TOEPLITZ OPERATORS ASSOCIATED TO DILATIONS ON THE BERGMAN SPACE OF THE SIEGEL DOMAIN

ARMANDO SÁNCHEZ NUNGARAY, THIS IS A JOINT WORK WITH RAÚL QUIROGA BARRANCO

In this talk, we introduce a coordinate system for each Maximal abelian subgroup (MASG) in the D (unit ball or Siegel Domain), these system are given by $(h, g) \in H(D) \times G$ which depend of the action of the MASG G and h the Moment map associated to the MASG. Using the systems of coordinates associated to Quasi-Elliptic and Quasi-Hiperbollic MASG, we introduce an isometric isomorphism

$$R: L_2(\mathbb{R}) \otimes L_2(\mathbb{B}^{n-1}, d\mu_{\lambda}) \to L_2(D_n, d\mu_{\lambda}).$$

such that

$$R(L_2(\mathbb{R}) \otimes \mathcal{A}^2_{\lambda}(\mathbb{B}^{n-1})) = \mathcal{A}^2_{\lambda}(D_n),$$

where $\mathcal{A}^2_{\lambda}(\mathbb{B}^{n-1})$ and $\mathcal{A}^2_{\lambda}(D_n)$ denote the Bergman space on the ball and Siegel domain. Furthermore

$$\begin{split} R\left(I\otimes B_{\mathbb{B}^{n-1},\lambda}\right)R^* &= B_{D_n,\lambda} \quad : \quad L_2(D_n,d\mu_\lambda) \longrightarrow \mathcal{A}^2_\lambda(D_n),\\ R^*B_{D_n,\lambda}R &= I\otimes B_{\mathbb{B}^{n-1},\lambda} \quad : \quad L_2(\mathbb{R})\otimes L_2(\mathbb{B}^{n-1},d\mu_\lambda) \longrightarrow L_2(\mathbb{R})\otimes \mathcal{A}^2_\lambda(\mathbb{B}^{n-1}), \end{split}$$

where $B_{\mathbb{B}^{n-1},\lambda}$ is the Bergman projection from $L_2(\mathbb{B}^{n-1}, d\mu_{\lambda})$ onto $\mathcal{A}^2_{\lambda}(\mathbb{B}^{n-1})$ and $B_{D_n,\lambda}$ is the Bergman projection from $L_2(D_n, d\mu_{\lambda})$ onto $\mathcal{A}^2_{\lambda}(D_n)$.

Here we consider four types of symbols invariant under dilations $(r_0 \cdot z = (r_0^{\frac{1}{2}} z', r_0 z_n)$. where $r_0 \in \mathbb{R}_+$.

(1)
$$a = a(h_n) \in L_{\infty}(\mathbb{R})$$

(2)
$$a = a\left(\frac{2h_n}{1+\|h'\|}\right) \in L_{\infty}(\mathbb{R})$$

(3)
$$b = b(t', h') \in L_{\infty}(\mathbb{T}^{n-1} \times \mathbb{R}^{n-1}_{+}) \bigcap L_{\infty}(D_{n})^{\mathbb{T}}.$$

(4)
$$c = c(t', h) \in L_{\infty}(\mathbb{T}^{n-1} \times \mathbb{R}^{n}_{+} \times \mathbb{R}) \bigcap L_{\infty}(D_{n})^{\mathbb{T}}$$

where $h = (h', h_n) \in \mathbb{R}^{n-1}_+ \times \mathbb{R}$ and $\bigcap L_{\infty}(D_n)^{\mathbb{T}}$ are function invariant under the action $t_0 \cdot (z', z_n) = (t_0 z', z_n)$.

We obtain the the Toeplitz operators for each of the above symbols are unitary equivalent to the following

(5)
$$R^* T_a R = \bigoplus_{k \in \mathbb{Z}_+} \int_{\mathbb{R}}^{\oplus} T_{\hat{a}[k,\xi]} |_{\mathcal{H}_k} d\xi$$

(6)
$$R^* T_a R = \bigoplus_{k \in \mathbb{Z}_+} \gamma_a(k,\xi) I$$

(7)
$$R^* T_c R = \bigoplus_{k \in \mathbb{Z}_+} \int_{\mathbb{R}}^{\oplus} T_{\hat{c}[k,\xi]} \mid_{\mathcal{H}_k} d\xi$$

(8)
$$R^* T_b R = \bigoplus_{k \in \mathbb{Z}_+} \int_{\mathbb{R}}^{\oplus} T_b \mid_{\mathcal{H}_k} d\xi = \int_{\mathbb{R}}^{\oplus} T_b d\xi,$$

acting on

$$L_2(\mathbb{R}) \otimes \mathcal{A}^2_{\lambda}(\mathbb{B}^{n-1}) = \bigoplus_{k \in \mathbb{Z}_+} \left(L_2(\mathbb{R}) \otimes \mathcal{H}_k \right) = \bigoplus_{k \in \mathbb{Z}_+} \left(\int_{\mathbb{R}}^{\oplus} \mathcal{H}_k d\xi \right).$$

Finally, we obtain some commutative properties between the above operators, for example: Consider the symbols a, and b and c of the form (??), (??) and (??) respectively. Then $T_aT_c = T_cT_a$. and $T_{ab} = T_aT_b = T_bT_a$.