TOEPLITZ OPERATORS ASSOCIATED TO DILATIONS ON THE BERGMAN SPACE OF THE SIEGEL DOMAIN

ARMANDO SÁNCHEZ NUNGARAY, THIS IS A JOINT WORK WITH RAÚL QUIROGA
BARRANCO

In this talk, we introduce a coordinate system for each Maximal abelian subgroup (MASG) in the D (unit ball or Siegel Domain), these system are given by $(h, g) \in H(D) \times G$ which depend of the action of the MASG G and h the Moment map associated to the MASG. Using the systems of coordinates associated to Quasi-Elliptic and Quasi-Hiperbollic MASG, we introduce an isometric isomorphism

$$
R: L_{2}(\mathbb{R}) \otimes L_{2}\left(\mathbb{B}^{n-1}, d \mu_{\lambda}\right) \rightarrow L_{2}\left(D_{n}, d \mu_{\lambda}\right) .
$$

such that

$$
R\left(L_{2}(\mathbb{R}) \otimes \mathcal{A}_{\lambda}^{2}\left(\mathbb{B}^{n-1}\right)\right)=\mathcal{A}_{\lambda}^{2}\left(D_{n}\right),
$$

where $\mathcal{A}_{\lambda}^{2}\left(\mathbb{B}^{n-1}\right)$ and $\mathcal{A}_{\lambda}^{2}\left(D_{n}\right)$ denote the Bergman space on the ball and Siegel domain.
Furthermore

$$
\begin{aligned}
& R\left(I \otimes B_{\mathbb{B}^{n-1}, \lambda}\right) R^{*}=B_{D_{n}, \lambda}
\end{aligned} \quad: \quad L_{2}\left(D_{n}, d \mu_{\lambda}\right) \longrightarrow \mathcal{A}_{\lambda}^{2}\left(D_{n}\right), ~\left(L_{2}(\mathbb{R}) \otimes \mathcal{A}_{\lambda}^{2}\left(\mathbb{B}^{n-1}\right), ~ \$ L_{2}\left(\mathbb{B}^{n-1}, d \mu_{\lambda}\right) \longrightarrow L_{2}\right)
$$

where $B_{\mathbb{B}^{n-1}, \lambda}$ is the Bergman projection from $L_{2}\left(\mathbb{B}^{n-1}, d \mu_{\lambda}\right)$ onto $\mathcal{A}_{\lambda}^{2}\left(\mathbb{B}^{n-1}\right)$ and $B_{D_{n}, \lambda}$ is the Bergman projection from $L_{2}\left(D_{n}, d \mu_{\lambda}\right)$ onto $\mathcal{A}_{\lambda}^{2}\left(D_{n}\right)$.

Here we consider four types of symbols invariant under dilations $\left(r_{0} \cdot z=\left(r_{0}^{\frac{1}{2}} z^{\prime}, r_{0} z_{n}\right)\right.$. where $r_{0} \in \mathbb{R}_{+}$.)

$$
\begin{align*}
& a=a\left(h_{n}\right) \in L_{\infty}(\mathbb{R}) \tag{1}\\
& a=a\left(\frac{2 h_{n}}{1+\left\|h^{\prime}\right\|}\right) \in L_{\infty}(\mathbb{R}) \tag{2}\\
& b=b\left(t^{\prime}, h^{\prime}\right) \in L_{\infty}\left(\mathbb{T}^{n-1} \times \mathbb{R}_{+}^{n-1}\right) \bigcap L_{\infty}\left(D_{n}\right)^{\mathbb{T}} . \tag{3}\\
& c=c\left(t^{\prime}, h\right) \in L_{\infty}\left(\mathbb{T}^{n-1} \times \mathbb{R}_{+}^{n} \times \mathbb{R}\right) \bigcap L_{\infty}\left(D_{n}\right)^{\mathbb{T}} . \tag{4}
\end{align*}
$$

where $h=\left(h^{\prime}, h_{n}\right) \in \mathbb{R}_{+}^{n-1} \times \mathbb{R}$ and $\bigcap L_{\infty}\left(D_{n}\right)^{\mathbb{T}}$ are function invariant under the action $t_{0} \cdot\left(z^{\prime}, z_{n}\right)=\left(t_{0} z^{\prime}, z_{n}\right)$.

We obtain the the Toeplitz operators for each of the above symbols are unitary equivalent to the following

$$
\begin{align*}
& R^{*} T_{a} R=\bigoplus_{k \in \mathbb{Z}_{+}} \int_{\mathbb{R}}^{\oplus} T_{\hat{a}[k, \xi]} \mid \mathcal{H}_{k} d \xi \tag{5}\\
& R^{*} T_{a} R=\bigoplus_{k \in \mathbb{Z}_{+}} \gamma_{a}(k, \xi) I \tag{6}\\
& R^{*} T_{c} R=\bigoplus_{k \in \mathbb{Z}_{+}} \int_{\mathbb{R}}^{\oplus} T_{\hat{c}[k, \xi]}{\mid \mathcal{H}_{k}} d \xi \tag{7}\\
& R^{*} T_{b} R=\left.\bigoplus_{k \in \mathbb{Z}_{+}} \int_{\mathbb{R}}^{\oplus} T_{b}\right|_{\mathcal{H}_{k}} d \xi=\int_{\mathbb{R}}^{\oplus} T_{b} d \xi, \tag{8}
\end{align*}
$$

acting on

$$
L_{2}(\mathbb{R}) \otimes \mathcal{A}_{\lambda}^{2}\left(\mathbb{B}^{n-1}\right)=\bigoplus_{k \in \mathbb{Z}_{+}}\left(L_{2}(\mathbb{R}) \otimes \mathcal{H}_{k}\right)=\bigoplus_{k \in \mathbb{Z}_{+}}\left(\int_{\mathbb{R}}^{\oplus} \mathcal{H}_{k} d \xi\right)
$$

Finally, we obtain some commutative properties between the above operators, for example: Consider the symbols a, and b and c of the form (??), (??) and (??) respectively. Then $T_{a} T_{c}=T_{c} T_{a}$. and $T_{a b}=T_{a} T_{b}=T_{b} T_{a}$.

