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Abstract. We study a class of discrete-time advertising game with ran-
dom responses to the advertising efforts made by a duopoly. The firms
are assumed to observe the values of the random responses but they do
not know their distributions. With the recorded values, firms estimate
distributions and play estimated equilibrium strategies. Under suitable
assumptions, we prove that the estimated equilibrium strategies con-
verge to equilibria of the advertising game with the true distributions.
Our results are numerically illustrated for specific cases.
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1 Introduction

We consider a dynamic noncooperative game of advertising where the market
shares of the firms follow a stochastic difference equation. The stochastic behav-
ior in the market shares comes from the uncertain responses to advertising efforts
modeled by a sequence of random variables. Further, we assume that firms can
observe the values of such random variables a posteriori but they do not know the
distributions. In this sense, by using appropriate statistical estimation methods
to approximate the distributions of the random variables, firms can play Nash
equilibrium strategies of the estimated games. When these equilibrium strate-
gies converge, the question we aim to answer is whether the limit strategies are
equilibria for the game with the true distributions of the responses to advertising
efforts.
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The literature about dynamic models of advertising and marketing games is
very large; we can mention the papers [4,6,7,21] and the books [2,8]. Most of
these references mainly focus on deterministic differential game models; instead
there are few works that deal with stochastic differential game models and deter-
ministic discrete-time models, we can cite, for instance, [1,18]. On the other
hand, discrete-time stochastic zero-sum games with incomplete information have
been studied under several context, see, e.g., [5,10,12–16,22,23], which include
the case when the transition law among states is unknown. However, to the best
of our knowledge, the only work dealing on estimation problem for nonzero-
sum Markov games is [19]. Specifically, in [19] is used the empirical distribution
of the disturbance process to obtain an almost surely convergent procedure to
approximate Nash equilibria under the discounted criterion.

In this chapter we analyze the stochastic version of the advertising Lanch-
ester model introduced in [1]. Additionally, we assume that the random variables
modeling the uncertainty in responses to advertising efforts have unknown distri-
butions. Under this scenario, using the empirical distribution as an estimator and
considering finite action sets for players, we apply similar ideas to [19] to simulate
values of the advertising responses, estimate equilibrium strategies, and prove
that these equilibria converge in some sense to an equilibrium of the advertising
game with full information. In order to introduce the model and compare our
results, previously we analyze the advertising game with full information, where
we numerically compute the Nash equilibria in mixed stationary strategies.

The remaining of the paper is organized as follows. The stochastic advertising
game we deal with is described in Sect. 2 as well as the numerical algorithm we
use to compute the Nash equilibria. Section 3 is devoted to the stochastic game
with unknown distributions of the advertising responses. Finally, in Sect. 4, we
give some conclusions.

2 A Discrete-Time Stochastic Game of Advertising

Essentially, Lanchester model is an ordinary-differential-equation model of war-
fare [11]. Over time, this model has been adapted to study different conflict
situations, including advertising models. In this section, we introduce a discrete-
time stochastic version of the Lanchester model in the context of the models
that appear in [1] and [8, pp. 29–31]. We also give a numerical algorithm to find
Nash equilibria in stationary strategies of the proposed model.

2.1 The Advertising Game Model

Consider a duopoly competing for the market share by making advertising
efforts. Let x be the market share of Firm 1 and let a and b be the adver-
tising efforts of Firm 1 and Firm 2, respectively, at some decision epoch. The
market share of Firm 2 is 1−x. Then the market share of Firm 1 at the beginning
of the next decision epoch is determined by the mapping

(x, a, b) �→ x + (1 − x)d(ξ, a) − xe(ζ, b) (1)
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where d(ξ, a) and e(ζ, b) are the advertising responses to a and b, respectively,
and (ξ, ζ) is a pair of random variables. The functions d(i, ·) and e(j, ·)—for fixed
values of i and j—are production functions, that is, they are increasing, have
diminishing marginal effects, and take nonnegative values. Typical advertising
responses are

d(ξ, a) = ξ
√

a, e(ζ, b) = ζ
√

b. (2)

The evolution of the state system is given by the mapping (1) and has the
following interpretation: the advertising of Firm 1 aims to attract customers
from Firm 2, thus the increment of the market share is proportional to (1 − x),
and analogously for the advertising made by Firm 2.

For the purposes of this paper, we assume that the triples (x, a, b) belong to
a finite set X×A×B. Thus the image of the mapping (1)—with the advertising
responses (2), for instance—is not necessarily a subset of X. In such a case, we
map x+(1−x)d(ξ, a)−xe(ζ, b) to the nearest state in X. Although, for simplicity,
we write

xk+1 = xk + (1 − xk)d(ξk, ak) − xke(ζk, bk), k = 0, 1, ..., (3)

where x0 ∈ X is given. In addition, the so-called disturbance processes {ξk} and
{ζk} consist of independent and identically distributed (i.i.d.) random variables,
which take values in the finite sets S1 and S2 respectively. The process {(ξk, ζk)}
is defined on some underlying probability space (Ω,F , P ). The common proba-
bility functions of the random variables {ξk} and {ζk} are, respectively, θ and
ϑ, that is, {

θ(i) = P [ξk = i] ∀i ∈ S1, k ∈ N0,

ϑ(j) = P [ζk = j] ∀j ∈ S2, k ∈ N0.
(4)

We use the notation K := {(x, a, b) : x ∈ X, a ∈ A, b ∈ B}. Combining
(3) and (4), we obtain the transition law among the states as follows. For each
(x, a, b) ∈ K,

Px,y[a, b] := P [xk+1 = y | xk = x, ak = a, bk = b] =
∑

(i,j)∈SF

θ(i)ϑ(j), y ∈ X

(5)
where

SF := {(s, t) ∈ S1 × S2 : x + (1 − x)d(s, a) − xe(t, b) = y} .

Finally, ri : K → R is the one-stage payoff function for the Firm i = 1, 2,{
r1(x, a, b) = p1x − a

r2(x, a, b) = p2(1 − x) − b
(6)
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where p1 and p2 are the gross profit rate of Firms 1 and 2 respectively. In what
follows, the probability space (Ω,F , P ) is fixed and a.s. means almost surely
with respect to P.

Putting together all the elements described above, we define the advertising
game model as

Gθ,ϑ := (X,A,B,S1,S2, θ, ϑ, r1, r2) (7)

The model is a representation of a dynamic game which is played as follows.
At each stage k ∈ N0, when the game is in state xk ∈ X, the firms independently
choose actions ak = a ∈ A and bk = b ∈ B. Consequently, the following happens:
first, Firm i receives payoffs of ri(x, a, b), i = 1, 2; and second, the system moves
to the next state xk+1 ∈ X according to probability transition (5). Once the
system reaches the next state, the process repeats. In addition, the payoffs are
accumulated according to a discounted criterion, as we will define below.

Let PA and PB consist of the set of all probability functions on A and
B respectively. That is, PA is the set of functions σ : A → [0, 1] such that∑

a∈A
σ(a) = 1. Similarly for PB. By convention, for each σ ∈ PA, τ ∈ PB, we

denote
v(x, σ, τ) :=

∑
a∈A

∑
b∈B

v(x, a, b)σ(a)τ(b), x ∈ X (8)

for any function v : K → R. Likewise, for σ ∈ PA, τ ∈ PB

[x+(1−x)d(s, σ)−xe(t, τ)] :=
∑
a∈A

∑
b∈B

[x+(1−x)d(s, a)−xe(t, b)]σ(a)τ(b), (9)

where x ∈ X, s ∈ S1, and t ∈ S2.
A strategy played by Firm 1 is a sequence π = {πk} where πk is a probability

function over A conditioned on the history hk := (x0, a0, b0, ..., ak1, bk1, xk) That
is, for each history hk, πk(·|hk) ∈ PA. The set of all strategies for Firm 1 is
denoted by Π. A strategy π ∈ Π is said to be a Markov strategy if there is
a probability function fk over A such that πk(·|hk) = fk(·|xk) for all k ∈ N0.
Further, a Markov strategy π = {fk} is stationary if fk = f for all k ∈ N0; in
this case, we use this notation

f∞ := {f, f, f, ...}.

We denote by ΠM and F the sets of Markov strategies and stationary strate-
gies, respectively, for Firm 1. The sets Γ , ΓM , and G of all strategies, Markov
strategies, and stationary strategies for Firm 2 are defined similarly.
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Let π = {πk} ∈ Π and γ = {γk} ∈ Γ be a pair of strategies. For each
initial state x ∈ X, we define the discounted criterion, also known as expected
discounted payoff, for Firm i = 1, 2, as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jθ,ϑ
1 = E(π,γ)

x

[ ∞∑
k=0

βk{p1xk − ak}
]

Jθ,ϑ
2 = E(π,γ)

x

[ ∞∑
k=0

βk{p2(1 − xk) − bk}
] (10)

where β ∈ (0, 1) is the discount factor and E
(π,γ)
x denotes the expectation oper-

ator corresponding to the unique probability measure P
(π,γ)
x induced by x ∈ X

and (π, γ) ∈ Π × Γ , (see [3]).

2.2 Stationary Nash Equilibrium in Discounted Games

Definition 1. A pair of strategies (π∗, γ∗) ∈ Π × Γ is a Nash equilibrium if,
for all x ∈ X,

Jθ,ϑ
1 (x, π∗, γ∗) ≥ Jθ,ϑ

1 (x, π, γ∗), ∀π ∈ Π

and
Jθ,ϑ
2 (x, π∗, γ∗) ≥ Jθ,ϑ

2 (x, π∗, γ), ∀γ ∈ Γ.

The equilibrium payoffs of the game, with initial state x, are Jθ,ϑ
1 (x, π∗, γ∗) and

Jθ,ϑ
2 (x, π∗, γ∗).

The following lemma about the existence of Nash equilibria in Markov strate-
gies for this model is well known. For instance, see [17, Theorem 5.1].

Lemma 1. The game model, with discounted payoffs Jθ,ϑ
1 and Jθ,ϑ

2 , has a Nash
equilibrium in stationary strategies. That is, there exists (f∞, g∞) ∈ F×G such
that for each x ∈ X,

Jθ,ϑ
1 (x, f∞, g∞) ≥ Jθ,ϑ

1 (x, π, g∞), ∀π ∈ Π

and
Jθ,ϑ
2 (x, f∞, g∞) ≥ Jθ,ϑ

2 (x, f∞, γ), ∀γ ∈ Γ.

Observe that once f∞ ∈ F and g∞ ∈ G are fixed,

J1(x, π) := Jθ,ϑ
1 (x, π, g∞), π ∈ Π, x ∈ X
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and
J2(x, γ) := Jθ,ϑ

2 (x, f∞, γ), γ ∈ Γ, x ∈ X

constitute performance indices, where each of them corresponds to an optimal
control problem. Hence, the value functions

V (x) := max
π∈Π

J1(x, π), x ∈ X (11)

and
W (x) := max

γ∈Γ
J2(x, γ), x ∈ X, (12)

satisfy, respectively, the Dynamic Programming equations

V (x) = max
μ∈PA

⎡
⎣[p1x − μ] + β

∑
(i,j)∈S1×S2

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)

⎤
⎦

(13)

= [p1x−f ]+β
∑

(i,j)∈S1×S2

V [x+(1−x)d(i, f)−xe(j, g)]θ(i)ϑ(j), ∀x ∈ X, (14)

and

W (x)

= max
λ∈PB

⎡
⎣[p2(1 − x) − λ] + β

∑
(i,j)∈S1×S2

W [x + (1 − x)d(i, f) − xe(j, λ)]θ(i)ϑ(j)

⎤
⎦ (15)

= [p2(1 − x) − g] + β
∑

(i,j)∈S1×S2

W [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j), ∀x ∈ X. (16)

Remark 1. By considering standard dynamic programming arguments, if there
are functions V and W and a pair (f, g) satisfying (13)–(16), then (f∞, g∞) ∈
F × G is a stationary Nash equilibrium for the game with discounted pay-
offs (10). Further, the equilibrium payoffs are Jθ,ϑ

1 (x, f∞, g∞) = V (x) and
Jθ,ϑ
2 (x, f∞, g∞) = W (x).

2.3 Numerical Examples

We compute the equilibria in Markov strategies for an advertising game with
the data of Table 1.

The equilibrium strategies are found using and adaptation of the well-
known value iteration algorithm from discounted dynamic programming. In each
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Fig. 1. Equilibrium strategies f and g in the full-information game with data of Table 1.
The height of each action is the probability it is played with.

iteration we get the equilibrium by minimizing McKelvey’s function, see
[9, p. 133]. For the parameters given above, the iteration algorithm converges.
The algorithm is implemented in Python and the code is available at

https://github.com/adra1973/

The limit strategies (f, g), that form the stationary equilibrium (f∞, g∞), are
plotted in Fig. 1 and 2. Since we are using exactly the same parameters for both
firms, in Fig. 1 we can observe for each state an effect of “mirror” in the strategies
for both firms.

https://github.com/adra1973/
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Fig. 2. Equilibrium strategies f and g in the full-information game with data from
Table 1 but the set of actions for Firm 2 is replaced by (17).

In Fig. 2 we plot the equilibrium strategies for the game with the same data
of Table 1 but the set of actions for Firm 2 now is

B = {0.03, 0.04, 0.05, 0.06} (17)

and thus the behavior of the strategies breaks the “mirror” observed before.
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Table 1. Data for the advertising game.

Variable Description

X Space of 21 states of market shares,
{0.0, 0.05, 0.1, 0.15, 0.2, ..., 0.8, 0.85, 0.9, 0.95, 1.0},

A Set of 4 actions for advertising effort of Firm 1,
A = {0.01, 0.02, 0.03, 0.04},

B Set of 4 actions for advertising effort of Firm 2,
B = {0.01, 0.02, 0.03, 0.04},

S1 Set of 10 values of Firm 1, S1 = {0.95, ..., 1.05}
S2 Set of 10 values of Firm 2, S2 = {0.95, ..., 1.05}
ξ Random variable of Firm 1 that take values in S1 with

probability θ(i), i ∈ S1, ξ ∼ Binomial(10, 0.4)

ζ Random variable of Firm 2 that take values in S2 with
probability ϑ(j), j ∈ S2, ζ ∼ Binomial(10, 0.4).

d Advertising response function of Firm 1, d(ξ, a) = ξ
√

a, a ∈ A

e Advertising response function of Firm 2, e(ζ, b) = ζ
√

b, b ∈ B

p1 Gross profit for each product sold by Firm 1, p1 = 1.2

p2 Gross profit for each product sold by Firm 2, p2 = 1.2

β The discount factor β = 0.95

3 The Advertising Game with Unknown Distribution

In this section, we study the advertising game when the distributions of the
random variables (ξ, ζ) are unknown for the players. We assume that, after the
n−th stage, players have recorded the values ξn := (ξ0, ξ1, ..., ξn) and ζn :=
(ζ0, ζ1, ..., ζn) and use the empirical distributions

θn(i) :=
1
n

n−1∑
t=0

1i(ξt), i ∈ S1, n ∈ N

and

ϑn(j) :=
1
n

n−1∑
t=0

1j(ζt), j ∈ S2, n ∈ N

to estimate equilibrium strategies. More precisely, for each n ∈ N, consider the
empirical advertising game

Gθn,ϑn
:= (X,A,B,S1,S2, θn, ϑn, r1, r2) (18)

with dynamics (3) and payoffs (10), where θ and ϑ are replaced by θn and ϑn,
respectively. Given a stationary Nash equilibrium (f∞

n , g∞
n ) for the empirical

advertising game (18), by well-known dynamic programming results, there exist
functions Vn and Wn that satisfy the optimality equations
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Vn(x) = max
μ∈PA

⎡
⎣[p1x − μ] + β

∑
i,j

Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

⎤
⎦ (19)

= [p1x − fn] + β
∑
i,j

Vn[x + (1 − x)d(i, fn) − xe(j, gn)]θn(i)ϑn(j), x ∈ X,

and

Wn(x)

= max
λ∈PB

⎡
⎣[p2(1 − x) − λ] + β

∑
i,j

Wn[x + (1 − x)d(i, fn) − xe(j, λ)]θn(i)ϑn(j)

⎤
⎦ (20)

= [p2(1 − x) − gn] + β
∑
i,j

W [x + (1 − x)d(i, fn) − xe(j, gn)]θn(i)ϑn(j), x ∈ X.

Remark 2. Notice that Vn and Wn are defined on X×Ω, thus Vn(x) and Wn(x)
are random variables for each x ∈ X. The strategies fn and gn are also random
vectors.

The following proposition is based on [19]; for completeness, we outline a
proof in the scenario of the present work.

Proposition 1. For each n ∈ N, let fn, gn, Vn, and Wn satisfy (19) and (20).
If

lim
n→∞(fn, gn) = (f, g) P − a.s. (21)

and
lim

n→∞(Vn,Wn) = (V,W ) P − a.s., (22)

then (f∞, g∞) is P − a.s. a Nash equilibrium for the advertising game with
dynamics (3) and payoffs (10).

Proof. It is well known that from the strong law of large numbers,

(θn, ϑn) → (θ, ϑ) P − a.s. (23)

Now, fix ω in Ω such that the convergence in (21), (22), and (23) holds. Then,
for each μ ∈ PA, x ∈ X, and n ∈ N,∑

i,j

∣∣∣Vn[x + (1 − x)d(i, μ) − xe(j, gn)]

−V [x + (1 − x)d(i, μ) − xe(j, gn)]
∣∣∣θn(i)ϑn(j)

≤
∑
i,j

max
x∈X

∣∣∣Vn(x) − V (x)
∣∣∣θn(i)ϑn(j)

≤ max
x∈X

∣∣∣Vn(x) − V (x)
∣∣∣. (24)
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and ∑
i,j

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, gn)]

−V [x + (1 − x)d(i, μ) − xe(j, g)]
∣∣∣θn(i)ϑn(j)

≤
∑
i,j

∑
b∈B

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, b)]
∣∣∣∣∣∣gn(b|x) − g(b|x)

∣∣∣θn(i)ϑn(j)

≤ max
x∈X

|V (x)|
∑
b∈B

∣∣∣gn(b|x) − g(b|x)
∣∣∣ (25)

Thus ∑
i,j

∣∣∣Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)
∣∣∣

≤
∑
j∈S

∣∣∣Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)
∣∣∣

+
∑
j∈S

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, g)]θn(i)ϑn(j)
∣∣∣

+
∑
j∈S

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, g)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)
∣∣∣.

Then, (24), (25), and (23) imply

lim
n→∞

∑
i,j

Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

=
∑
i,j

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j) P − a.s. (26)

for each μ ∈ PA and x ∈ X. We can also show that

lim
n→∞

∑
i,j

Vn[x + (1 − x)d(i, fn) − xe(j, gn)]θn(i)ϑn(j)

=
∑
i,j

V [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j) P − a.s. (27)
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On the other hand, from (24) and (26), we have

Vn(x) ≥ [p1x − μ] + β
∑
i,j

Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θ(i)ϑ(j) ∀μ ∈ PA

and hence, by letting n → ∞,

V (x) ≥ [p1x − μ] + β
∑
i,j

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j) ∀μ ∈ PA.

Furthermore, the second equality in (24) and (27) yield

V (x) = max
μ∈PA

⎡
⎣[p1x − μ] + β

∑
i,j

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)

⎤
⎦

= [p1x − f ] + β
∑
i,j

V [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j), P − a.s.

The following equalities are analogously proved

W (x) = max
λ∈PB

[
[p2(1 − x) − λ] + β

∑
i,j

W [x + (1 − x)d(i, f) − xe(j, λ)]θ(i)ϑ(j)

]

= [p2(1 − x) − g] + β
∑
i,j

W [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j), P − a.s.

These optimality equations prove that (f∞, g∞) is a stationary Nash equilibrium
P − a.s. for the advertising game. 
�

3.1 Numerical Examples for the Empirical Game Model

In order to generate simulations of the empirical games Gθm,ϑm
, we use the

algorithm in [20, p. 56] to produce values from a Binomial random variable. All
parameters are exactly the same as in Table 1 but the pair (θ, ϑ) is replaced
by (θm, ϑm). As in Subsection 2.3, we compute the stationary Nash equilibrium
(f∞

m , g∞
m ) for each empirical game Gθm,ϑm

, with m ∈ N0.
For a realization ω ∈ Ω and different values of m, the equilibrium strategies

(fm, gm) are plotted in Fig. 3 and 4, and equilibrium payoffs (Vm,Wm) are shown
in Fig. 5 and 6. By looking at the proof of Proposition 1, if (21) and (22) hold
for a given value of ω, then the limit strategy pair (f, g) determines a stationary
Nash equilibrium of the full information game. The equilibrium strategy (f, g)
or equilibrium payoffs (V,W ) for the full-information model (7) are also plotted
on the right of each figure.

A numerical validation of the hypotheses in Proposition 1 would consist in
simulating empirical games for infinitely many realizations of ω, computing the
equilibria along with the payoffs, and verifying (21) and (22). From a practical
point of view, however, firms record the values of the random variables—and
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Fig. 3. Estimated equilibrium strategies of Firm 1 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.



Estimation of Equilibria Strategies 161

1e+0 5e+0 1e+1 5e+1 1e+2 5e+2 1e+3 5e+3 1e+4 5e+4 1e+5 5e+5 1e+6 5e+6 1e+7 1e+8 1e+9 Full-Info

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ix

ed
 S

tr
at

eg
ie

s

State 0.25, Firm 2

Action 0.01
Action 0.02
Action 0.03
Action 0.04

1e+0 5e+0 1e+1 5e+1 1e+2 5e+2 1e+3 5e+3 1e+4 5e+4 1e+5 5e+5 1e+6 5e+6 1e+7 1e+8 1e+9 Full-Info

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ix

ed
 S

tr
at

eg
ie

s

State 0.5, Firm 2

Action 0.01
Action 0.02
Action 0.03
Action 0.04

1e+0 5e+0 1e+1 5e+1 1e+2 5e+2 1e+3 5e+3 1e+4 5e+4 1e+5 5e+5 1e+6 5e+6 1e+7 1e+8 1e+9 Full-Info

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ix

ed
 S

tr
at

eg
ie

s

State 0.75, Firm 2

Action 0.01
Action 0.02
Action 0.03
Action 0.04

1e+0 5e+0 1e+1 5e+1 1e+2 5e+2 1e+3 5e+3 1e+4 5e+4 1e+5 5e+5 1e+6 5e+6 1e+7 1e+8 1e+9 Full-Info

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ix

ed
 S

tr
at

eg
ie

s

State 0.85, Firm 2

Action 0.01
Action 0.02
Action 0.03
Action 0.04

Fig. 4. Estimated equilibrium strategies of Firm 2 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 5. Estimated equilibrium payoffs of Firm 1 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 6. Estimated equilibrium payoffs of Firm 2 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 7. Estimated equilibrium strategies of Firm 1 for six realizations of ω and different
values of m at states 0.3, 0.4, 0.5, and 0.6.
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Fig. 8. Estimated equilibrium payoffs of Firm 1 for six realizations of ω and different
values of m at states 0.1, 0.2, 0.4, and 0.5.
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play the corresponding equilibrium strategies—of a single realization ω. If the
strategies converge, then Proposition 1 asserts that, with probability 1, the esti-
mated equilibrium strategies are close to an equilibrium of the full-information
game.

For illustrative purposes, in Fig. 7, we plot the equilibrium strategies cor-
responding to six different realizations of ω. The game model components are
given in Table 1, except for β = 0.75 and X = {0.0, 0.1, 0.2, 0.3, . . . , 1.0}. The
associated payoffs are shown in Fig. 8. We plot data for some states of Firm 1
only. An interesting feature we can observe in this numerical experiment, pos-
sibly due to the uniqueness of equilibrium in the full-information game, is that
the limits of the estimated equilibrium strategies and the estimated payoffs are
independent of ω.

4 Conclusions

We have shown how to estimate equilibrium strategies in a stochastic advertis-
ing game with unknown distributions of the response to advertising efforts. From
the numerical results, it is worth remarking some features of our model. First,
since we deal with a finite game, the equilibrium strategies are mixed instead
of pure strategies—obtained in most of the deterministic differential games of
advertising—because the corresponding action spaces in those models are con-
vex. Second, the qualitative behavior of the equilibrium strategies we found cor-
responds to that in the existing literature, namely, for higher market shares the
advertising efforts are also higher. Third, we assume that at the m−th decision
epoch, firms have recorded m values of the advertising responses; hence firms
have good estimators (θn, ϑn) only when m is large enough. However, firms can
improve the estimators by using information of previous advertising campaigns
as well as information acquired between decision epochs. With such improved
estimators, the conclusion of Proposition 1 does not change. Finally, the problem
of multiple equilibria and/or the non convergence of the estimated equilibrium
strategies can be overcame by passing to a subsequence as is shown in [19].
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