Ultrametric space in Teichmüller theory

Juan Manuel Burgos

CINVESTAV, Mexico City, Mexico

November of 2017
This in collaboration with Prof. Alberto Verjovsky.
String Theory doesn’t have an exact theory: from the beginning it is a perturbative theory.
String Theory doesn’t have an exact theory: from the beginning it is a perturbative theory.
The g-loop Polyakov action of the closed bosonic string is an integral over the moduli space \mathcal{M}_g of genus g compact Riemann surfaces:

$$Z_g := \lambda^g \int_{\mathcal{M}_g} \prod_{i=1}^{3g-3} dy_i d\bar{y}_i |F_g(y)|^2 \det(1 - z(y)\bar{z}(y))^{-13}$$
String Theory doesn’t have an exact theory: from the beginning it is a perturbative theory.

The g-loop Polyakov action of the closed bosonic string is an integral over the moduli space \mathcal{M}_g of genus g compact Riemann surfaces:

$$Z_g := \lambda^g \int_{\mathcal{M}_g} \prod_{i=1}^{3g-3} dy_i d\bar{y}_i |F_g(y)|^2 \det(1 - z(\bar{y})z(y))^{-13}$$

where the moduli space \mathcal{M}_g is taken as a fundamental domain in the Teichmüller space T_g respect to the mapping class group.
Introduction

String Theory doesn’t have an exact theory: from the beginning it is a perturbative theory.
The g-loop Polyakov action of the closed bosonic string is an integral over the moduli space \mathcal{M}_g of genus g compact Riemann surfaces:

$$Z_g := \lambda^g \int_{\mathcal{M}_g} \prod_{i=1}^{3g-3} dy_i d\bar{y}_i |F_g(y)|^2 \det(1 - z(y)\bar{z}(y))^{-13}$$

where the moduli space \mathcal{M}_g is taken as a fundamental domain in the Teichmüller space T_g respect to the mapping class group.
An action for the theory is obtained by summing all the contributions:

$$Z := \sum_{g \in \mathbb{N}_0} Z_g$$
However, the above perturbative series diverges (a result by D. Gross).
However, the above perturbative series diverges (a result by D.Gross). Motivated by the fact that the universal Teichmüller space $T(1)$ contains all of the previous Teichmüller spaces, Hong and Rajeev proposed the following exact closed bosonic string theory:

$$Z = \int_{\mathcal{M}} \prod_{i=1}^{\infty} dc_i d\bar{c}_i |\tilde{F}(c)|^2 \det(1 - Z(c)^\dagger Z(c))^{-\frac{13}{2}}$$

where the space \mathcal{M} is a fundamental domain of the universal Teichmüller space $T(1)$. respect to the mapping class group.
However, the above perturvarive series diverges (a result by D.Gross). Motivated by the fact that the universal Teichmüller space $T(1)$ contains all of the previous Teichmüller spaces, Hong and Rajeev proposed the following exact closed bosonic string theory:

$$Z = \int_{\mathcal{M}} \prod_{i=1}^{\infty} dc_i d\bar{c}_i |\tilde{F}(c)|^2 \det(1 - Z(c)^\dagger Z(c))^{-13}$$

where the space \mathcal{M} is a fundamental domain of the universal Teichmüller space $T(1)$. respect to the mapping class group. Unfortunately, the last expression cannot be formalized.
However, the above perturbative series diverges (a result by D. Gross). Motivated by the fact that the universal Teichmüller space $T(1)$ contains all of the previous Teichmüller spaces, Hong and Rajeev proposed the following exact closed bosonic string theory:

$$Z = \int_{\mathcal{M}} \prod_{i=1}^{\infty} dc_i d\bar{c}_i |\tilde{F}(c)|^2 \det(1 - Z(c)^\dagger Z(c))^{-13}$$

where the space \mathcal{M} is a fundamental domain of the universal Teichmüller space $T(1)$. respect to the mapping class group. Unfortunately, the last expression cannot be formalized. One of the problems is that $T(1)$ is non separable; i.e. It is too big.
However, the above perturbative series diverges (a result by D.Gross). Motivated by the fact that the universal Teichmüller space $T(1)$ contains all of the previous Teichmüller spaces, Hong and Rajeev proposed the following exact closed bosonic string theory:

$$Z = \int_{\mathcal{M}} \prod_{i=1}^{\infty} dc_i d\bar{c}_i |\tilde{F}(c)|^2 \det(1 - Z(c)^\dagger Z(c))^{-13}$$

where the space \mathcal{M} is a fundamental domain of the universal Teichmüller space $T(1)$ respect to the mapping class group. Unfortunately, the last expression cannot be formalized. One of the problems is that $T(1)$ is non separable; i.e. It is too big. Another direction is to work on the closure of the inductive limit of finite Teichmüller space:

$$T_\infty := \bigcup_{g \in \mathbb{N}_0} T_g$$

This is a separable space.
We show that the space T_∞ can be seen as a space of finite dimensional valued fields over an ultrametric space.
We show that the space T_{∞} can be seen as a space of finite dimensional valued fields over an ultrametric space.

In particular, heuristically, we can write the resulting string theory on T_{∞} as a Quantum Field Theory of these fields:

$$Z = \int D\varphi D\bar{\varphi} \, e^{S(\varphi, \bar{\varphi})}$$
Consider a Riemann surface Σ ...
Consider a Riemann surface Σ . . .
How we deform its complex structure?
Consider a Riemann surface Σ …

How we deform its complex structure?

Consider the Poincaré-Koebe uniformization:

$$\Delta \to \Sigma$$

and the representation of $G := \pi_1(\Sigma)$ as a Fuchsian group:

$$\alpha : G \to Isom^+(\Delta)$$
Introduction

Deformation

Universal Hyperbolic Lamination

Renormalized Weil-Petersson metric

Main results
Definition

\[\mu \in L_\infty(\Delta) \otimes d\bar{z} \otimes \partial_z \] will be called a differential.
Definition

- \(\mu \in L_\infty(\Delta) \otimes d\bar{z} \otimes \partial z \) will be called a differential.
- \(\mu \) is a \(G \)-periodic differential if it is a differential and:

\[
\alpha(g)^* \mu = \mu \quad \forall \ g \in G
\]

The space of \(G \)-periodic differentials will be denoted by \(L_\infty(G) \).
Definition

- $\mu \in L_\infty(\Delta) \otimes d\bar{z} \otimes \partial z$ will be called a differential.
- μ is a G-periodic differential if it is a differential and:
 \[\alpha(g)^* \mu = \mu \quad \forall \ g \in G \]

 The space of G-periodic differentials will be denoted by $L_\infty(G)$.
- μ is a Beltrami differential if it is a differential and $||\mu||_\infty < 1$.

 These differentials are the deformation parameters.
Definition

- $\mu \in L_\infty(\Delta) \otimes d\bar{z} \otimes \partial z$ will be called a differential.
- μ is a G-periodic differential if it is a differential and:

$$\alpha(g)^* \mu = \mu \quad \forall \ g \in G$$

The space of G-periodic differentials will be denoted by $L_\infty(G)$.

- μ is a Beltrami differential if it is a differential and $\|\mu\|_\infty < 1$.

These differentials are the deformation parameters.

Remark

The pullback of a differential in Σ by the uniformization map is G-periodic differential in the Poincaré disk.
How a Beltrami differential (deformation parameter) actually realizes a deformation?
How a Beltrami differential (deformation parameter) actually realizes a deformation?
A Beltrami differential can be seen as an ∞-measurable field of ellipses:

$$K = \frac{1 + |\mu|}{1 - |\mu|}$$

$$\arg(\mu)/2$$
Consider the Ahlfors-Bers equation:

\[\partial \bar{z} f = \mu \partial_z f \]
Consider the Ahlfors-Bers equation:

\[\partial_{\bar{z}} f = \mu \partial_z f \]

Is there a solution to this equation on the disk \(\Delta \)?
Consider the Ahlfors-Bers equation:

$$\partial_{\bar{z}} f = \mu \partial_{z} f$$

Is there a solution to this equation on the disk Δ? ... Equivalently, Is there a map f on the disk straightening all the infinitesimal ellipses into infinitesimal circles?
Theorem

There are quasiconformal homeomorphisms solutions to the Ahlfors-Bers equation. Moreover, these solutions uniquely extends to a homeomorphism on the boundary and there is a unique solution f^μ fixing 1, i and -1.

Remark

f^μ is G-equivariant if and only if μ is G-invariant.

If $\mu = 0$, then $\partial \bar{z} f^\mu = 0$ and by the Weil Lemma, f^μ is holomorphic.

There are at most $84(g-1)G$-equivariant biholomorphisms of the disk; i.e. $|\text{Aut}(\Sigma_g)| \leq 84(g-1)$.
Theorem

There are quasiconformal homeomorphisms solutions to the Ahlfors-Bers equation. Moreover, these solutions uniquely extend to a homeomorphism on the boundary and there is a unique solution f^μ fixing $1, i$ and -1.

Remark

- f^μ is G-equivariant if and only if μ is G-invariant.
Theorem

There are quasiconformal homeomorphisms solutions to the Ahlfors-Bers equation. Moreover, these solutions uniquely extends to a homeomorphism on the boundary and there is a unique solution f^μ fixing 1, i and -1.

Remark

- f^μ is G-equivariant if and only if μ is G-invariant.
- If $\mu = 0$, then $\partial_z f^\mu = 0$ and by the Weil Lemma, f^μ is holomorphic.
Theorem

There are quasiconformal homeomorphisms solutions to the Ahlfors-Bers equation. Moreover, these solutions uniquely extends to a homeomorphism on the boundary and there is a unique solution f^μ fixing 1, i and -1.

Remark

- f^μ is G-equivariant if and only if μ is G-invariant.
- If $\mu = 0$, then $\partial_z f^\mu = 0$ and by the Weil Lemma, f^μ is holomorphic.
- There are at most $84(g - 1)$ G-equivariant biholomorphisms of the disk; i.e. $|\text{Aut}(\Sigma_g)| \leq 84(g - 1)$.
In particular, abusing of notation, for every $\mu \in L_\infty(\Sigma)_1$ we have a quasiconformal deformation $f^\mu : \Sigma \to \Sigma$.
In particular, abusing of notation, for every $\mu \in L_\infty(\Sigma)_1$ we have a quasiconformal deformation $f^\mu: \Sigma \to \Sigma$. Finally, we deform the atlas of Σ as follows:

$$\mathcal{A} = \{(U, \varphi_U)\} \rightsquigarrow \mathcal{A}_\mu = \{(U, f \circ \varphi)\}$$
In particular, abusing of notation, for every $\mu \in L_\infty(\Sigma)_1$ we have a quasiconformal deformation $f^\mu : \Sigma \to \Sigma$. Finally, we deform the atlas of Σ as follows:

$$A = \{(U, \varphi_U)\} \leadsto A_\mu = \{(U, f \circ \varphi)\}$$

We define Σ_μ as the surface Σ with the deformed atlas:

$$\Sigma_\mu := (\Sigma, A_\mu)$$
In particular, abusing of notation, for every $\mu \in L_\infty(\Sigma)_1$ we have a quasiconformal deformation $f^\mu : \Sigma \to \Sigma$. Finally, we deform the atlas of Σ as follows:

$$\mathcal{A} = \{(U, \varphi_U)\} \sim \mathcal{A}_\mu = \{(U, f \circ \varphi)\}$$

We define Σ_μ as the surface Σ with the deformed atlas:

$$\Sigma_\mu := (\Sigma, \mathcal{A}_\mu)$$

Now, $f^\mu : \Sigma \to \Sigma_\mu$ is biholomorphic.
In particular, abusing of notation, for every $\mu \in L_\infty(\Sigma)_1$ we have a quasiconformal deformation $f^\mu : \Sigma \to \Sigma$. Finally, we deform the atlas of Σ as follows:

$$A = \{(U, \varphi_U)\} \sim A_\mu = \{(U, f \circ \varphi)\}$$

We define Σ_μ as the surface Σ with the deformed atlas:

$$\Sigma_\mu := (\Sigma, A_\mu)$$

Now, $f^\mu : \Sigma \to \Sigma_\mu$ is biholomorphic. Equivalently, given a complex structure J, we define:

$$J^\mu := df^\mu \circ J \circ d(f^\mu)^{-1}$$
Are we really deforming? Is there any redundancy in the parameters?
Are we really deforming? Is there any redundancy in the parameters?
We say that $\Sigma_\mu \sim \Sigma_{\mu'}$ if there is a homeomorphism h such that the following diagram commutes:

\[
\begin{array}{ccc}
\Sigma & \xrightarrow{f_\mu} & \Sigma \\
\downarrow^{f_{\mu'}} & & \downarrow^{h} \\
\Sigma_\mu & \rightarrow & \Sigma_{\mu'}
\end{array}
\]
Are we really deforming? Is there any redundancy in the parameters? We say that $\Sigma_\mu \xrightarrow{\mathcal{M}} \Sigma_{\mu'}$ if there is a homeomorphism h such that the following diagram commutes:

$$
\begin{array}{ccc}
\Sigma & \xrightarrow{f_{\mu}} & \Sigma \\
\downarrow & & \downarrow \\
\Sigma_\mu & \xrightarrow{h} & \Sigma_{\mu'} \\
\end{array}
$$

This relation gives the coarse moduli space \mathcal{M}_g of compact Riemann surfaces of genus g.
To produce a fine moduli we strength the relation: We say that $\Sigma_\mu \overset{T}{\sim} \Sigma_\mu'$ if there is a homeomorphism h isotopic to the identity such that the following diagram commutes:

$$
\begin{array}{ccc}
\Sigma & \overset{f_\mu}{\longrightarrow} & \Sigma \\
\downarrow & & \downarrow \\
\Sigma_\mu & \overset{h}{\longrightarrow} & \Sigma_\mu'
\end{array}
$$

$$
\begin{array}{ccc}
\Sigma & \overset{f_\mu'}{\longrightarrow} & \Sigma \\
\downarrow & & \downarrow \\
\Sigma_\mu' & \overset{f_\mu}{\longrightarrow} & \Sigma
\end{array}
$$
To produce a *fine moduli* we strengthen the relation: We say that $\Sigma_\mu \overset{T}{\sim} \Sigma_{\mu'}$ if there is a homeomorphism h isotopic to the identity such that the following diagram commutes:

![Diagram](image)

Proposition

$\Sigma_\mu \overset{T}{\sim} \Sigma_{\mu'}$ if and only if $f^\mu|_{\partial \Delta} = f^{\mu'}|_{\partial \Delta}$.
To produce a *fine moduli* we strengthen the relation: We say that \(\Sigma_\mu \overset{T}{\sim} \Sigma_\mu' \) if there is a homeomorphism \(h \) isotopic to the identity such that the following diagram commutes:

\[
\begin{array}{ccc}
\Sigma & \xrightarrow{f_\mu} & \Sigma \\
\downarrow & \quad & \downarrow \\
\Sigma_\mu & \xrightarrow{h} & \Sigma_\mu'
\end{array}
\]

Proposition

\(\Sigma_\mu \overset{T}{\sim} \Sigma_\mu' \) if and only if \(f_\mu|_{\partial \Delta} = f_\mu'|_{\partial \Delta} \).
The above condition defines an equivalence relation ∼ in the space of Beltrami differentials \(L_\infty(G)_1 \).
The above condition defines an equivalence relation \sim in the space of Beltrami differentials $L_\infty(G)_1$.

We have the following model for the \textit{Teichmüller space}:

$$T(\Sigma) := L_\infty(G)/\sim$$
The above condition defines an equivalence relation \sim in the space of Beltrami differentials $L_\infty(G)_1$.

We have the following model for the \textit{Teichmüller space}:

$$T(\Sigma) := L_\infty(G)/\sim$$

Theorem

$T(\Sigma_g)$ is a complex domain of complex dimension $3g - 3$.
The above condition defines an equivalence relation \(\sim \) in the space of Beltrami differentials \(L_\infty(G)_1 \).

We have the following model for the \textit{Teichmüller space}:

\[
T(\Sigma) := L_\infty(G)/\sim
\]

\begin{theorem}
\(T(\Sigma_g)\) is a complex domain of complex dimension \(3g - 3\).
\end{theorem}

\[
\mathcal{M}(\Sigma) = T(\Sigma)/\text{MCG}(\Sigma)
\]

\[
\text{MCG}(\Sigma) := \text{Homeo}(\Sigma)/\text{Homeo}_0(\Sigma)
\]
We define the *universal Teichmüller space* as follows:

\[T(1) := L_\infty(\Delta)/\sim \]
We define the *universal Teichmüller space* as follows:

$$T(1) := L_\infty(\Delta) / \sim$$

It is Universal in the sense that it contains all the finite dimensional Teichmüller spaces:

$$T(\Sigma) \subset T(1)$$
Universal Hyperbolic Lamination

Consider the inverse system of finite index subgroups of $G = \pi_1(\Sigma)$ and inclusions.
Consider the inverse system of finite index subgroups of $G = \pi_1(\Sigma)$ and inclusions.
For every finite index subgroup G', consider the finite disk pile $(G' \setminus G) \times \Delta$ and its diagonal action:

$$g \cdot (f, x) := (f \cdot g, \alpha(g)(x))$$
Universal Hyperbolic Lamination

Consider the inverse system of finite index subgroups of $G = \pi_1(\Sigma)$ and inclusions.

For every finite index subgroup G', consider the finite disk pile $(G' \setminus G) \times \Delta$ and its diagonal action:

$$g \cdot (f, x) := (f \cdot g, \alpha(g)(x))$$

The quotient by this action is the Riemann surface $\Sigma_{G'}$:

$$\Sigma_{G'} := (G' \setminus G) \times \Delta/G$$
Consider the inverse system of finite index subgroups of \(G = \pi_1(\Sigma) \) and inclusions.

For every finite index subgroup \(G' \), consider the finite disk pile \((G' \backslash G) \times \Delta \) and its diagonal action:

\[
g \cdot (f, x) := (f \cdot g, \alpha(g)(x))
\]

The quotient by this action is the Riemann surface \(\Sigma_{G'} \):

\[
\Sigma_{G'} := (G' \backslash G) \times \Delta/G
\]

The diagonal action is equivariant respect to the Fuchsian representation \(\alpha \) hence we have a finite holomorphic covering:

\[
G' \backslash G \longrightarrow \Sigma_{G'}
\]

\[
\downarrow
\]

\[
\Sigma
\]
Because the construction is functorial, we actually have an inverse system of finite holomorphic coverings of Σ:

$$
\Sigma = \ldots
$$
Consider the profinite completion group G_∞ of G:

$$G_\infty = \lim_{\leftarrow} G'/G$$

$$G'/G \quad [G':G]<\infty$$
Consider the profinite completion group G_∞ of G:

$$G_\infty = \lim_{\leftarrow} G'/G$$

Because the Fuchsian group G is residually finite, the completion is a group extension and we have a dense immersion:

$$G \hookrightarrow G_\infty$$
Consider the profinite completion group G_∞ of G:

$$G_\infty = \lim_{\leftarrow} G'/G$$

Because the Fuchsian group G is residually finite, the completion is a group extension and we have a dense immersion:

$$G \hookrightarrow G_\infty$$

The collection of finite index subgroups of G is a neighborhood system of the identity and by translation it defines a topology on G whose completion is the group G_∞ just defined. As a topological space, the group G_∞ is a compact totally disconnected Hausdorff space; i.e. a Cantor set.
The group G_{∞} is an ultrametric space:
The group G_{∞} is an ultrametric space:
Consider the cofinal inverse system of normal subgroups $(A_n)_{n \in \mathbb{N}}$ such that A_n is the intersection of all subgroups of index n or less in G.
The group G_∞ is an ultrametric space:
Consider the cofinal inverse system of normal subgroups $(A_n)_{n \in \mathbb{N}}$ such that A_n is the intersection of all subgroups of index n or less in G.
Because the group G is finitely generated, there must be a finite amount of subgroups of a given index hence the normal subgroups A_n are of finite index as well. Define the following valuation $\text{val} : G \to \mathbb{N} \cup \{\infty\}$ such that:

$$\text{val}(g) := \max\{n \in \mathbb{N} \mid g \in A_n\}$$

if g is not the neutral element e and $\text{val}(e) := \infty$. Define the translation invariant metric d on the group G such that:

$$d(g, h) := e^{-\text{val}(g^{-1}h)}$$
The group G_∞ is an ultrametric space:
Consider the cofinal inverse system of normal subgroups $(A_n)_{n \in \mathbb{N}}$ such that A_n is the intersection of all subgroups of index n or less in G.
Because the group G is finitely generated, there must be a finite amount of subgroups of a given index hence the normal subgroups A_n are of finite index as well. Define the following valuation $\text{val} : G \rightarrow \mathbb{N} \cup \{\infty\}$ such that:

$$\text{val}(g) := \max\{n \in \mathbb{N} \mid g \in A_n\}$$

if g is not the neutral element e and $\text{val}(e) := \infty$. Define the translation invariant metric d on the group G such that:

$$d(g, h) := e^{-\text{val}(g^{-1}h)}$$
Geometrically, the disoriented Cayley graph of $G = \pi_1(\Sigma)$ is the barycentric subdivision of a tessellation. In particular, G_∞ is the Cantor in the ideal boundary.
Geometrically, the disoriented Cayley graph of $G = \pi_1(\Sigma)$ is the barycentric subdivision of a tesselation. In particular, G_{∞} is the Cantor in the ideal boundary.

For example, consider the cusped torus. Its fundamental group is the free product $\mathbb{Z} \ast \mathbb{Z}$ and its Cayley graph is the following:
The inverse limit of the covering tower \((\Sigma_{G'})\) defined before is the \textit{Universal Hyperbolic Lamination}: \[
\Sigma_\infty := \lim_{\overset{\rightarrow}{G'} < G} \Sigma_{G'}
\]

By functoriality of the construction, we have:

\[
\Sigma_\infty := \Sigma_{G_\infty} \times \Delta / G
\]

This is a lamination whose leaves are densely immersed disks \(\Delta\). The leaf space is \(\Sigma_{G_\infty} / G\).
The inverse limit of the covering tower \((\Sigma_{G'})\) defined before is the \textit{Universal Hyperbolic Lamination}:

\[
\Sigma_\infty := \lim_{\begin{array}{c}
\longrightarrow \\
G' < G
\end{array}} \Sigma_{G'}
\]

By functoriality of the construction, we have:

\[
\Sigma_\infty := G_\infty \times \Delta / G
\]
The inverse limit of the covering tower \((\Sigma_{G'})\) defined before is the **Universal Hyperbolic Lamination**:

\[
\Sigma_\infty := \lim_{\substack{\rightarrow \\
G' < G \\
[G':G] < \infty}} \Sigma_{G'}
\]

By functoriality of the construction, we have:

\[
\Sigma_\infty := G_\infty \times \Delta / G
\]

This is a lamination whose leaves are densely immersed disks \(\Delta\). The leaf space is \(G_\infty / G\).
The following is a picture of the lamination:
Define the baseleaf \(\iota : \Delta \to \Sigma_\infty \) as the composite map:

\[
\Delta \hookrightarrow G_\infty \times \Delta \to \Sigma_\infty
\]

such that the first map is \(x \mapsto (e, x) \) where \(e \) is the neutral element of \(G_\infty \).
Define the *baseleaf* $\iota : \Delta \to \Sigma_\infty$ as the composite map:

$$\Delta \hookrightarrow G_\infty \times \Delta \to \Sigma_\infty$$

such that the first map is $x \mapsto (e, x)$ where e is the neutral element of G_∞.

Define the disk Δ_{Emb} with the initial topology of the baseleaf ι.

Define the baseleaf \(\iota : \Delta \to \Sigma_\infty \) as the composite map:

\[
\Delta \hookrightarrow G_\infty \times \Delta \to \Sigma_\infty
\]

such that the first map is \(x \mapsto (e, x) \) where \(e \) is the neutral element of \(G_\infty \).

Define the disk \(\Delta_{Emb} \) with the initial topology of the baseleaf \(\iota \).

Its basic open sets are:

\[
V(U, G') := \bigcup_{g \in G'} \alpha(g)(U)
\]

where \(U \) is an open set of the disk and \(G' \) is a finite index subgroup of \(G \).
Define the *baseleaf* $\iota : \Delta \rightarrow \Sigma_\infty$ as the composite map:

$$\Delta \hookrightarrow G_\infty \times \Delta \rightarrow \Sigma_\infty$$

such that the first map is $x \mapsto (e, x)$ where e is the neutral element of G_∞.

Define the disk Δ_{Emb} with the initial topology of the baseleaf ι.

Its basic open sets are:

$$V(U, G') := \bigcup_{g \in G'} \alpha(g)(U)$$

where U is an open set of the disk and G' is a finite index subgroup of G.

The map $\iota : \Delta_{Emb} \hookrightarrow \Sigma_\infty$ is an embedding.
Because $\Delta \xrightarrow{id} \Delta_{Emb}$ is continuous, we have:

$$C(\Delta_{Emb}, \mathbb{C}) \xrightarrow{\mathbb{C}} C(\Delta, \mathbb{C})$$
Because $\Delta \xrightarrow{id} \Delta_{Emb}$ is continuous, we have:

$$limit - periodic := C(\Delta_{Emb}, \mathbb{C}) \hookrightarrow C(\Delta, \mathbb{C})$$
Because $\Delta \xrightarrow{id} \Delta_{Emb}$ is continuous, we have:

$$\text{limit – periodic} := C(\Delta_{Emb}, \mathbb{C}) \hookrightarrow C(\Delta, \mathbb{C})$$

Proposition

Consider a function $f : \Delta \rightarrow \mathbb{C}$. Then,

- f is limit-periodic iff it is the uniform limit of periodic functions.
- f is limit-periodic iff there is a continuous function $g : \Sigma_{\infty} \rightarrow \mathbb{C}$ such that $\iota^*g = f$.

We have the following chain of proper inclusions:

\[T(\Sigma) \subset T(\Sigma_{G'}) \subset \ldots \bigcup_{[G' : G] < \infty} T(\Sigma_{G'}) \subset T(1) \]
We have the following chain of proper inclusions:

\[T(\Sigma) \subset T(\Sigma_{G'}) \subset \ldots \bigcup_{G' < G \atop [G':G] < \infty} T(\Sigma_{G'}) \subset T(1) \]

The following definition is due to D.Sullivan:

Definition

\[T(\Sigma_{\infty}) := \bigcup_{G' < G \atop [G':G] < \infty} T(\Sigma_{G'}) \]
Denote the space of limitperiodic Beltrami differentials; i.e.
Continuous Beltrami differentials respect to Δ_{Emb}, by $L_\infty(\Delta_{Emb})_1$.
Denote the space of limitperiodic Beltrami differentials; i.e. Continuous Beltrami differentials respect to Δ_{Emb}, by $L_\infty(\Delta_{Emb})_1$. The following is a model for the Sullivan’s Teichmüller space:

Proposition

$$T(\Sigma_\infty) = L_\infty(\Delta_{Emb})/ \sim \subset T(1)$$
What metric should we put in $T(\Sigma_\infty)$?...
What metric should we put in $T(\Sigma_\infty)$?...

Problems:
What metric should we put in $T(\Sigma_\infty)$?...

Problems:

1. The universal Weil-Petersson metric g_{WP} doesn’t work. It is only defined for differentials ν such that:

 $$d_0 f^\mu |_{\partial \Delta(\nu)} \in C^{3/2+\epsilon}$$

2. If we consider nets of periodic differentials converging uniformly to the limit-periodic differentials respectively then:

 $$\lim_{\leftarrow} G' \langle G' : G \rangle < \infty$$

 $$WP(\mu_G', \nu_G') = 0 \text{ or } \infty$$

 where WP is the usual Weil-Petersson metric.
What metric should we put in $T(\Sigma_\infty)$?...

Problems:

- The universal Weil-Petersson metric g_{WP} doesn’t work. It is only defined for differentials ν such that:

$$d_0 f^\mu |_{\partial \Delta (\nu)} \in C^{3/2+\varepsilon}$$

- If we consider nets of periodic differentials converging uniformly to the limitperiodic differentials respectively then:

$$\lim_{\substack{G' < G \\ \lbrack G' : G \rbrack < \infty}} WP(\mu_{G'}, \nu_{G'}) = 0 \text{ or } \infty$$

where WP is the usual Weil-Petersson metric.
We define the *renormalized Weil-Petersson metric*:

Definition

Consider nets of periodic differentials converging uniformly to the limitperiodic differentials respectively then:

\[
(\mu, \nu)_{WP} = \lim_{\substack{G' < G \\ [G' : G] < \infty}} \frac{1}{[G' : G]} WP(\mu_{G'}, \nu_{G'})
\]

where \(WP \) *is the usual Weil-Petersson metric.*
We define the *renormalized Weil-Petersson metric*:

Definition

Consider nets of periodic differentials converging uniformly to the limit-periodic differentials respectively then:

\[
(\mu, \nu)_{WP} = \lim_{\substack{G' < G \\ [G' : G] < \infty}} \frac{1}{[G' : G]} \, WP(\mu_{G'}, \nu_{G'})
\]

where \(WP \) *is the usual Weil-Petersson metric.*

Proposition

The renormalized Weil-Petersson metric is well defined; i.e. It converges in the space of limit-periodic differentials and is independent of the choice of the nets.
Remark

The renormalized Weil-Petersson metric is an extension of the usual one for G-periodic differentials.
Remark

The renormalized Weil-Petersson metric is an extension of the usual one for G-periodic differentials.

Actually, a physicist would think on this result as follows: The inverse limit of coverings is the renormalization group of the theory and the number of sheets of the covering is the renormalization factor of the respective energy level. Then, to get the measured observables on the respective energy level we have to quotient by the renormalization factor; i.e. by the index $[G', G]$. The limit gives the observable at fundamental scale.
As a non trivial immediate result we have the following generalization of the Nag-Verjovsky result:
As a non trivial immediate result we have the following generalization of the Nag-Verjovsky result:

The complex analytic Kähler coadjoint orbit:

\[
\text{Diff}^+(S^1)/\text{Möb} \hookrightarrow T(1)
\]

is transversal to the Teichmüller space of the lamination in the universal one:

\[
\text{Diff}^+(S^1)/\text{Möb} \cap T(\Sigma_\infty)
\]
Main results

Now, we are in position to enunciate the main results.
Main results

Now, we are in position to enunciate the main results. The following is Theorem A:

Theorem

There is a complex analytic Kähler isometry:

\[C(\mathcal{G}_\infty, T(\Sigma)) \sim \rightarrow T(\Sigma_\infty) \]
Main results

Now, we are in position to enunciate the main results. The following is Theorem A:

Theorem

There is a complex analytic Kähler isometry:

\[C(G_\infty, T(\Sigma)) \overset{\sim}{\longrightarrow} T(\Sigma_\infty) \]

This can be seen as Kähler coordinates of the Teicmüller space of the lamination, labelled by an ultrametric space.
Now, we are in position to enunciate the main results. The following is Theorem A:

Theorem

There is a complex analytic Kähler isometry:

\[
C \left(G_\infty, T(\Sigma) \right) \xrightarrow{\sim} T(\Sigma_\infty)
\]

This can be seen as Kähler coordinates of the Teichmüller space of the lamination, labelled by an ultrametric space. The previous result is functorial; i.e. The following diagram commutes:

\[
\begin{align*}
C \left(G_\infty, T(\Sigma) \right) \xrightarrow{\hat{f}} \sim & \quad T(\Sigma_\infty) \\
T(\Sigma)^n \xrightarrow{\sim} & \quad C \left(G' \setminus G, T(\Sigma) \right) \xrightarrow{\sim} \quad T(\Sigma_{G'})
\end{align*}
\]
The following is Theorem B:

Theorem

The \((g - 1)\)-times alternating product of the moduli space of genus two compact Riemann surfaces is a discrete fiber complex analytic Kähler covering of the moduli space of genus \(g\) compact Riemann surfaces:

\[
\text{Alt}^{g-1}(M_2) \twoheadrightarrow M_g
\]
The following is Theorem B:

Theorem

The \((g - 1)\)-times alternating product of the moduli space of genus two compact Riemann surfaces is a discrete fiber complex analytic Kähler covering of the moduli space of genus \(g\) compact Riemann surfaces:

\[
\text{Alt}^{g-1}(\mathcal{M}_2) \twoheadrightarrow \mathcal{M}_g
\]

For example, we have a covering:

\[
\mathcal{M}_2 \times \mathcal{M}_2 \twoheadrightarrow \mathcal{M}_3
\]
The following is Theorem B:

Theorem

The \((g - 1)\)-times alternating product of the moduli space of genus two compact Riemann surfaces is a discrete fiber complex analytic Kähler covering of the moduli space of genus \(g\) compact Riemann surfaces:

\[\text{Alt}^{g-1}(\mathcal{M}_2) \rightarrow \mathcal{M}_g \]

For example, we have a covering:

\[\mathcal{M}_2 \times \mathcal{M}_2 \rightarrow \mathcal{M}_3 \]

Thank you very much!!!