Radial symbols and Toeplitz operators on Cartan Domains of type I

Raúl Quiroga Barranco

27 de mayo de 2022

Resumen

We denote by $D_{n\times n}^I$ the Cartan domain of type I given by the matrices $Z \in M_{n\times n}(\mathbb{C})$ that satisfy $Z^*Z < I_n$. For n = 1 this trivially reduces to the unit disk \mathbb{D} . On the latter we have the so-called radial symbols given by the condition $a(z) = a(|z|) = a(\sqrt{zz})$, for every $z \in \mathbb{D}$. On the domain $D_{n\times n}^I$ we will consider symbols satisfying either of the conditions

 $a(Z) = a((Z^*Z)^{\frac{1}{2}})$ or $b(Z) = b((ZZ^*)^{\frac{1}{2}})$

for $Z \in D_{n \times n}^{I}$. We will show that, for $n \ge 2$, these two conditions are not equivalent. Furthermore, they define two families of symbols whose Toeplitz operators generate non-commutative C*-algebras which centralize each other. A third condition is considered, which is

a(UZV) = a(Z),

for every $U, V \in U(n)$ and $Z \in D_{n \times n}^{I}$. For any n, this condition does yield symbols whose Toeplitz operators generate commutative C^{*}algebras. Note that for n = 1, all three conditions are equivalent and correspond to the definition of radial symbols. For $n \ge 2$, these conditions are all different and will be used to construct Banach non-C^{*} algebras generated by Toeplitz operators.