ON ANALYTIC TYPE FUNCTION SPACES AND DIRECT SUM DECOMPOSITION OF $L_2(D, d\nu)$

NIKOLAI VASILEVSKI

Let *D* be either the unit disk \mathbb{D} or \mathbb{C} , and let *J* be either [0,1) or \mathbb{R}_+ , so that $D = J \times \mathbb{T}$, where \mathbb{T} is the unit circle in \mathbb{C} . We set \mathcal{H} for any weighted Hilbert space $L_2(D, d\nu)$, with the probability measure $d\nu(z) = \omega(|z|)dA(z)$, where $dA(z) = \frac{1}{\pi}dxdy$, z = x + iy, and whose radial weight function $\omega: D \to \mathbb{R}_+$ is such that the linear span of the monomials $z^p \overline{z}^q$, for all $p, q \in \mathbb{Z}_+$, is dense in \mathcal{H} .

Given any pair $(m, n) \in \mathbb{Z}_+ \setminus \{(0, 0)\}$, we denote by $\mathcal{A}^{(m,n)}$ the subspace of \mathcal{H} , which consists of all smooth functions f satisfying the equation $\frac{\partial^m}{\partial z^m} \frac{\partial^n}{\partial \overline{z}^n} f = 0$, and by $\mathcal{A}_k^{(m,n)}$ the subspace of \mathcal{H} , which consists of all smooth functions satisfying the equation $\left(\frac{\partial^m}{\partial z^m} \frac{\partial^n}{\partial \overline{z}^n}\right)^k f = 0$. We call such functions (m, n)-analytic, and k-(m, n)-polyanalytic, respectively.

For particular values of (m, n), we have already known spaces of

- analytic functions $\mathcal{A} = \mathcal{A}^{(0,1)}$,
- k-polyanalytic functions $\mathcal{A}_k = \mathcal{A}^{(0,k)}$,
- anti-polyanalytic functions $\widetilde{\mathcal{A}} = \mathcal{A}^{(1,0)}$,
- k-anti-polyanalytic functions $\widetilde{\mathcal{A}}_k = \mathcal{A}^{(k,0)}$
- harmonic functions $H = \mathcal{A}^{(1,1)}$,
- k-polyharmonic functions $H_k = \mathcal{A}^{(k,k)}$.

We develop a unified approach to the characterization of all these analytic type function spaces and prove, in particular, the following result.

Given any predefined "analytic quality of functions", $(m,n) \in \mathbb{Z}_+ \setminus \{(0,0)\}$, the Hilbert space $L_2(D, d\nu)$ admits the following direct sum decomposition

$$L_2(D, d\nu) = \bigoplus_{k \in \mathbb{N}} \mathcal{A}_{(k)}^{(m,n)}$$

where $\mathcal{A}_{(k)}^{(m,n)} = \mathcal{A}_{k}^{(m,n)} \ominus \mathcal{A}_{k-1}^{(m,n)}$ are the spaces of the so-called true-k-(m,n)-polyanalytic functions.

DEPARTMENT OF MATHEMATICS, CINVESTAV, MEXICO CITY, MEXICO *Email address:* nvasilev@math.cinvestav.mx