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Hybrid Switching Diffusions: Formulation
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Figure: A “Sample Path” of the Switching Diffusion (X(t),α(t)).



Main Features

continuous dynamics & discrete events coexist

switching is used to model random environment or other random
factors that cannot be formulated by the usual differential
equations

problems naturally arise in applications such as distributed,
cooperative, and non-cooperative games, wireless
communication, target tracking, reconfigurable sensor
deployment, autonomous decision making, learning, etc.

traditional ODE or SDE models are no longer adequate

non-Gaussian distribution



Switching Diffusions

M = {1, . . . ,m}
α(·): taking values in M .
w(t): d -dimensional standard Brownian motion
b(·, ·) : Rr ×M 7→ Rr

σ(·, ·) : Rr ×M 7→ Rr × Rd

dX (t) = b(X (t),α(t))dt +σ(X (t),α(t))dw(t),
X (0) = x , α(0) = α , (1)

P{α(t +∆) = j |α(t) = i ,(X (s),α(s)),s ≤ t} = qij(X (t))∆+o(∆), i 6= j .
(2)



Formulation (cont.)

Q(x) = (qij(x)) : generator associated with α(t) satisfying

qij(x) ≥ 0, if j 6= i , and
m

∑
j=1

qij(x) = 0, i = 1,2, . . . ,m

L : generator of (X (t),α(t)). For each i ∈ M , and any g(·, i) ∈ C2(Rr ),

L g(x , i) =
1
2

tr(a(x , i)∇2g(x , i))+b′(x , i)∇g(x , i)+Q(x)g(x , ·)(i) (3)

where
∇g(·, i) & ∇2g(·, i): gradient & Hessian of g(·, i),
a(x , i) = σ(x , i)σ ′(x , i),

Q(x)g(x , ·)(i) =
m

∑
j=1

qij(x)g(x , j).



Main Difficulty

Consider (X (t),α(t)) with two different initial data
(X (0),α(0)) = (x ,α) & (X (0),α(0)) = (y ,α), y 6= x .

Since Q(x) depends on x ,
αx ,α(t) 6= αy ,α(t) infinitely often even though
αx ,α(0) = αy ,α(0) = α .



Continuity and Smooth Dependence etc.



Smooth Dependence on Initial Data

Definition
Suppose thatΨ(x1, . . . ,xr , t) is a random function. Its partial derivative in
mean square with respect toxi for some1 ≤ i ≤ r is defined as the random
variableΨ̃(x1, . . . ,xr , t) such that

E

∣∣∣∣∣
1

∆xi
[Ψ(x1, . . . ,xi +∆xi , . . . ,xr , t)−Ψ(x1, . . . ,xi , . . . ,xr , t)]

−Ψ̃(x1, . . . ,xr , t)

∣∣∣∣∣

2

→ 0 as ∆xi → 0.

When the mean square partial derivative exists, we normallywrite it as

Ψ̃(x1, . . . ,xr ) =
∂Ψ(x1, . . . ,xr )

∂xi
=Ψxi (x1, . . . ,xr ). (4)



Smooth Dependence (cont.)

Theorem

Assume linear growth and global Lipschitz condition. Let
(X x ,α (t),αx ,α (t)) be the switching diffusion. Assume that for each
i ∈ M , b(·, i) and σ(·, i) have continuous partial derivatives with
respect to the variable x up to the second order and that

∣∣∣Dβ
x b(x , i)

∣∣∣+
∣∣∣Dβ

x σ(x , i)
∣∣∣ ≤ K0(1+ |x |γ), (5)

where K0 and γ are positive constants and β is a multi-index with
|β | ≤ 2. Then X x ,α(t) is twice continuously differentiable in mean
square with respect to x.

with Zhu, J. Diff. Eqs. (2010)



Associated Poisson Measure

∆ij(x): left closed, right open intervals of R, with length qij(x)

h : Rr ×M × R 7→ R:

h(x , i ,z) =
m

∑
j=1

(j − i)I{z ∈ ∆ij(x)}. (6)

dα(t) =
∫

R
h(X (t),α(t−),z)p(dt ,dz), (7)

where
p(dt ,dz): a Poisson random measure with intensity dt × m(dz),
m: the Lebesgue measure on R,
p(·, ·) independent of w(·).



Generalized Itô Lemma

If V ∈ C1,2(R+ × Rr ×M ), then for any t ≥ 0:

V (t ,X (t),α(t)) =V (0,X (0),α(0))

+

∫ t

0

[
∂

∂s
+L

]
V (s,X (s),α(s))ds+M1(t)+M2(t),

(8)
where

M1(t) =
∫ t

0

〈
∇V (s,X (s),α(s)),σ(X (s),α(s))dw(s)

〉
.

M2(t) =
∫ t

0

∫

R

[
V (s,X (s),α(0)+h(X (s),α(s−),z))

− V (s,X (s),α(s))
]
µ(ds,dz),

µ(ds,dz) = p(ds,dz)− ds × m(dz) is a martingale measure.



The Strong Feller Property



Definition and Motivations

Definition
(X (t),α(t)) is strong Feller if (x , i) 7→ Ex ,i f (X (t),α(t)) is continuous for
any f ∈ Bb(Rn ×M ).

Px ,i : the probability law of (X x ,i (t),αx ,i (t)),

Ex ,i : the corresponding expectation.



Literature

Feller, Dynkin, Girsanov: diffusions

Fattler and Grothaus, 2007: strong Feller properties for distorted
Brownian motion with reflecting boundary condition,

Jaśkiewicz and Nowak, 2006: zero-sum ergodic stochastic games
with Feller transition probabilities,

Peszat and Zabczyk, 1995: strong Feller property for diffusions on
Hilbert spaces, equations driven by Lévy processes,

Szarek, 2006: Feller processes on nonlocally compact spaces,
and

Taira et al., 2001: Feller semigroups and degenerate elliptic
operators with Wentzell boundary conditions

Not much work for regime switching diffusions.



Assumptions

(A1) For i = 1,2, . . . ,m and j ,k = 1,2, . . . ,n, the coefficients bj(x , i),
σjk(x , i), and qij(x) are Hölder continuous with exponent 0 < γ ≤ 1.

(A2) Q(x) is irreducible for each x ∈ Rn.

(A3) For all (x , i) ∈ Rn ×M , a(x , i) = (ajk(x , i)) is symmetric and
satisfies

〈a(x , i)ξ ,ξ 〉 ≥ κ |ξ |2, for all ξ ∈ Rn, (9)

where κ > 0 is some constant.



The Strong Feller Property (I)

Lemma

Assume in addition to (A1)–(A3) that for i , ℓ = 1,2, . . . ,m and
j ,k = 1,2, . . . ,n, the coefficients ajk(x , i), bj(x , i), and qiℓ(x) are
bounded. Then the process (X (t),α(t)) is strong Feller.



Sketch of Proof

1. By [Eidelman, 1969, Themrem 2.1],
∂u
∂ t

= L u has a unique

fundamental soln. p(x , i , t ,y , j), which is positive and satisfies

∣∣Dθ
x p(x , i , t ,y , j)

∣∣ ≤ Ct
−n+|θ |

2 exp

{
−c |y − x |2

t

}
. (10)



Sketch of Proof

1. By [Eidelman, 1969, Themrem 2.1],
∂u
∂ t

= L u has a unique

fundamental soln. p(x , i , t ,y , j), which is positive and satisfies

∣∣Dθ
x p(x , i , t ,y , j)

∣∣ ≤ Ct
−n+|θ |

2 exp

{
−c |y − x |2

t

}
. (10)

2. For any φ(x , i) ∈ Cb(Rn ×M ), define

Φ(t ,x , i) :=
m

∑
j=1

∫

Rn
p(x , i , t ,y , j)φ(y , j)dy .

Then it can be shown (stoch. representation) that
Φ(t ,x , i) = Ex ,iφ(X (t),α(t)). So p is the transition probability density of
(X x ,i (t),αx ,i (t)).
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Then it can be shown (stoch. representation) that
Φ(t ,x , i) = Ex ,iφ(X (t),α(t)). So p is the transition probability density of
(X x ,i (t),αx ,i (t)).

3. Finally for any f (x , i) ∈ Bb(Rn ×M ),

x 7→ Ex ,i f (X (t),α(t)) =
m

∑
j=1

∫

Rn
f (y , j)p(x , i , t ,y , j)dy

is continuous by the Dominated Convergence Theorem.



The Strong Feller Property II

Theorem

Assume (A1)–(A3) hold. Then the process (X (t),α(t)) possesses the
strong Feller property.



The Strong Markov Property

To summarise, under conditions (A1)–(A3), the process (X (t),α(t)) is

càdlàg (sample paths are right continuous with left limits); and

strong Feller.

So it is strong Markov



Seemingly Not Much Different from Diffusions without Switc hing?

Q: When we have a coupled system with M = {1,2} and two stable
linear systems, do we always get a stable system?

Consider ẋ = A(α(t))x +B(α(t))u(t), and a state feedback
u(t) = K (α(t))x(t). Then one gets

ẋ = [A(α(t))− B(α(t))K (α(t))]x .

Suppose that α(t) ∈ {1,2} such that

A(1)−B(1)K (1)=
[

−100 20
200 −100

]
, A(2)−B(2)K (2)=

[
−100 200
20 −100

]
.

The two feedback systems are stable individually. But if we choose α(t) so
that it switches at kη , where η = 0.01. Then the resulting system is unstable.



The hybrid system is unstable (curtesy of Le Yi Wang)
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Why is the system unstable?

1
2
[A(1)− B(1)K (1)+A(2)− B(2)K (2)] =

1
2

[
−200 220
220 −200

]

is an unstable matrix.

The averaging effect dominates the dynamics.



An Example

Consider
ẋ(t) = A(α(t))x(t) (11)

where α(t) has two states {1,2},

A(1) =
[
0 −1
1 0

]
, A(2) =

[
−1 2
−2 −1

]
, Q =

[
−1 1
2 −2

]
,

Associated with the hybrid system, there are two ODEs

ẋ(t) = A(1)x(t), and (12)

ẋ(t) = A(2)x(t) (13)

switching back and forth according to α(t).



Phase Portrait of the Components
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Phase portraits of the ‘component’ with a center (in dashed line) and
the ‘component’ with a stable node (in solid line) with the same initial

condition x0 = [1,1]′



Phase Portrait of Hybrid System

The phase portrait is given below.
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Figure: Switching linear system: Phase portrait of (11) with x0 = [1,1]′.

with Zhu and Song, (2009), Quart. Appl. Math



Examples



Insurance Risk Models
The surplus at time t :

S(t ,x , i) = x +
∫ t

0
c(α(s))ds −

N(t)

∑
j=1

Xj(α(Tj)),

(x , i): initial (surplus, regime);

c(i): premium rate;

Xj(i): claim size;

Tj : claim time;

N(t): Poisson process.

α(t) is used to model:
◮ El Nino/La Nina phenomena in property ins.
◮ economic condition in unemployment policy
◮ certain epidemics in health insurance

with Y. Liu & H.L. Yang, Scandinavian Actuarial J. (2006)



Regime-switching market models

dS(t) = µ(α(t))S(t)dt +σ(α(t))S(t)dw .

◮ both the return rate & volatility depend on α(t)
◮ α(·) and w(·) are independent
◮ α(t): market mode, investor’s mode, & other economic factors (e.g.,

bull, bear)

with X.Y. Zhou, SIAM J. Control Optim. (2003), IEEE T-AC, (2004)



Average Cost Per Unit Time Problem

Consider a controlled switching diffusion (X (t),α(t)) (drift and diffusion
coefficients also depend on a control u).

Aim: find u∗(·) so

lim
T →∞

E
1
T

∫ T

0
L(X (t),α(t),u(t))dt

is minimized.

Questions: Does there exist an ergodic measure? If yes, can we
replace the instantaneous measure by the ergodic one?



Two-time-scale Markov Chains

Two-time-scale Markov chains ε > 0 small,

Q(t) = Qε(t) =
Q̃(t)

ε
+ Q̂(t). (14)

◮ Q̃(t), Q̂(t) are generators of Markov chains.
◮ Q̃(t) = diag(Q̃1(t), . . . ,Q̃ l(t)) nearly decomposable
◮ M = M1 ∪ ·· · ∪Ml ; Mi = {si1, . . . ,simi

}

work with Q. Zhang book (1998), Ann Appl. Probab. (1996, 2000, 2007 H.Q. Zhang) etc.



Two-time Scale (a demonstration)

s11 s12 s21 s22



Limit of
1√
ε

∫ t

0
[I{αε(s)=sij } − ν i

j (s)I{αε(s)∈Mi }]ds



Mean-Field Model

α(t): with M = {1,2, . . . ,m0}.

Consider an ℓ-body mean-field model For i = 1,2, . . . , ℓ,

dXi(t) =
[
γ(α(t))Xi (t)− X 3

i (t)− β (α(t))(Xi (t)− X (t))
]
dt

+σii(X (t),α(t))dwi (t),

X (t) =
1
ℓ

ℓ

∑
j=1

Xj(t),

X (t) = (X1(t),X2(t), . . . ,Xℓ(t))′,

(15)

γ(i) > 0 and β (i) > 0 for i ∈ M .

Originated from statistical mechanics, mean-field models are concerned
with many-body systems with interactions. To overcome the difficulty of
interactions due to the many bodies, one of the main ideas is to
replace all interactions to any one body with

an average or effective interaction .



Consensus Problems: Schooling (Couzin [Nature, 2005])



Consensus Problems: High Way Traffic (curtesy of Mingyi Huan g)



Recurrence, Ergodicity, Stability



Regularity & Recurrence

Definition

Regularity. A Markov processY x ,α(t) = (X x ,α (t),αx ,α (t)) is said to be
regular, if for any 0 < T < ∞,

P{ sup
0≤t≤T

|X x ,α (t)| = ∞} = 0. (16)

Remark
Let βn := inf{t : |X x ,α(t)| = n}. Then{βn} is monotonically increasing and
hence has a (finite or infinite) limit. It follows that the process is regular iff

βn → ∞ almost surely asn → ∞. (17)



Definition

(i) Recurrence. For U := D × J, whereJ ⊂ M andD ⊂ Rr is an open set
with compact closure, letσ x ,α

U = inf{t : Y x ,α(t) ∈ U}. A regular process
Y x ,α(·) is recurrent w.r.t. U if

P{σ x ,α
U < ∞} = 1 for any(x ,α) ∈ Dc ×M .

(ii) Positive and Null Recurrence. A recurrent process satisfying
Eσ x ,α

U < ∞ is said to bepositive recurrent w.r.t. U; otherwise, the
process isnull recurrent w.r.t. U.



Recurrence Is Independent of Sets

(i) The process (X (t),α(t)) is (positive) recurrent w.r.t. D ×M if and
only if it is (positive) recurrent w.r.t. D × {ℓ}, where D ⊂ Rr is a
bounded open set with compact closure and ℓ ∈ M .

(ii) If the process (X (t),α(t)) is (positive) recurrent w.r.t. some
U = D ×M , where D ⊂ Rr , then it is (positive) recurrent w.r.t.
Ũ = D̃ ×M , where D̃ ⊂ Rr is any nonempty open set.



Positive Recurrence

Theorem

A necessary and sufficient condition for positive recurrence with
respect to a domain U = D × {ℓ} ⊂ Rr ×M is: For each i ∈ M , there
exists a nonnegative function V (·, i) : Dc 7→ R s.t. V (·, i) is twice
continuously differentiable and that

L V (x , i) = −1, (x , i) ∈ Dc ×M . (18)

Let u(x , i) = Ex ,i σD . It is the smallest positive sol’n to

{
L u(x , i) = −1, (x , i) ∈ Dc ×M ,
u(x , i) = 0, (x , i) ∈ ∂D ×M .

(19)



Step 1: Positive recurrence. Show the process is positive recurrent if
exists V (·, ·) (≥ 0) satisfying the conditions of the theorem.

Fix any (x , i) ∈ Dc ×M and set σ (n)
D (t) = min{σD, t ,βn}. Dynkin’s

formula implies

Ex ,iV (X(σ (n)
D (t)),α(σ (n)

D (t)))− V (x , i)= Ex ,i

∫ σ (n)
D (t)

0
L V (X(s),α(s))ds

= −Ex ,iσ
(n)
D (t).

Since V (·) is nonnegative,

Ex ,iσ
(n)
D (t) ≤ V (x , i).

Letting n → ∞ and t → ∞, Ex ,iσD < ∞. This is positive recurrence.
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Step 2: Show u(x , i) := Ex ,iσD < ∞ is the smallest positive solution of
the BVP (19).

Set σ (n)
D = min{σD,βn} & un(x , i) = Ex ,iσ

(n)
D . Then un(x , i) solves

L un(x , i) = −1, un(x , i)|x∈∂D = 0 un(x , i)||x |=n = 0.

vn(x , i) := un+1(x , i)− un(x , i) is L -harmonic in
(Dc ∩ {|x | < n})×M .

Ex ,iσ
(n)
D ր Ex ,iσD by regularity and DCT. Hence we can write

u(x , i) = un0(x , i)+
∞

∑
k=n0

vk (x , i).

Harnack’s theorem implies that u(x , i) is a solution of (19).

Maximum Principle yields u(x , i) is the smallest solution.



Step 2: Show u(x , i) := Ex ,iσD < ∞ is the smallest positive solution of
the BVP (19).

Set σ (n)
D = min{σD,βn} & un(x , i) = Ex ,iσ

(n)
D . Then un(x , i) solves

L un(x , i) = −1, un(x , i)|x∈∂D = 0 un(x , i)||x |=n = 0.

vn(x , i) := un+1(x , i)− un(x , i) is L -harmonic in
(Dc ∩ {|x | < n})×M .

Ex ,iσ
(n)
D ր Ex ,iσD by regularity and DCT. Hence we can write

u(x , i) = un0(x , i)+
∞

∑
k=n0

vk (x , i).

Harnack’s theorem implies that u(x , i) is a solution of (19).

Maximum Principle yields u(x , i) is the smallest solution.



Step 2: Show u(x , i) := Ex ,iσD < ∞ is the smallest positive solution of
the BVP (19).

Set σ (n)
D = min{σD,βn} & un(x , i) = Ex ,iσ

(n)
D . Then un(x , i) solves

L un(x , i) = −1, un(x , i)|x∈∂D = 0 un(x , i)||x |=n = 0.

vn(x , i) := un+1(x , i)− un(x , i) is L -harmonic in
(Dc ∩ {|x | < n})×M .

Ex ,iσ
(n)
D ր Ex ,iσD by regularity and DCT. Hence we can write

u(x , i) = un0(x , i)+
∞

∑
k=n0

vk (x , i).

Harnack’s theorem implies that u(x , i) is a solution of (19).

Maximum Principle yields u(x , i) is the smallest solution.



Step 2: Show u(x , i) := Ex ,iσD < ∞ is the smallest positive solution of
the BVP (19).

Set σ (n)
D = min{σD,βn} & un(x , i) = Ex ,iσ

(n)
D . Then un(x , i) solves

L un(x , i) = −1, un(x , i)|x∈∂D = 0 un(x , i)||x |=n = 0.

vn(x , i) := un+1(x , i)− un(x , i) is L -harmonic in
(Dc ∩ {|x | < n})×M .

Ex ,iσ
(n)
D ր Ex ,iσD by regularity and DCT. Hence we can write

u(x , i) = un0(x , i)+
∞

∑
k=n0

vk (x , i).

Harnack’s theorem implies that u(x , i) is a solution of (19).

Maximum Principle yields u(x , i) is the smallest solution.



Step 2: Show u(x , i) := Ex ,iσD < ∞ is the smallest positive solution of
the BVP (19).

Set σ (n)
D = min{σD,βn} & un(x , i) = Ex ,iσ

(n)
D . Then un(x , i) solves

L un(x , i) = −1, un(x , i)|x∈∂D = 0 un(x , i)||x |=n = 0.

vn(x , i) := un+1(x , i)− un(x , i) is L -harmonic in
(Dc ∩ {|x | < n})×M .

Ex ,iσ
(n)
D ր Ex ,iσD by regularity and DCT. Hence we can write

u(x , i) = un0(x , i)+
∞

∑
k=n0

vk (x , i).

Harnack’s theorem implies that u(x , i) is a solution of (19).

Maximum Principle yields u(x , i) is the smallest solution.



Positive Recurrence (2)

A necessary & sufficient condition for positive recurrence w.r.t.
U = D × {ℓ} ⊂ Rr ×M is: For each i ∈ M , there exists a nonnegative
function V (·, i) : Dc 7→ R s.t. V (·, i) is twice continuously differentiable
and that for some γ > 0,

L V (x , i) ≤ −γ , (x , i) ∈ Dc ×M .



Ergodicity

∂D ∂E

∂D ∂E

∂D ∂E

ED

ED
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?

?

ς2
ς3

ς4

Figure 2: Cycles of Y (t) = (X(t),α(t)); m = 3 & ℓ = 1



Cycles

Assume the process is positive recurrent w.r.t. U = E × {ℓ};
E ⊂ Rr and ℓ ∈ M are fixed from now on.

Let ∂E be sufficiently smooth. Let D ⊂ Rr be a bdd. ball with suff.
smooth ∂D s.t. E ∪ ∂E ⊂ D.

Let ς0 = 0 and then define for n = 0,1, . . .

ς2n+1 = inf{t ≥ ς2n : (X (t),α(t)) ∈ ∂E × {ℓ}},
ς2n+2 = inf{t ≥ ς2n+1 : (X (t),α(t)) ∈ ∂D × {ℓ}}.

Then we can divide an arbitrary sample path of the process into
cycles:

[ς0,ς2), [ς2,ς4), . . . , [ς2n,ς2n+2). . . . (20)



Assume Y (0) = (X (0),α(0)) = (x , ℓ) ∈ ∂D × {ℓ}.

Define Yn = Y (ς2n) = (Xn, ℓ),n = 0,1, . . . It is a MC on ∂D × {ℓ} by
strong Markov property

Theorem

A positive recurrent process (X (t),α(t)) has a unique stationary
distribution ν̂(·, ·) = (ν̂(·, i) : i ∈ M ).



Strong Law of Large Numbers

Theorem

Denote by µ(·, ·) the stationary density associated with ν̂(·, ·) and
f (·, ·) : Rr ×M 7→ R is Borel measurable such that

m0

∑
i=1

∫

Rr
|f (x , i)|µ(x , i)dx < ∞. (21)

Then for any (x , i) ∈ Rr ×M

Px ,i

(
1
T

∫ T

0
f (X (t),α(t))dt → f

)
= 1, (22)

where f = ∑m0
i=1

∫
Rr f (x , i)µ(x , i)dx .



Cauchy Problem

Let the assumptions of the last theorem be satisfied, and u(t ,x , i) be
the solution of the Cauchy problem





∂u(t ,x , i)
∂ t

= L u(x , i), i ∈ M ,
u(0,x , i) = f (x , i).

(23)

Then as T → ∞,

1
T

∫ T

0
u(t ,x , i)dt →

m0

∑
i=1

∫

Rr
f (x , i)µ(x , i)dx . (24)

A key to establish this result is the result of law of large numbers.



Explosion Suppression & Stabilization



Regularity Criterion (cont.)

Theorem

Suppose that b(·, ·) : Rr ×M 7→ Rr and that σ(·, ·) : Rr ×M 7→ Rr×d ,

dX(t) = b(X(t),α(t))dt +σ(X(t),α(t))dw(t), (X(0),α(0)) = (x ,α),
P{α(t + δ ) = j|α(t) = i,X(s),α(s),s ≤ t} = qij(X(t))δ +o(δ ), i 6= j. (25)

Suppose that for each i ∈ M , both b(·, i) and σ(·, i) are local linear growth
and local Lipschitzian and that ∃ a nonnegative V (·, ·) : Rr ×M 7→ R+ that is
C2 in x ∈ Rr for each i ∈ M s.t. ∃γ0 > 0

L V (x , i) ≤ γ0V (x , i), for all (x , i) ∈ Rr ×M ,
VR := inf

|x |≥R, i∈M

V (x , i) → ∞ as R → ∞. (26)

Then the process (X(t),α(t)) is regular.



Explosion Suppression

x ∈ Rr

f (·, ·) : Rr ×M 7→ Rr

α(t) ∈ M = {1, . . . ,m}

dX (t)
dt

= f (X (t),α(t)) (27)

f (·, i) continuous but the growth rate is faster than linear

We wish to stabilize (27).



Motivational Example

Consider an even simpler problem: the logistic system

ẋ(t) = x(t)(1+x(t)), x(0) = 1.

solution:

x(t) =
1

−1+2e−t .

It will blow up and the explosion time τ = log2 .
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Motivational Example

Consider an even simpler problem: the logistic system

ẋ(t) = x(t)(1+x(t)), x(0) = 1.

solution:

x(t) =
1

−1+2e−t .

It will blow up and the explosion time τ = log2 .

Question: How can we get a global soln; how can we stabilize
this?

Two things are needed:
1) extend to a global solution;
2) stabilization.



What have been done?

Khasminskii’s book (1981): stabilization using white noise

Arnold (1972): ẋ = Ax can can be stabilized by zero mean
stationary process iff tr(A) < 0

Mao (1994) established a general stabilization results of Brownian
noise under linear growth condition.

Wu & Hu (2009) treated one-sided growth condition

Mao, Yin, and Yuan (2007): showed that both Brownian motion
and Markov Chain can be used to stabilize systems.



Motivation (diffusion case)

dx = µxdt +σxdw , x(0) = x0.

x(t) = x0 exp
((

µ − σ2

2

)
t +σw(t)

)
.

when σ2 > 2µ ,

limsup
t

log |x(t)|
t

≤
(

µ − σ2

2

)
< 0.

This implies exponential stability.



How to Get a Global Solution? Stablization?

add a diffusion perturbation

dX (t) = f (X (t),α(t))dt +a1(α(t))|X (t)|β X (t)dw1(t)

such that 2β − β1 > 0, where w1(·) is scalar Brownian motion.

add another diffusion to get stability

dX (t) = f (X (t),α(t))dt +a1(α(t))|X (t)|β X (t)dw1(t)
+a2(α(t))X (t)dw2(t),

(28)

where w2(·) is a scalar Brownian motion independent of w1(·).
More general,

dX (t) = f (X (t),α(t))dt +σ1(X (t),α(t))dw1 +σ2(X (t),α(t))dw2.
(29)



Conditions

(a) f (0, i) = σ1(0, i) = σ2(0, i) = 0;

(b) f ′(x , i)x ≤ K0(|x |β1+2 + |x |2) for each i ∈ M and some β1 > 0.

(c) for some β > 0 satisfying 2β − β1 > 0 and some Kj > 0 with
j = 1, . . . ,4 satisfying 2K1 > K2 and for each x ∈ Rr ,

tr(σ1(x , i)σ ′
1(x , i)xx ′) ≥ K1(|x |4+2β − |x |4)

tr(σ1(x , i)σ ′
1(x , i)) ≤ K2(|x |2+2β + |x |2),

tr(σ2(x , i)σ ′
2(x , i)xx ′) ≥ K3|x |4,

tr(σ2(x , i)σ ′
2(x , i)) ≤ K4|x |2.

(30)



Results

We can get a global solution

limsupt→∞ P(|X (t)| ≥ Kδ ) ≤ δ
The resulting system is stable w.p.1. In fact,
limsupt log |X (t)|/t < 0 w.p.1.



Discrete Approximation

xn+1 = xn +µ f (xn,αn)+
√

µσ(αn)|xn|β xnηn +
√

µℓ(αn)xnξn. (31)

Define
x µ(t) = xn, αµ(t) = αn, t ∈ [nµ ,nµ +µ).

Theorem

Under suitable assumptions, (x µ(·),αµ (·)) converges weakly to
(x(·),α(·)) such that the limit is the solution to the martingale problem
with operator L . That is, (x(·),α(·)) is the solution of SDE with
switching.



Theorem

Under assumptions of Theorem 12, (xn,αn) is regular. That is, the
process (xn,αn) does not blow up in finite time.

Theorem

Under the conditions of Theorem 13, for any δ > 0 sufficiently small,
there is a Kδ > 0 such that

limsup
n→∞

P(|xn| ≥ Kδ ) ≤ δ . (32)



Under suitable conditions, for any tµ → ∞ as µ → 0,

limsup
µ→0

log |x µ(tµ)|
tµ

≤ 0 w.p.1, (33)

where the probability measure is understood to be defined in an
enlarged probability space with the use of the Skorohod
representation.



Numerical Approximations, Controlled
Switching Diffusions, Games
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Numerics for Controlled Switching Diffusions





X (t) = x +

∫ t

0
b(X (s),α(s),u(s))ds+

∫ t

0
σ(X (s),α(s))dw ,

α(t) continuous-time MC α(0) = i ,
(34)

where w(t) is a standard Brownian motion independent of the Markov
chain α(t).

• Kushner & Dupuis, Springer, Markov chain approximation

• with Song & Zhang, Automatica (2006), regime-switching & jump diffusion



Controlled Switching Diffusions (cont.)

Given B > 0, define a stopping time as

τx ,i ,u
B = inf{t : X x ,i ,u(t) /∈ (−B,B)}.

Objective: choose control u· to minimize the expected cost function




JB
i (x ,u) = E

∫ τx ,i,u
B

0
f (X (s),α(s),u(s))ds,

∀x ∈ (−B,B), i ∈ M ,
JB

i (x ,u) = 0, ∀x /∈ (−B,B), i ∈ M ,

(35)

where for each i ∈ M , f (·, i , ·) is an appropriate function representing
the running cost function.



For each i ∈ M , the value function is given by

V B(x , i) = inf
u∈U

JB(x , i ,u), (36)

where U is the space of all Ft -adapted controls taking values on a
compact set U.

Formally, the value functions satisfy Hamilton-Jacobi-Bellman (HJB)
equations,

{
inf

u∈U
{LuV B(x , i)+ f (x , i ,u)} = 0, ∀x ∈ (−B,B), i ∈ M ,

V B(x , i) = 0, ∀x /∈ (−B,B), i ∈ M ,
(37)

where

Luϕ(x , i) =
1
2

σ2(x , i)
d2ϕ(x , i)

dx2 +b(x , i ,u)
dϕ(x , i)

dx
+ ∑

j∈M

qijϕ(x , j).



Algorithm

h > 0: discretization parameter.

Sh = {x : x = kh,k = 0,±1,±2, . . .}. Let {(ξ h
n ,αh

n ),n < ∞} be a
controlled discrete-time Markov chain on a discrete state space
Sh ×M

ph((x , i),(y , j)|u): transition probabilities from (x , i) ∈ Sh ×M to
(y , j) ∈ Sh ×M , for u ∈ U.

Then, V̄ B,h(x , i), the discretization of V B(x , i) with step size h > 0, is
the solution of

{
inf

u∈U
{Lu

hV̄ B,h(x , i)+ f (x , i ,u)} = 0, ∀x ∈ (−B,B)h, i ∈ M ,

V̄ B,h(x , i) = 0, ∀x /∈ (−B,B)h, i ∈ M ,
(38)

(−B,B)h = (−B,B)∩ Sh, [−B,B]h = (−B,B)h ∪ {B,−B}. (39)



Rates of Convergence

Theorem

Under suitable conditions, ∃γ > 2 and ρ ∈ (0,1] s.t. the Markov chain
approximation algorithm converges at the rate (γ − 2)∧ ρ ∧ 1

2 . That is,

|V̄ B,h
i (x)− V B

i (x)| ≤ Kh
1
2 ∧ρ∧(γ−2), ∀(i ,x) ∈ M × G.

Note that γ ∈ (2,3] comes from Markov chain ≈, ρ is the Hölder exponent of the cost
function.

PDE approach for controlled diffusions (finite difference approx of PDEs)

◮ Menaldi, SIAM J. Control Optim. (1989)
◮ Krylov, Probab. Theory Related Fields, (2000)
◮ Dong & N.V. Krylov, Appl. Math Optim.

we use probabilistic approach for controlled switching diffusions

◮ with Q.S. Song, SIAM J. Control Optim. (2009)



Main Ideas

Use relaxed controls (measures)

Construct strong approximation

Consider boundary perturbations
◮ usual notion of cost Ji(x ,m̃);

◮ ours J
B

i (x ,m̃)



Tangency Problem

τ and τh: the first hitting time of X (t) and xh(t) to the boundary.
Objective: ≈ Eτ by Eτh

In the Figure, τh 6→ τ , even though xh(·) converges to X (·).
Q: extra conditions needed?

B

Bh

B
h

lim τhτ



Concluding Remarks

In this talk, we

presented several switching diffusion examples

considered recurrence, ergodicity, stability etc.

presented noise suppression

considered numerical algorithms for control and game problems

Further work:

rates of convergence for games

large deviations

null-recurrent switching diffusion systems

discrete-time counter part–Markov modulated random sequences

. . .



Thank you


	Hybrid Switching Diffusions: Formulation
	Certain Basic Properties
	Examples
	Recurrence and Ergodicity
	Explosion Suppression & Stabilization
	Numerical Approximations, Controlled Switching Diffusions, Games

