moved from a neuron to
another one (from this point of view, they remind
P systems with symport/antiport rules50). The only
way to increase the number of spikes in the systems
is by replicating the spikes in neurons which receive
multiple queries.

In this work, the computational power of SNQ P

systems is investigated. Specifically, the universality
of SNQ P systems is obtained, if we extend the def-
inition by considering two types of spikes. In addi-
tion, a small universal SNQ P system is obtained,
composed of 49 neurons.

The remainder of the paper is organized in the
following way. Section 2 describes the details of the
proposed SN P Systems with Communications by
Request. Section 3 contains some preliminary results
about simple cases of SNQ P Systems, containing
one, two, and three neurons. Section 4 discusses
the universality of the proposed P systems. Sec-
tion 5 provides an example of a small universal SN
P system with communication by request. Further
research questions are highlighted in Sec. 6. Section 7
gives the conclusions to this work.

2. Definition of SN P Systems with
Communication by Request

This section formally defines the devices briefly
described above. The reader is assumed to be famil-
iar with basic elements of membrane computing,46 as
well as with some basic notions and notations from
language and automata theory.51 We only mention

1750042-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

L. Pan et al.

that V ∗ denotes the free monoid generated by the
alphabet V under the operation of concatenation
with the null element λ (the empty string), and
that the family of sets of natural numbers computed
by Turing machines is denoted by NRE (they are
the length sets of recursively enumerable languages,
hence the notation).

We directly introduce the systems that we inves-
tigate, in the general form (with several types of
spikes).

Definition 1 (SNQ P Systems). A spiking neu-
ral P system with communication by request (shortly,
SNQ P system) is a construct

Π = (O, σ1, . . . , σm, ai0 , out),

where

(1) O = {a1, a2, . . . , ak} is an alphabet (ai is a type
of spikes), where k ≥ 1 is the number of types of
spikes,

(2) σ1, . . . , σm are neurons of the form σi = (ui, Ri),
1 ≤ i ≤ m, m is the number of neurons, where:

(a) ui is a multiset over the alphabet O;
(b) Ri is a finite set of rules of the form E/Qw,

where E is a regular expression over O and
w is a finite of queries of the forms (ap

s , j)
and (a∞

s , j), 1 ≤ s ≤ k, p ≥ 0, 1 ≤ j ≤ m;

(3) ai0 , 1 ≤ i0 ≤ k, is the type of output spikes and
out ∈ {1, 2, . . . , m} indicates the output neuron,
which is used to store the computation result.

The meaning of a query (ap
s , j) is that neuron σi

requests p copies of as from neuron σj , while (a∞
s , j)

means that all spikes of type as from σj , No matter
how many they are, are requested by σi.

It must be noted that the set of synapses has not
been specified in the definition since the synapses are
implicitly defined by the rules.

A configuration Ct at an instant t of an SNQ P

system Π=(O, σ1, . . . , σm, ai0 , out), where σi =(ui,

Ri) and ui = a
n(i,1)
1 . . . a

n(i,k)
k , 1≤ i≤m, is described

by the number of spikes of each type present in each
neuron in the beginning of the computation, that is,
Ct = ((n(1, 1) . . . n(1, k)), . . . , (n(m, 1) . . . n(m, k))).
A rule E/Qw, with a finite of queries w of the form
(ap

s , j), in neuron σi is applicable to a configuration
Ct at time t if the following holds: (1) the contents
of neuron σi considered as a string belongs to the

language generated by E, and (2) all queries formu-
lated in w are satisfied, that is, if (ap

s , j) is a query in
w then neuron σj at least p spikes (all query (a∞

s , j)
in w is always satisfiable because all spikes from σj

are requested for neuron σi, no matter how many
they are, maybe none). There could exist conflict-
ing queries between two rules r1 ≡ E1/Qw1 and
r2 ≡ E2/Qw2 associated with neurons σi1 and σi2

verifying conditions (1), (2), and such that by means
of a query in w1 and a query in w2, different numbers
of occurrences of the same spike as of neuron σj are
requested by σi1 and σi2. In this case, one of the rules
r1, r2, nondeterministically chosen, can be used.

A delicate point appears when defining the result
of a computational step because of the interplay of
the queries. A computation step consists of the fol-
lowing sub-steps:

• Sub-step 1. In each neuron, we choose a rule
to apply, and check its applicability. This means
checking three conditions: (i) that the regular
expression in the rule corresponds to the contents
of the neuron, (ii) that the queries in the rule can
be satisfied by the indicated neurons, and (iii) that
there are no conflicting queries among the selected
rules. If any of these conditions is not satisfied,
then the rules should be changed, or, in the case
of the third condition, some of the rules involved
in conflicting queries should be omitted. However,
the set of selected applicable rules should be max-
imal, in the sense that no rule can be added to the
set without losing the applicability (each neuron
which can evolve, should do it).
• Sub-step 2. The requested spikes are removed

from the neurons where they were present. For
each neuron we have three cases: (i) no spike as

was requested by any other neuron (and then the
existing number of spikes as remains unchanged),
(ii) all spikes of some kind as were requested, by
at least one other neuron (and then no spike of
this kind remains here), or (iii) p spikes of type as

are requested, by at least one other neuron (and
then p is deduced from the number of copies of as

present in the neuron). Note that because of the
fact that the requests are not conflicting, we know
precisely how many spikes of each type we have to
deduce from each neuron.
• Sub-step 3. The queries are satisfied, the

requested spikes are moved to the requesting

1750042-4

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

Spiking Neural P Systems with Communication on Request

neurons. To the result of Sub-step 2, we add the
requested spikes, with the following meaning: if
two (or more) neurons request spikes from the
same other neuron, then the number of spikes to
be submitted to the two (or more) neurons is the
same (say, p copies of some as), but only p spikes
are removed from the emitting neuron, the p spikes
are replicated and exactly p spikes are moved to
each of the requesting neurons. The same in the
case of two or more queries of the form (a∞

s , j), all
spikes present in σj are replicated as many times
as the number of other neurons having submitted
queries to σj .

It can be observed the three sub-steps together form
a step, which lasts for one time unit.

After a computation step as illustrated above, the
system passes to a new configuration. A sequence
of such transitions from a configuration to another
one, starting from the initial configuration, is called a
computation. A computation halts if it reaches a con-
figuration where no rule can be applied. The result
of a halting computation is the number of copies
of spike ai0 present in neuron σout in the halting
configuration.

2.1. Differences between standard SN
P systems and the proposed SNQ
P systems

It must be noted that there exist several important
differences of SNQ P systems in comparison with
usual SN P systems: (1) we use several types of
objects, and we still call all of them spikes, (2) there
is no interaction with the environment, no spike is
sent out, hence we have to consider the result of
a computation only in the internal mode (no spike
train is defined here), (3) there is no other way to
increase the number of spikes than the replication
in the case of multiple queries from the same neu-
ron (this corresponds to the case when a neuron in
a usual SN P system sends spikes to several neurons
to which it has synapses).

It is also worth mentioning the difference from
the systems, we consider here and those in Ref. 52,
where the request is done only from the environment,
for cell-like SN P systems,53 using (in the skin region
only) rules of the form E/λ ← ap, with the mean-
ing that p spikes are brought from the environment.

Besides these rules, usual spiking rules are used in
Ref. 52.

3. Preliminary Theoretical Findings

Let us start the study of SNQ P systems by examin-
ing the computational power of small systems, which
have a small number of neurons and of types of
spikes. This is also an opportunity to illustrate the
previous definitions by means of some examples.

For an SNQ P system Π, let us denote by N(Π)
the set of numbers generated by Π. Let us also denote
by NSNkPm(Q) the family of sets N(Π) generated
by SNQ P systems using at most k types of spikes
and at most m neurons. When the numbers k or
m can be arbitrary, the corresponding parameter is
replaced with ∗.

Directly from the definition of SNQ P systems,
it follows that the two parameters k and m induce a
double hierarchy of families of sets of numbers:

NSN kPm(Q) ⊆ NSN k+1Pm+1,

for all k ≥ 1, m ≥ 1.

As we will see in the next section, the hierarchy on
the number of types of spikes collapses at the second
level (SNQ P systems with two types of spikes are
already universal). Because of the universality, the
other hierarchy on the number of neurons cannot be
infinite, but we do not know its precise height.

The following two lemmas analyze oversimplified
SNQ P systems, composed of one and two neurons,
respectively. It is shown that, as for other P systems,
systems with only one neuron cannot apply any rule,
hence they only generate singleton sets.

Lemma 1. NSN kP1 = NSN ∗P1 = SING, k ≥ 1,

where SING denotes the family of singleton sets.

Systems with two neurons have also a rather
limited power.

Lemma 2. NSN kP2 = NSN ∗P2 = FIN , k≥ 1,

where FIN denotes the family of finite sets of
numbers.

Proof. In systems with two neurons, spikes cannot
be replicated, hence the initial number of spikes can-
not be increased, and NSN ∗P2 ⊆ FIN .

On the other hand, FIN ⊆ NSN 1P2: consider
a finite set of numbers, arranged in the increasing

1750042-5

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

L. Pan et al.

�
�
�
�
�
�

�
��

1

ank

2/out

λ/Q(ani , 1), 1 ≤ i ≤ k

Fig. 1. An SNQ P system generating a finite set.

order, n1 < n2 < · · · < nk, and consider the SNQ
P system from Fig. 1. We use the standard style in
representing SN P systems; we also explicitly repre-
sent the synapses defined by the queries, as well as
the initial spikes present in neurons (if no spike is
specified, this means that no spike is present in that
neuron in the initial configuration). Also as usual in
the area of SN P systems, we identify a neuron with
its label, thus equivalently saying “neuron σi” and
“neuron i”.

Initially, neuron σ1 contains nk spikes, while σ2

is empty, corresponding to the empty string λ. Each
computation takes only one step, neuron σ2 non-
deterministically chooses rule λ/Q(ani , 1) to apply,
requesting ni spikes from neuron σ1. In this way, neu-
ron σ2 has ni spikes, thus the number ni, 1 ≤ i ≤ k,
is generated.

The passage from two neurons to three neu-
rons entails a rather large increase of the generative
power, and the explanation resides in the possibility
to have replication of spikes, not only permitting the
increase of number of spikes, but even an exponential
increase.

Lemma 3. The family NSN 1P3(Q) contains any
arithmetical progression.

Proof. Let us take an arithmetical progression L =
{n0 + i ·n1 | i ≥ 1}, for some n0 ≥ 0 and n1 ≥ 1, and
construct the SNQ P system Π from Fig. 2, which
consists of three neurons with labels 1, 2 (out, output
neuron), and 3.

Formally, the system is:

Π = ({a}, σ1, σ2, σ3, a, 2), where

σ1 = (n1, {an1/Q(an1 , 3), an1/Q(an1−1, 3)}),
σ2 = (n0, {an0(an1)∗/Q(an1 , 1)}),
σ3 = (n1, {an1/Q(an1 , 1)}).
In each step, neurons σ1 and σ3 repeatedly

exchange n1 spikes, while neuron σ2 also requests n1

spikes from neuron σ1 (hence the n1 spikes of neuron

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

1

an1

an1/Q(an1, 3)

an1/Q(an1−1, 3)

2/out

an0

an0(an1)∗/Q(an1 , 1)

3

an1

an1/Q(an1 , 1)

Fig. 2. An SNQ P system generating an arithmetical
progression.

σ1 are duplicated), thus going along the terms of the
arithmetical progression. The computation can stop
at any moment, by using the second rule of neu-
ron σ1: neuron σ1 brings only n1 − 1 spikes inside
(hence the query of neuron σ2 cannot be satisfied)
and neuron σ3 remains with one spike inside, which,
together with the n1 spikes brought from neuron σ1,
do not allow the use of the rule in neuron σ3. Clearly,
N(Π) = L.

Lemma 4. The family NSN 1P3(Q) contains non-
semilinear sets of numbers.

Proof. Let us consider the SNQ P system Π in
Fig. 3.

The neurons σ1, σ2, σ3 can use a rule only if they
are empty. This is the case in the beginning with
neurons σ2 and σ3, hence they request all spikes

�
�
�
�
�
�
�
�

�

�

�

�
�

�

�

�

2/out

λ/Q(a∞, 1)

3

λ/Q(a∞, 1)

1

a2

λ/Q(a∞, 2)(a∞, 3)

λ/Q(a, 3)

Fig. 3. An SNQ P system generating a non-semilinear
set.

1750042-6

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

Spiking Neural P Systems with Communication on Request

of neuron σ1. Now neuron σ1 can request back the
spikes from neurons σ2, σ3, getting 4 spikes inside.
As long as the neurons use their rules asking for all
spikes of the partner neurons, the number of spikes
present in neuron σ1 is doubled, and this also hap-
pens with the contents of neurons σ2 and σ3.

At some step, λ/Q(a, 3) is used in neuron σ1,
simultaneously with neurons σ2, σ3 requesting the
spikes of neuron σ1. The computation halts, because
all neurons have at least one spike inside, hence they
can use no rule (all rules have the empty string λ).
The number of spikes in neuron σ1 is doubled after
each move of the contents of neurons σ2 and σ3 to
neuron σ1, after neuron σ2 requests all spikes from
neuron σ1, the number of spikes in the output neuron
σ2 is a power of 2, N(Π) = {2n | n ≥ 1}.

Therefore, the increase of the number of neurons
from 1 to 2 and to 3 induces a strict increase of the
computing power of SNQ P systems. It remains to be
investigated whether the strict increase of computing
power is also true for the next levels of the hierarchies
NSN kPm(Q) ⊆ NSN kPm+1.

4. The Universality of SNQ P Systems

This section gives the main result of the paper, that
is the universality of SNQ P systems with two types
of spikes (without a bound on the number of neu-
rons). The proof will use the characterization of
NRE by means of register machines.

Such a device is a construct M = (n, H, l1, lh, I),
where n is the number of registers, H is the set of
instruction labels, l1 is the start label (for simplicity,
we may assume that l1 labels an ADD instruction,
but this is not essential; note that in many places
the start instruction is labeled with l0, but here we
prefer to start from 1), lh is the halt label (assigned
to instruction HALT), and I is the set of instructions;
each label from H labels only one instruction from
I, thus precisely identifying it. The instructions are
of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go
to one of the instructions with labels lj, lk),
• li : (SUB(r), lj , lk) (if register r is nonempty, then

subtract 1 from it and go to the instruction with
label lj, otherwise go to the instruction with label
lk),
• lh : HALT (the halt instruction).

A register machine M starts with all registers
empty (i.e. storing the number zero), applies the
instruction with label l1 and proceeds to apply
instructions as indicated by labels (and made pos-
sible by the contents of registers); if the machine
reaches the halt instruction, then the number n

stored at that time in the first register is said to be
computed by M . The set of all numbers computed
by M is denoted by N(M). If the computation never
halts, then no number is generated. It is known that
register machines compute all sets of numbers which
are Turing computable, hence they characterize NRE
(see, e.g. Ref. 54).

Theorem 1 (Universality of NSQ P Systems).
SNQ P Systems are computationally universal:
NRE = NSN 2P∗(Q).

Proof. In order to prove the theorem, we only prove
the inclusion ⊆, the opposite one can be obtained
through a straightforward but cumbersome construc-
tion of a Turing machine simulating an SNQ P sys-
tem, or we can invoke the Turing–Church thesis.

Starting from a register machine M =(n, H,

l0, lh, I), we construct an SNQ P system Π with two
types of spikes, which we denote by a and b, hence
O = {a, b}. We associate one neuron with each regis-
ter of M (denoted by 1, 2, . . . , n), one neuron σl with
each label l ∈ H , as well as a second neuron, σl′i with
each instruction of M of the form li : (SUB(r), lj , lk).
We also consider the neurons σi, 1 ≤ i ≤ 5, as
mentioned below. Therefore, the number of neurons
depends on the number of registers and labels of M ,
that is why we cannot bound it in advance.

If the value of a register r is m, then the cor-
responding neuron σr contains m spikes a. That is,
a is the spike indicating the result of the computa-
tion, and the output neuron is σ1 (associated with
register 1).

Let us assume that H contains t elements,
l1, l2, . . . , lt. Initially, each neuron contain 2t copies
of b and no copy of a, with the exception of neurons
σci , 1 ≤ i ≤ 5, which contain the spikes a, b, b, b, b,
respectively (see also the construction below).

ADD module: For each instruction li : (ADD
(r), lj , lk) of M , we construct the module represented
in Fig. 4.

In order to simplify the proof, we first assume
that we are allowed to also use a query of the form
(a, env), with the meaning that one copy of a is

1750042-7

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

L. Pan et al.

�

�

�

�

�

�

�

�

�
�
�
��

�
�
�

�

�

�

�

r

b2t

b2t−i/Q(a∞, li)(bi, li)(a, env)

li

b2t

bt−1/Q(a∞, r)(bi, r)

a∗bt+i−1/Q(bt+1, lj)

a∗bt+i−1/Q(bt+1, lk)

lj

b2t

lk

b2t

Fig. 4. The ADD module.

requested from the environment — with the environ-
ment supposed to contain arbitrarily many copies of
a. Later we will remove this kind of rules.

Such a module is activated when t + 1 spikes b

from neuron li are requested by another neuron. In
this construction, the neuron which asks t + 1 copies
of b from σli is σc1 . If we would accept the query
(a, env), hence neurons c1, c2, c3 will be absent, then
we have to start with only t−1 spikes b in neuron l1,
the starting one. The neuron (with label) li becomes
active and it requests from neuron r all copies of a as
well as i copies of b. Note that i precisely identifies
the label li, which precisely identifies the instruction
(hence neurons r, lj , lk).

In the next step, both neurons li and r can apply
a rule. In this way, the previous contents of neu-
ron r returns to neuron r, at the same time neuron
r requesting one copy of a from the environment,
which corresponds to the fact that the register was
increased by 1. Simultaneously, neuron li uses one of
the rules a∗bt+i−1/Q(bt+1, lj), a∗bt+i−1/Q(bt+1, lk),
nondeterministically chosen, which means that one
of the neurons lj , lk is activated, while li ends with
2t copies of b inside, as it was the case at the begin-
ning. The instruction of M is correctly simulated,
and one of the instructions with label lj, lk will be
simulated in the next steps.

It is important to note that, in spite of the fact
that several instructions ADD can refer to the same
register r (as well as several instructions SUB), this

does not lead to wrong computations (i.e. computa-
tions in Π not corresponding to computations in M),
because the regular expression b2t−i of the rules in
neuron r precisely identifies the neuron li to which a
query is addressed from neuron r.

Let us see now how to avoid the query (a, env).
Instead of the query (a, env), we put in neuron r the
query (a, c1), and then we consider the module con-
sisting of three neurons given in Fig. 5. Their role is
to produce arbitrarily many copies of spike a, keeping
them available to neurons with label r corresponding
to ADD instructions, then to request t + 1 copies of
spike b from neuron l1, thus triggering the simulation
of the first instruction in M .

	



�
�
	



�
�

�

�

�

�
�

�

�

�

�

�

c1

a

λ/Q(a∞, c2)(a∞, c3)

λ/Q(a∞, c2)(b, c2)(a∞, c3)(b, c3)(bt+1, l1)

c2

b

b/Q(a∞, c1)

c3

b

b/Q(a∞, c1)

Fig. 5. The module producing arbitrarily many copies
of spike a.

1750042-8

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

Spiking Neural P Systems with Communication on Request

�
�

�
�
�
�
�
�

�
�

�

c4

b

λ/Q(b, c5)

c5

b

λ/Q(b, c4)

Fig. 6. The trap module.

This module functions in a way similar to the
system in Fig. 3: as long as neurons c2, c3 con-
tains one copy of spike b, they can request the
contents of c1, which then can bring back, dou-
bled, the number of spikes a, repeatedly, until non-
deterministically choosing to use the second rule,
λ/Q(a∞, c2)(b, c2)(a∞, c3)(b, c3)(bt+1, l1). This rule
blocks the functioning of neurons c2, c3, and also acti-
vates neuron l1.

It is easy to see that this module substitutes the
use of the query (a, env), with only one exception:
if the module in Fig. 5 stops “too early” and there
are not enough copies of spike a, as necessary for
the simulation of the computation in M . To avoid
this situation, we also consider a “trap module”: we
add the rule b2t−i/Q(b, c4) to neuron r. If the rule
b2t−i/Q(a∞, li)(bi, li)(a, c1) cannot be used because
neuron c1 contains no copy of spike a, then this new
rule should be used, requesting one copy of spike b

from neuron c4. This neuron is a part of the module
in Fig. 6.

With spikes b inside, neurons c4 and c5 cannot
use any rule, but after removing the spike b from c4,
neurons c4 and c5 will repeatedly ask to each other

�
�

�
�
�
�

�
�
�
�
�
�

�

�

�

�

�
�
�
��

��

��

�
lj

b2t

l′i

b2t

a∗bt−1/Q(a, r)(bt+1, lj)

r

b2t

b2t−i/Q(a∞, li)(bi, li)

li

b2t

bt−1/Q(a∞, r)(bi, r)

bt+i−1/Q(bt+1, lk)

a+bt+i−1/Q(bt+1, l′i)

lk

b2t

Fig. 7. The SUB module.

the remaining spike b, and the computation never
stops.

SUB module: For each instruction li : (SUB
(r), lj , lk) of M we construct the module given in
Fig. 7.

When neuron li “looses” t +1 spikes b, it becomes
active, and can absorb all spikes a and i spikes b from
neuron r. In the next step, both neurons r and li can
use one rule. If there is no spike a present (corre-
sponding to the fact that register r was empty), then
neuron li has to use the rule bt+i−1/Q(bt+1, lk), and
neuron lk is activated. In parallel, neuron r returns
to its previous contents (no subtraction was made),
neurons l′i, lj are not modified.

If there is at least one copy of spike a present,
the subtraction is performed by activating first neu-
ron l′i (in parallel, neuron r returns to its previous
contents). Neuron l′i decreases by one the contents
of neuron r and activates neuron lj. The copies of
spike a requested by neuron l′i during a computation
remain in this neuron, they are “accepted” by the
regular expression of the rule in l′i.

Again, no unwanted interferences between SUB
modules appear, because the label li precisely identi-
fies the instruction (hence the module). In this way,
the SUB instruction is also correctly simulated.

The simulation of the computation in M contin-
ues until the halt instruction is reached. In the neu-
ron associated with lh there is no rule, hence after
activating this neuron, the computation in Π halts.
The number of copies of spike a in neuron 1 is the
result of computation, hence N(M) = N(Π).

1750042-9

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

L. Pan et al.

5. A Small Universal SNQ P System

In this section, starting from a universal register
machine, as those presented in Ref. 55, a universal
SNQ P system will be obtained.

In Ref. 55, the register machines are used for
computing functions, with the universality defined
as follows. Let (ϕ0, ϕ1, . . .) be a fixed admissible enu-
meration of the unary partial recursive functions. A
register machine Mu is said to be universal if there is
a recursive function g such that for all natural num-
bers x, y, we have ϕx(y) = Mu(g(x), y). In Ref. 55,
several universal register machines are constructed,
with the input (the couple of numbers g(x) and y)
introduced in specified input registers and the result
obtained in another specified register, the output
one.

The machine from Ref. 55 used in Ref. 39 is given
in Fig. 8. It has 8 registers and 23 instructions. With-
out loss of generality, l0 labels the start instruction,
which has no effect over the assumption about the
definition of register machines specified in the last
section. Because here, we do not work with numbers
encoded in the spike train, as the distance in time
between consecutive spikes, but with the multiplicity
of spike a in specified neurons, we can have the input
and the output of a computation in an SNQ P sys-
tem defined in the same way as in register machines,
hence no input and output module as in Ref. 39 is
necessary.

Therefore, a direct counting on the modules con-
structed in the previous proof (8 registers +23 labels
+ 13 SUB instructions + 5 neurons in Figs. 5 and 6
means a total of 49 neurons) leads to the following
result.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),
l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),
l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),
l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),
l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),
l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),
l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),
l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),
l16 : (ADD(4), l11), l17 : (ADD(2), l21),
l18 : (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),
l20 : (ADD(0), l0), l21 : (ADD(3), l18),
lh : HALT.

Fig. 8. The universal register machine from Ref. 55.

Theorem 2. There is a computing universal SNQ
P system with 49 neurons.

It is highly possible that the number 49 can be
slightly improved (by looking to other universal reg-
ister machines in Ref. 55, by possibly saving some
neurons by carefully examining the structure of the
starting universal register machine, or by using a
different construction). This task is left as an open
problem to the reader.

6. Further Research Questions

Several questions naturally remain unaddressed in
this preliminary phase of the study. These questions
open multiple unexplored research directions. The
following list illustrates some these questions and
research directions to continue the research on SNQ
P systems.

(1) Can the universality be obtained also for SNQ
P systems using only one type of spikes? (Do we
have NRE = NSN 1P∗(Q)?) We expect a nega-
tive answer, and a confirmation of this conjec-
ture would be rather interesting, as not so many
classes of P systems are known which are not
universal (but are able to compute more than
semilinear sets — see the example from Sec. 3).

(2) We have seen that the replication can grow expo-
nentially the number of spikes in linear time. Can
this be used in order to solve NP-complete prob-
lems in polynomial time? We again expect a neg-
ative answer — prove a Milano theorem version
for SNQ P systems (prove that an SNQ P sys-
tem can be simulated by a Turing machine with
a polynomial slow-down, as done in Ref. 56 for
multiset processing P systems and in Ref. 57 for
usual SN P systems).

(3) Without duplication (and without bringing
spikes from the environment) the number of
spikes present in the system remains constant,
hence only regular sets of numbers can be gen-
erated. Can all regular sets be generated in this
way?

(4) Look for normal forms, e.g. in terms of the num-
ber of neurons from which a rule can request
spikes. In the proof of Theorem 1, we have rules
requesting spikes from 1, 2 or even 3 neurons (the
case of neuron c1). Is the universality lost if we
bound this number to 1 or 2?

1750042-10

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

Spiking Neural P Systems with Communication on Request

(5) An interesting kind of queries seems to be those
of the form (a∞−s, j): take all but s spikes a from
neuron σj . Of course, if σj contains less than s

spikes, then the query cannot be satisfied, the
rule cannot be applied. Are such queries useful
(for instance, in avoiding the use of the second
type of spikes in the universality proof)?

(6) Although we do not have a spike train associ-
ated with a computation in an SNQ P system,
we can associate a language to such a system in
terms of traces, as in Ref. 58: follow the path of
a designated spike from a neuron to another one.
The family of these trace languages remains to
be investigated.

(7) A natural question would be: how can we use
SNQ P systems and what would be the advan-
tages/differences with respect to traditional SN
P systems? Although we do not have a defi-
nite answer to this question yet, like the tra-
ditional SN P systems, SNQ P systems could
be used to sort, and to represent fuzzy knowl-
edge and diagnose faults occurring in an electric
power system by combing with fuzzy set theory.
In addition, the promising applications of SNQ
P systems might be used to construct arithmetic
or logic operators and to detect network intru-
sion by making full use of the characteristic of
communication on request.

(8) Finally, we point out another natural question:
can we remove the regular expressions from the
rules and replace them with polarizations asso-
ciated with the membranes, as done in Ref. 59
for standard SN P systems? This made the uni-
versality proof in Ref. 59 much more difficult, so
this is expected also for SNQ P systems — or
maybe they will no longer be universal in this
case.

7. Conclusion

This paper proposes a new class of spiking neu-
ral P systems, where the spikes are not sponta-
neously emitted but the communication is initiated
on request, by the requesting neurons. The obtained
computing devices are briefly called SNQ P systems.

These SNQ P systems are proved to be computa-
tionally universal, that is, they can simulate the Tur-
ing machines — provided that two types of spikes are
used. As a consequence of the proof of this result, a

small universal SNQ P system is obtained, composed
of 49 neurons.

Several research questions remain unaddressed
and require further investigation. Eight open ques-
tions have been identified but several others can
be considered. Of a particular interest is the ques-
tion of solving computationally hard problems,
e.g. NP-complete problems, in a polynomial time.
As mentioned in the introduction, SNNs have a
wide application potential. As a membrane com-
puting version of SNNs, SNQ P systems are
deserved to be investigated for solving real-world
problems.

Acknowledgments

The work of L. Pan was supported by National
Natural Science Foundation of China (61320106005
and 61772214) and the Innovation Scientists and
Technicians Troop Construction Projects of Henan
Province (154200510012). The work of G. Zhang
was supported by National Natural Science Foun-
dation of China (61373047, 61672437, 61702428
and 51641506) and the Research Project of Key
Laboratory of Fluid and Power Machinery (Xihua
University), Ministry of Education, P. R. China
(JYBFXYQ-1).

References

1. G. Păun, Membrane Computing — An Introduction
(Springer-Verlag, New York, 2002).

2. G. Zhang, M. J. Pérez-Jiménez and M. Gheorghe,
Real-life Applications with Membrane Computing
(Springer International Publishing, Berlin, 2017).

3. X. Wang, G. Zhang, F. Neri, T. Jiang, J. Zhao,
M. Gheorghe, F. Ipate and R. Lefticaru, Design
and implementation of membrane controllers for tra-
jectory tracking of nonholonomic wheeled mobile
robots, Integr. Comput.-Aided Eng. 23(1) (2015)
15–30.

4. G. Zhang, J. Cheng, M. Gheorghe and Q. Meng,
A hybrid approach based on differential evolution
and tissue membrane systems for solving constrained
manufacturing parameter optimization problems,
Appl. Soft Comput. 13(3) (2013) 1528–1542.

5. H. Peng, J. Wang, P. Shi, M. J. Pérez-Jiménez and
A. Riscos-Núñez, An extended membrane system
with active membranes to solve automatic fuzzy clus-
tering problems, Int. J. Neural Syst. 26(3) (2016)
1650004.

6. X. Liu and J. Xue, A cluster splitting technique by
Hopfield networks and P systems on simplices, Neu-
ral Process. Lett. 46(1) (2017) 171–194.

1750042-11

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

L. Pan et al.

7. G. Zhang, H. Rong, F. Neri and M. J. Pérez-Jiménez,
An optimization spiking neural P system for approx-
imately solving combinatorial optimization prob-
lems, Int. J. Neural Syst. 24(5) (2014) 1440006.

8. S. Iliya and F. Neri, Towards artificial speech ther-
apy: A neural system for impaired speech segmenta-
tion, Int. J. Neural Syst. 26(6) (2016) 1650023.

9. M. Ahmadlou and H. Adeli, Enhanced probabilistic
neural network with local decision circles: A robust
classifier, Integr. Comput.-Aided Eng. 17(3) (2010)
197–210.

10. N. Wang and H. Adeli, Self-constructing wavelet
neural network algorithm for nonlinear control of
large structures, Eng. Appl. Artifi. Intell. 41 (2015)
249–258.

11. A. Rigos, G. E. Tsekouras, M. I. Vousdoukas,
A. Chatzipavlis and A. F. Velegrakis, A cheby-
shev polynomial radial basis function neural net-
work for automated shoreline extraction from coastal
imagery, Int. Comput.-Aided Eng. 23(2) (2016) 141–
160.

12. Y. Zeinali and B. A. Story, Competitive probabilistic
neural network, Integr. Comput.-Aided Eng. 24(2)
(2017) 105–118.

13. M. Ionescu, G. Păun and T. Yokomori, Spiking neu-
ral P systems, Fundam. Informa. 71 (2006) 279–308.

14. L. Pan, T. Wu and Z. Zhang, A bibliography of
spiking neural P systems, Bull. IMCS 1 (2016) 63–
78. Available at: http://membranecomputing.net/
IMCSBulletin/.

15. S. Ghosh-Dastidar and H. Adeli, Spiking neural net-
works, Int. J. Neural Syst. 19(4) (2009) 295–308.

16. W. Maass, Networks of spiking neurons: The third
generation of neural network models, Neural Netw.
10(9) (1997) 1659–1671.

17. S. Ghosh-Dastidar and H. Adeli, Improved spiking
neural networks for EEG classification and epilepsy
and seizure detection, Integr. Comput.-Aided Eng.
14(3) (2007) 187–212.

18. S. Nobukawa and H. Nishimura, Enhancement of
spike-timing-dependent plasticity in spiking neural
systems with noise, Int. J. Neural Syst. 26(5) (2016)
1550040.

19. Z. Wang, L. Guo and M. Adjouadi, A general-
ized leaky integrate-and-fire neuron model with fast
implementation method, Int. J. Neural Syst. 24(05)
(2014) 1440004.

20. C. Savin, P. Joshi and J. Triesch, Independent com-
ponent analysis in spiking neurons, Plos Comput.
Biol. 6(4) (2010) e1000757.

21. X. Zhang, G. Foderaro, C. Henriquez and S. Ferrari,
A scalable weight-free learning algorithm for regula-
tory control of cell activity in spiking neuronal net-
works, Int. J. Neural Syst. (2017) 1750015.

22. S. Ghosh-Dastidar and H. Adeli, A new super-
vised learning algorithm for multiple spiking neural

networks with application in epilepsy and seizure
detection, Neural Netw. 22(10) (2009) 1419–1431.

23. C. Luo, Y. Zhang, W. Cao, Y. Huang, F. Yang,
J. Wang, S. Tu, X. Wang and D. Yao, Altered struc-
tural and functional feature of striato-cortical circuit
in benign epilepsy with centrotemporal spikes, Int.
J. Neural Syst. 25(6) (2015) 1550027.

24. L. Guo, Z. Wang, M. Cabrerizo and M. Adjouadi,
A cross-correlated delay shift supervised learning
method for spiking neurons with application to inter-
ictal spike detection in epilepsy, Int. J. Neural Syst.
27(3) (2017) 1750002.

25. A. Geminiani, C. Casellato, A. Antonietti,
E. D’Angelo and A. Pedrocchi, A multiple-plasticity
spiking neural network embedded in a closed-loop
control system to model cerebellar pathologies, Int.
J. Neural Syst. (2017) 1750017.

26. J. A. Garrido, N. R. Luque, S. Tolu and E. D’Angelo,
Oscillation-driven spike-timing dependent plasticity
allows multiple overlapping pattern recognition in
inhibitory interneuron networks, Int. J. Neural Syst.
26(5) (2016) 1650020.

27. A. Morro, V. Canals, A. Oliver, M. Alomar,
F. Galán-Prado, P. Ballester and J. Rosselló, A sto-
chastic spiking neural network for virtual screening,
IEEE Trans. Neural Netw. Learn. Syst. (2017), avail-
able http://ieeexplore.ieee.org/document/7845709/.

28. S. Knieling, K. S. Sridharan, P. Belardinelli,
G. Naros, D. Weiss, F. Mormann and A. Gharabaghi,
An unsupervised online spike-sorting framework, Int.
J. Neural Syst. 26(5) (2016) 1550042.

29. J. L. Rossello, V. Canals, A. Oliver and A. Morro,
Studying the role of synchronized and chaotic spik-
ing neural ensembles in neural information process-
ing, Int. J. Neural Syst. 24(05) (2014) 1430003.

30. J. L. Rosselló, M. L. Alomar, A. Morro, A. Oliver
and V. Canals, High-density liquid-state machine
circuitry for time-series forecasting, Int. J. Neural
Syst. 26(5) (2016) 1550036.

31. F. G. C. Cabarle, H. N. Adorna and M. J. Pérez-
Jiménez, Sequential spiking neural P systems with
structural plasticity based on max/min spike num-
ber, Neural Comput. Appl. 27(5) (2016) 1337–1347.

32. T. Song, L. Pan and G. Păun, Asynchronous spik-
ing neural P systems with local synchronization, Inf.
Sci. 219 (2013) 197–207.

33. J. Wang, H. J. Hoogeboom, L. Pan, G. Păun and
M. J. Pérez-Jiménez, Spiking neural P systems with
weights, Neural Comput. 22(10) (2010) 2615–2646.

34. Y. Yu, T. Wu, J. Xu, Y. Wang and J. He, A note on
spiking neural P systems with homogenous neurons
and synapses, Fundam. Inform. 150(2) (2017) 231–
240.

35. M. Cavaliere and I. Mura, Experiments on the reli-
ability of stochastic spiking neural P systems, Nat.
Comput. 7(4) (2008) 453–470.

1750042-12

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 4, 2017 6:7 1750042

Spiking Neural P Systems with Communication on Request

36. M. Cavaliere, O. H. Ibarra, G. Păun, O. Egecioglu,
M. Ionescu and S. Woodworth, Asynchronous spik-
ing neural P systems, Theor. Comput. Sci. 410(24–
25) (2009) 2352–2364.

37. O. H. Ibarra, A. Păun, G. Păun, A. Rodŕıguez-
Patón, P. Sośık and S. Woodworth, Normal forms
for spiking neural P systems, Theor. Comput. Sci.
372(2–3) (2007) 196–217.

38. M. Garćıa Arnau, D. Peréz, A. Rodŕıguez Patón and
P. Sośık, Spiking neural P systems: Stronger normal
forms, Int. J. Unconv. Comput. 5 (2009) 411–425.

39. A. Păun and G. Păun, Small universal spiking neural
P systems, BioSystems 90 (2007) 48–60.

40. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng and
X. Zhang, Deterministic solutions to QSAT and
Q3SAT by spiking neural P systems with pre-
computed resources, Theor. Comput. Sci. 411 (2010)
2345–2358.

41. L. Pan, G. Păun and M. Pérez-Jiménez, Spiking neu-
ral P systems with neuron division and budding, Sci.
China Inf. Sci. 58 (2011) 1596–1607.

42. T. Wang, G. Zhang and M. J. Pérez-Jiménez, Fuzzy
membrane computing: Theory and applications,
Int. J. Comput. Commun. Control 10 (2015) 904–
935.

43. H. Peng, J. Wang, M. J. Pérez-Jiménez, H. Wang,
J. Shao and T. Wang, Fuzzy reasoning spiking neural
P system for fault diagnosis, Inf. Sci. 235 (2013)
106–116.

44. J. Wang, P. Shi, H. Peng, M. J. Pérez-Jiménez and
T. Wang, Weighted fuzzy spiking neural P systems,
IEEE Trans. Fuzzy Syst. 21(2) (2013) 209–220.

45. T. Wang, G. Zhang, J. Zhao, Z. He, J. Zhao, J. Wang
and M. J. Pérez-Jiménez, Fault diagnosis of elec-
tric power systems based on fuzzy reasoning spiking
neural P systems, IEEE Trans. Power Syst. 30(3)
(2015) 1182–1194.

46. G. Păun, G. Rozenberg and A. Salomaa (eds.), The
Oxford Handbook of Membrane Computing (Oxford
University Press, Oxford, 2010).

47. E. Csuhaj-Varjú, J. Dassow, J. Kelemen and
G. Păun, Grammar Systems. A Grammatical
Approach to Distribution and Cooperation (Gordon
and Breach, London, 1994).

48. G. Mühl, L. Fiege and P. Pietzuch, Distributed
Event-Based Systems (Springer-Verlag, New York,
2006).

49. Available at: https://en.wikipedia.org/wiki/
Request.

50. A. Păun and G. Păun, The power of communica-
tion: P systems with symport/antiport, New Gener.
Comput. 20 (2002) 295–306.

51. G. Rozenberg and A. Salomaa, Handbook of Formal
Languages (Springer-Verlag, Berlin, 1997).

52. T. Song and L. Pan, Spiking neural P systems with
request rules, Neurocomputing 193 (2016) 193–200.

53. T. Wu, Z. Zhang, G. Păun and L. Pan, Cell-like
spiking neural P systems, Theor. Comput. Sci. 623
(2016) 180–189.

54. M. Minsky, Computation — Finite and Infinite
Machines (Prentice Hall, Englewood Cliffs, NJ,
1967).

55. I. Korec, Small universal register machines, Theor.
Comput. Sci. 168 (1996) 267–301.

56. C. Zandron, A model for molecular computing:
Membrane systems, PhD thesis, Univ. degli Studi
di Milano (2001).

57. A. Leporati, C. Zandron, C. Ferretti and G. Mauri,
On the computational power of spiking neural P sys-
tems, Int. J. Unconv. Comput. 5(5) (2009) 459–473.

58. M. Ionescu, A. Păun, G. Păun and M. Pérez-
Jiménez, Computing with spiking neural P sys-
tems: Traces and small universal systems, in DNA
Computing. 12th International Meeting on DNA
Computing, Lecture Notes in Computer Science,
Vol. 4287 (Seoul, Korea, 2006), pp. 1–16.

59. T. Wu, A. Păun, Z. Zhang and L. Pan, Spiking neu-
ral P systems with polarizations, IEEE Trans. Neu-
ral Netw. Learn. Syst. (2017), doi:10.1109/TNNLS.
2017.2726119.

1750042-13

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 O

R
L

E
A

N
S 

on
 1

0/
06

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.


	Introduction
	Definition of SN P Systems with Communication by Request
	Differences between standard SN P systems and the proposed SNQ P systems

	Preliminary Theoretical Findings
	The Universality of SNQ P Systems
	A Small Universal SNQ P System
	Further Research Questions
	Conclusion

