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To the memory of Erhard Meister 

Abstract. We describe the structure of asymptotically good pseudomodes for 
Toeplitz matrices and their circulant analogues as well as for Wiener-Hopf 
integral operators and a continuous analogue of banded circulant matrices. 
The pseudomodes of circulant matrices and their continuous analogues are 
extended, while those of Toeplitz matrices or Wiener-Hopf operators are typ- 
ically strongly localized in the endpoints. 

1. Introduction 

Let A be a bounded linear operator on a complex Hilbert space I H .  A point X 
in C is said to  be an E-pseudoeigenvalue of A if II(A - XI)-'11 >. I/E (with the 
convention that 1 1  (A - X I ) - '  1 1  := cm in case A - X I  is not invertible). If X is an E- 
pseudoeigenvalue, then there exists a nonzero x E IF1 such that 1 1  ( A X I ) x l l  < ~Ilxll. 
Each such s is called an E-pseudomode (or E-pseudoeigenvector) for A at  A. Papers 
[lo], 1121, 1131, the web site [5], and the book [4] contain detailed information about 
these concepts. 

Now suppose we are given a sequence of matrices A,, E C nxn .  We 
think of A,, as an operator on Cn with the k 'horm. We call a point X E C an 
asymptotically good pseudoeigenvalue for {A,,) if II(A,, - XI)- 'Il  + cm as n 4 m. 

In that case we can find nonzero vectors x,, E Cn satisfying 

and each sequence {x,,) wit,h this property will be called an asymptotzcnlly good 
pseudomode for {A,) a t  A. Our terminology is motivated by the papers [lo] and 
1141: there it is shown that 1 1  (A,, -XI)-'II increases exponentially for certain classes 
of matrices, and the corresponding pseudomodes are called exponentinlly good. 

S. Grudsky acknowledges financial support by CONACYT grant, CBtedra Patrimonal, Nivel 11, 
No. 010286 (Mkxico). 
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This paper is devoted to the structure of asymptotically good pseudomodes 
for sequences of Toeplitz matrices. We also embark on Wiener-Hopf integral oper- 
ators and on the circulant cousins of Toeplitz band matrices (called cr-matrices in 
theoretical chemistry [16]) and their continual analogues. 

2. Banded circulant matrices 

Given a subset Jn of {1,2, . . . , n ) ,  we denote by Pj,, the projection on C n  defined 

by 

( p ~ . L ~ ) j  = { Y~ for j E Jn,  
0 for j $ Jn. 

The number of elements in J,, will be denoted by I JnI. Let {y,),"==, be a sequence 
of nonzero vectors y,, E C n .  We say that {y,,) is asymptotically localized if there 
exists a sequence {Jn)?==, of sets J,  c (1, .  . . , n )  such that 

IJnI lim - = 0 and lim I I P,J,, Y n  I I = 1. 
n-03 n n-03 ll~nll 

We denote by Fn E C n x n  the Fourier matrix, 

A sequence 
extended if {Fn  y,) is 
whether eigenvectors 

of nonzero vectors y, E C n  will be called asymptotically 
asymptotically localized. Problems concerning the question 
or pseudoeigenvectors are localized or extended have been 

extensively studied for many decades, especially for randomly perturbed Toeplitz 
matrices and their differential operators analogues, and the literature on this topic 
is vast. A few exemplary works are [I],  [7], 181, 191, [ll] , [14]. 

Let a be a complex-valued La function on the complex unit circle T .  The 
n x n Toeplitz matrix T n ( a )  and the infinite Toeplitz matrix T ( a )  are defined by 

T n ( a )  = (aj-k)7,k=l and T ( a )  = where 

As a E L m ( T ) ,  the matrix T ( a )  generates a bounded linear operator on e2(N). 
Now suppose that a is actually a trigonometric polynomial, 

Then Tn ( a )  is a banded matrix. For n large enough; we can add entries in the lower- 
left and upper-right corners of T n ( a )  in order to get a circulant matrix C n  ( a ) .  For 
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example, if a,(t)  = + a. + a l t  + a2t2,  then 

Theorem 2.1. Let a be n trigonometmc polynomzal. A point X E C is a n  asymp- 
totically good pseudoeigenvnlue for { C n ( a ) )  if and only if X E a ( T ) ,  i n  which case 
every asymptotically good pseudomode for { C n ( a ) )  is asymptotically extended. 

Proof. Clearly, C, , (a)  - XI = C n ( a  - A).  It is well known that 

C,, ( a  - A) = F,* diag (a(w3,) - x ) ~ ~ ~  F, =: F,* D ,  F,. 

Since F,, is unitary, it follows that 

which shows that 1 1  C,; ' ( a  - A) 11  + .x, if and only if X E a ( T )  . 

Now pick X E a ( T )  and suppose {x,)  is an asymptotically good pseudomode 
for {C , (a ) )  at A. We may without loss of generality assume that llx,ll = 1. Put 

y, = ( y : " ) ) ~ = ~  = F,xn. We have 

IICn(a X ) . T ~ I I  = IIF,*DnFnxnII = IIDn~nll. (2.1) 

Fix an E > 0. For 6 > 0, we put 

G,(6) = { j  E { I , .  . . , n )  : Ia(w3,-') - XI 5 61, 

E ( 6 )  = (6' E [O, 27r) : la(e") - XI < 6 ) .  

Since a is analytic in C \ {O) ,  the set E ( 6 )  is a finite union of intervals. Hence 
IGn(6) l /n  + IE(6)1/(27r) as n + oo, where IE(6)l denotes the (length) measure 
of E ( 6 ) .  Because IE(6)I + 0 as 6 + 0, there exist 6 ( ~ )  > 0 and N , ( E )  > 1 such 
that J G n ( 6 ( ~ ) ) l / n  < E for all n > N 1 ( ~ ) .  From (2 .1)  we infer that llD,Y,112 + 0 as 
n + oo. Consequently, llDnYn112 < E ~ ( E ) ~  for all n > N 2 ( € ) .  Since 

it follows that C l y : n ) ~ 2  < E for n >_ N 2 ( ~ ) .  Thus, Pc,,(6(i))y,xll" 1 - E 
3!2Gn(J(~))  

for all n 2 N2 ( E ) .  Put n ( ~ )  = max(N1 ( E ) ,  N 2  ( E ) ) .  

Now let ~k = l / k  ( k  > 2 ) .  With 61, := 6 ( ~ ~ )  and n k  := n ( E k )  we then have 
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We may without loss of generality assume that 1 < n2 < na < . . .. For 1 5 n < n2, 
we let J, denote an arbitrary subset of (1, .  . . , n). For n > n2, we define the sets 
J, c (1, . . . ,  n) by 

J n Z  = Gn2 (62), Jnz+l = Gnn+l (62), . . . , Jns-1 = Gn3-1 (62), 

J n j  = Gn3(6n), Jns+l = Gn3+1(6~)i . . . ,  Jn4-1 = Gn4-1(6a), . .  . .  
From (2.2) we see that 

which shows that IJ,,l/n + 0 as n + CQ. Also by (2.2), 

2 1 1 
IIe~,,3~ngII > ~ - - , . . . , I I P , I , , , - ~ Y ~ , - ~ ~ ( ~  3 > I - - ,  3 . . . ,  

and hence IIPJ,,~,, 1 1  + 1 as n + CQ. Since llynll = 1 for all n, it results that {y,) 
is asymptotically localized. Consequently, {x,) is asymptotically extended. 

3. Toeplitz matrices 

Let a E Lm(T)  be a piecewise continuous function, that is, suppose the one-sided 
limits a ( t  - 0) and a( t  + 0) exist for each t on the counter-clockwise oriented unit 
circle. We denote by a# (T)  the closed and ~ont~inuous curve that results from the 
(essential) range of a by filling in the line  segment,^ [a(t - O ) ,  a ( t  + 0)] at each 
jump of a .  The counter-clockwise orientation of T induces an orientation of a#(T)  
in the natural manner. For X E C \ a#(T) ,  we let wind (a, A) denote the winding 
number of the curve a# (T)  about A. It is well known that the spectrum of T(a)  on 
e2(N) is the union of a#(T)  and all points X E C \ a#(T)  with wind (a, A )  # 0. If 
X $ a#(T)  and wind (a, A )  = -m < 0, then the kernel (= null space) KerT(a - A )  
has the dimension m, while if X $ a#(T)  and wind (a, A )  = m > 0, then t,he kernel 
of the adjoint of T (a  - A )  is m-dimensional. All these facts can be found in [4] or 
161, for example. 

Suppose that X $ a#(T)  and wind(a,X) = -m < 0. We then can write 
a - X = bx-,,,, where b is piecewise continuous, 0 $ b#(T), wind (b ,  0) = 0, and 
x k  is defined by xk( t )  = t k ( t  E T). The operator T(b) is invertible on 4!"(N and, 
moreover, the matrices T,(b) are invertible for all sufficient,ly large n ,  

1 ( b )  = ( b )  and T;'(~)P, + ~ - ' ( b )  strongly 
n-m (3.1) 

(see, e.g., 121, [4], 161). Here P,, is the projection on e2(N) @en by (Pny), = y, for 
1 < j < n and (P,y), = 0 for 2 > n + 1. We will frequently identify the image of 
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P, with C". It is also well known (and easily verified) that the m elements 

form a basis in Ker T(a  - A),  where ej  E e2(N) is the sequence whose j th  term is 
1 and the remaining terms of which are zero. We finally remark that, obviously, 
T(a)  - X I  = T(a  - A) and T,(a) - X I  = T,(a - A). 

Each point X E C \ a # ( ~ )  with wind(a, A) # 0 is an asymptotically good 
pseudoeigenvalue for {T,(a)) (see [4], [6], [lo]). The following theorem provides us 
with a complete description of the structure of asymptotically good pseudomodes. 

Theorem 3.1. Suppose X $ a#(T)  and wind (a, A) = m < 0. Let x, E C n  be unit 
vectors. The sequence {x,) is an asymptotically good pseudomode for {T,(a)) at 

X if and only if there exist c p ) ,  . . . , c c )  E C and z, E C n  such that 

sup /c /" ) l<m,  lim ~ ~ z , ~ ~ = O ,  
n > l ,  1 s j s m  n-w 

where u l ,  . . . , um are given by (3.2). 

Proof. Assume that (3.3) and (3.4) hold. Since IIT,(a - X)P ,  1 1  
see that T,(a - A )  + 0. As the numbers lc/0)1 are bounded by a constant 
independent of n and as P, + I strongly (= pointwise) and T ( a  - X)uj = 0, we 
obtain that 

lim T,(a - h)x, = lim c/")~,(a - h)uj = 0. 
R'03 R'03 

j=1 

Thus, {x,,) is an asymptotically good pseudomode. 

Conversely, suppose IIT,(a - X)x,ll + 0. Put y, = T,(a - X)x,. With Q, = 

I - P,, we have 

Since T(x-,) is nothing but the shift operator (tl, t2,.  . .) H (tm+1, tm+2, .  . .), it 
follows that 

ImA,cImP,-m, ImB,CImP{,-m+l,,,.,, ), (3.5) 

where Im C refers to the image (= range) of the operator C. This implies that 

and hence IIAnxnll + 0 because llynll + 0. The equality T,(x-,)T,(b)x, = A,x, 
gives 

T,(b)xn = cp )e l  + . . . + cg)em + T,(x,)A,x, 
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(77 ) with certain complex numbers c?), . . . , c, . Since 

we conclude that there is an M < m such that IC:")~ 5 M for all n and j .  Finally, 
from (3.1), (3.2) and the equality 

x,, = cjR)T['(b)el + . . . + c e ) ~ ~ ' ( b ) e ,  + T ~ ' ( ~ ) T , ( ~ ~ ) A , ~ ,  

we get (3.3) and (3.4) with 
Tn 

Z,L = T ~ ~ ( ~ ) % , . ( X , , ) A , ~ ,  + Ec/")(T;'(b)e, - ~ , T - ' ( b ) e ~ ) .  
j=1 

This completes the proof. 0 

Let a be as in Theorem 3.1, but in addition suppose now that a belongs to 
the Wiener algebra W(T) ,  i.e., that the Fourier series of a converges absolutely. 
We write a - X = by-,,, as above. Clearly, b is also in W(T) .  Since 0 $ b(T) and 
wind (b,O) = 0, the f~inction b has a Wiener-Hopf factorization b = b-b+. The 
factors bi can be given by 

where log b is any logarithm of b in W(T) .  The Wiener-Hopf factorization b = b- b+ 
yields the representation T-I (b) = T ( b ~ ' ) ~ ( b ~ ' )  (see, e.g., [4] or [6]), or written 
down in detail, T-' (b)  equals 

If a is even rational, then the sequences {(b_t')n}r=o and { ( b I  l )  -,,} decay 
exponentially, and from (3.2) we deduce that u l ,  . . . , urn are also exponentially 
decaying. Thus, Theorem 3.1 implies that, up to the o(1) term z,, all asymptot- 
ically good pseudomodes are exporlentially decaying. We remark that in the case 
where a is a trigonometric polynomial (which is equivalent to the requirement that 
T(a,) be a banded matrix) the existence of exponentially decaying pseudomodes 
was already proved in [lo] and [14]. 

We now sharpen the definition of an asymptotically localized sequence. We 
say that a sequence {y,,} of vectors y, E Cn is asymptotically strongly localized in 
the beginning part if 

lim IIP{l ,..., jn)ynll 
= 1 

n-03 I I Y ~ I I  
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for every sequence { j n ) r = l  such that j ,  -+ m and 1 < j,, 5 n. Asymptotic strong 
localization in the beginning part implies, for example, that (3 .6)  is true with 
jn = log log n (n > 3).  

Theorem 3.2. Suppose X $ a # ( T )  and wind ( a ,  A) = m < 0. Then  every asymp- 
totically good pseudomode for {?;,(a)) at X i s  asymptotically strongly localized i n  
the beginning part. 

Proof. Let { z , , )  be an asynlptotically good pseudomode for {T , , ( a ) )  at A. We may 
without loss of generality assume that llxnll = 1 for a11 n. By Theorem 3.1, 

(n) (n) , where u1, . . . , u,, are given by (3 .2)  and cl , . . . , c,  , -, satisfy (3 .4) .  Choose 

M < m so that lcin)( < M for all i and n. Let { j , , )  be any sequence such that 
jn - cc and 1 5 j, < n. Put Jn = ( 1 , .  . . , j,,) and J,C, = {j,, + I ? .  . . , n ) .  From 
(3.2)  we infer that u l , .  . . ,urn E e 2 ( N ) .  We have lIPj;;~,ll  < M C z l  I(PJ;;uill. 

Since ui = ( u f ) ) r X l  is in e 2 ( N )  and hence 

it follows that 1 1  P,Jh 711, I (  - 0 as n + co. Finally, 

and because 1 1  P j ;  w ,  1 1  + 0 and I( Pj:, z ,  1 1  + 0 as n - m, we arrive at the conclusion 
that IIPJ,,ZIIII - 1. 0 

To conclude this section, suppose that X E C \ a # ( T )  and that wind ( a ,  A) = 

rn > 0. Following [15],  we define by Z ( t )  := a ( l / t )  ( t  E T )  and we let W, be the 
operator that is Pn followed by reversal of the coordinates. We have X $ 8 ( T )  
and wind (a, A) = -m < 0. Moreover, W,,T,(a - X)lt',, = T,(Z - A) and hence 
IIT,(a - X)z, 1 1  = IITn(E - X)IV7,x,, 1 1 .  Consequently, by Theorem 3.1, a sequence 
{z , , )  of unit vectors is an asymptotically good pseudomode of {T , (a ) )  at X if and 
only if 

Wnz, = C l " ) ~ , z l ~  + . . . + cj;)~, ,G,  + z,, 
- (3 .7)  

where c:")l < M < rn for all j and n, ilr,,ll - 0 as n + cc, and G I , .  . . ,u,, are 

given by GJ = T - l G ) e , .  Clearly, (3 .7)  can be rewritten in the form 

z ,  = ci")it;,zll + . . . + ck)w,u , , ,  + z, 
with = It;,z,,. The analogue of Theorem 3.2 says that every asymptotically 
good pseudomode { z , , )  for {T , (a) )  at X is asymptotically strongly localized in 
the terminating part, that is, the sequence {W, ,x , , )  is asymptotically strongly 
localized in the beginning part. 
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4. A continuous analogue of banded circulant matrices 

Let k be a function in L 1 ( R )  and suppose k ( x )  = 0 for 1x1 > r .  For r > 2r, there 
is a unique continuation of k to a r-periodic function k ,  on all of R. A continuous 
analogue of the operator C,(a) considered in Section 2 is the operator on L 2(0 ,  r )  
that is defined by 

( C )  f ) )  = f ( + 1, T - t ) f  ( t )d t .  x E (0 ,  

where y is a fixed number in C .  We put 

We call a point X E C an asymptotically good pseudoeigenvalue for {C, (k ) )  
if ll(C,(k) - XI)-'Il 4 cm as r + CO, and a family {f,),>o of nonzero functions 
f T  E L 2(0 ,  r )  is said to be an asymptotically good pseudomode for {C, (k ) )  at X if 

II(CT(k) - ~I)fTIll l l fTII  0 as 7 + CO. 

Let {g,),,, be a family of elements g, = ( g j T ) ) j t z  E e 2 ( Z ) .  We say that 
{g, )  is asymptotically localized if there exists a family {J,),>,, of finite subsets 
J ,  E Z such that 

IJTI IIp~TgTII lim - = 0 and lim - = 1. 
T'OO 7 

,'O0 1lgT11 

Put p i ( x )  = ( 1 / f i ) e 2 " i j x / T .  The system { p j ) J E z  is an orthonormal basis in 
L 2(0 ,  r ) .  Thus, the map 

is a unitary operator. A family {f,),>o of functions f,  E L 2 ( 0 , r )  will be called 
asymptotically extended if the family { a ,  f,),>,, is asymptotically localized. 

Theorem 4.1. A number X E C is an asymptotically good pseudoeigenvalue for 
{ C , ( k ) )  i f  and only if X E y + ;(it), where R := R U {co).  If X + y E ;(R) and, 
in  addition, X f y ,  then every asymptotically good pseudomode for {C , (k ) )  at X 
is asymptotically extended. 

Proof. For f ,  E L 2 ( 0 , r )  and x E (O,r), 
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Thus, C T ( k )  is unitarily equivalent to the diagonal operator 

This shows that X is an asymptotically good pseudoeigenvalue for { C T ( k ) )  if and 

only if X E y + ;(it). 
A 

Now suppose X = y + k ( & )  with <o E R and let { f,) be an asymptotically 
good pseudomode for { C T ( k ) )  at A. Without loss of generality we may assume 
that 1 1  f.11 = 1  for all T .  Thus, 

Fix E > 0.  For 6  > 0,  consider the sets 

Since ;(to) # 0  and since ; is an entire function, the set E ( 6 )  is a finite union of 
intervals and I E (6) l  --t 0  as 6  --t 0. As IG, (6)  I / T  -, I E ( 6 ) 1 / ( 2 ~ ) ,  there are 6 ( ~ )  > 0  
and t l  ( E )  > 0  such that IGT ( 6 ( ~ ) )  1 / r  < E whenever T > t l  (E ) .  We have 

which in conjunction with (4.1) gives l lPG,(6(E))~T f T 1 I 2  > 1 - E for a11 7 > T ~ ( E ) .  
Let T ( E )  = max(t1 ( E ) ,  t 2 ( ~ ) ) .  

Choose E [  = l / e  (e  > 2 )  and put be := 6 ( ~ ! )  and rt := 7(Ee). We have proved 
that 

1  1  
1GT(6e)1 < - and l lPGr(h,lOT f T

2  > 1  - - for T > re, 
7- e e ( 4 4  

and we may assume that 0  < 7 2  < 7 3  < . . . . Let JT be an arbitrary subset of Z 
for 0  < 7 < 7-2 and define J, = GT(6o) for Te < 7 < 7e+l. Then, by (4.2), 

which shows that lJT1/r  -+ 0  and I IPJTOTfTl\ 1  as 7 CO. Thus, { a ,  f,) is 
asymptotically localized. This means that { f T )  is asymptotically extended. 
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Things are different for X = y .  In the following, P(p,,T,p,) denotes the canon- 
ical projection of t 2 ( Z )  onto the subspace of all sequences whose support is con- 
tained in the interval ( - p ~ ,  p ~ ) .  

Theorem 4.2. Let { f,),>o be an asymptotically good pseudomode for { C T ( k ) )  at 
y and assume Without loss of generality that 1 1  f T l l  = 1 for all T .  If Z(0) # y ,  then 
there exists a p > 0 such that 

If ;(o) = y ,  then there are p and u such that 0 < u < p and 

Proof. Suppose first that ; (o)  # y .  Then I;(<) - yl 2 S > 0 for all I < I  < 27rp with 
some p > 0. Thus, 1;(27r j /~)  - yl > S > 0 whenever I j l  < p r .  Since 

we obtain (4.3) from (4.1). Now suppose ;(o) = y .  Then the entire ; - y has no 
other zeros than 0 in some open neighborhood of 0,  and hence we can find numbers 
p and u such t,hat 0 < u < p and I ; ( < )  - yl > 6 > 0 for 27ru < 111 < 27rp. It follows 
that 1;(27r j /~)  - yl > S > 0 for UT < I j l  < p~ and hence 

Remark 4.3. Theorem 4.2 can be improved by taking into account the orders of 
the zeros of - y at the origin and at infinity. We will not embark on this question 
here. We rather wish to point out that Theorem 4.2 is best possible in general. 

sin < 
Let k ( x )  = 0 for 1x1 > 1 and k ( x )  = 112 for 1x1 < 1. Then;(<) = - < and, 

for f, E L 2(0 ,  T ) ,  

We have Z(0) = 1 # 0. Let {f,) by any asymptotically good pseudomode for 
{C,(k) )  at 0. Thus, 11  f T l l  = 1 for all T > 0 and IIC,(k) f T l l  + 0 as T 4 co. Change 
f, to pT for T E N. Since 
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it follows that the family {h,),>o defined by h, = f, for T $ N and h, = cp, for 
T E N is also an asymptotically good pseudornode for {C,(k)) at the origin. If 
P : (0, m) 4 (0, co) is any superlinear function, that is, any function that increases 
faster than every linear function, then 

2 
l l p ( - ~ ( ~ ) , ~ ( ~ ) ) @ T h T I l ~  = l l P ( - ~ ~ ~ ~ . ~ ( ~ ) ) e T l l  = 1 

whenever T E N and P(T) > T. This shows that (4.3) is not in general true with 
p~ replaced by P(T). 

Now let k(x) = 0 for 1x1 > 1, k(x) = -i/2 for 1 < x < 0, and k(x) = 212 
A A 

for 0 < r < 1. Then k(C) = (1 - cos[)/[. This time k(0) = 0. Since C,(k)cp, = 0 
for T E N ,  we can argue as above to see that (4.4) is not in general valid with p r  
and VT replaced by a superlinear and sublinear function, respectively. 0 

5. Wiener-Hopf integral operators 

The Wiener-Hopf integral operator W(a) generated by a function a E Lm(R)  is the 
bounded linear operator on L2(0, co) that is defined by W(a) f = P F p ' M ( a ) F f ,  
where F is the Fourier transform, 

M(a)  stands for the operator of multiplication by a ,  and P is the orthogonal 
projection of L2(R) onto L2(0, co). If a is of the form a = y + F k  with y E C and 
k E L1(R),  then W(a) can be written as 

The Cauchy singular integral operator on the half-line, 

is W(a)  with the piecewise continuous function a([) := -sign [. The subject of this 
section is truncated Wiener-Hopf operators: for T > 0, the truncated Wiener-Hopf 
operator WT (a) is the compression of W(a) to L2 ( 0 , ~ ) .  

If a E Lm(R)  is piecewise continuous, we define a# (R)  as the closed, contin- 
uous, and naturally oriented curve that results from the (essential) range of a by 
filling in the line segments [a(x - 0), a(x + O)] for the jumps at x E R and the line 
segment [a(+m),  a(-co)] if a has a jump at infinity. We let wind (a, A) denote the 
winding number of a # ( ~ )  about X E C \ a#(R) .  

Let L, be the normalized Laguerre polynomial of degree j - 1, 
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The system { e j ) c ,  given by ej(x) = ~ ~ ( 2 x ) e - ~  is an orthonormal basis in 
L2(0, co). Notice that 

For k E Z, we put 

Suppose a E Lm(R)  is piecewise continuous, X $ a# (R) ,  and wind (a, A )  = 

-m < 0. Then a - X = by-,,, where b is piecewise continuous, 0 $ b # ( ~ ) ,  and 
wind (b, A )  = 0. It follows that W(b) is invertible, that W,(b) is invertible for all 
sufficiently large T, that 

lim 1 1  ~ ~ ' ( b ) l l  = IIW-'(b) 1 1  and w,-'(b)~, + W-'(b) strongly, 
,+m 

where P, is the natural projection of L2(0, CQ) onto L2(0, T) ,  and that the functions 
u3 = WP'(b)e, ( j  = I , .  . . , m) form a basis in Ker W(a - A) (see [2], [3], [6]). 

Theorem 5.1. Let X $ a # ( ~ )  and wind (a,X) = -m < 0. Let further {f,),>o be 
a family of functions f, E L ~ O ,  T) of norm 1. Then the point X is an asymptoti- 
cally good pseudoeigenvalue of {W, (a)),>o. The family { f,) is an asymptotically 
good pseudomode for {W,(a)),>,, at X if and only if there exist complex numbers 
c y ) ,  . . . , c!~) and functions z, E L2(0, T)  such that 

(7 )  limsup max Icj I < CQ, lim \lz,ll = 0, 
,-+m l l j l m  T-m 

Proof. That X is an asymptotically good pseudoeigenvalue was established in [6] 
(also see [2]). The rest of the proof is analogous to the proof of Theorem 3.1, except 
for a modification of (3.5). Thus, suppose W,(a - A )  f, + 0. Let Q, = I - P,. 
Then 

Put AT = P,W(~-r,t)prW(b)P,, B, = PTW(~-rn)QTW(b)PT, h, = W(b)Prf,. 
We denote by Pm the orthogonal projection of L2(0, co) onto the linear hull of 
e l , .  . . , e m  and we set em = I - Pm.  We have P,W(x-,)P, = W(X-,)P, and 
hence, (., .) denoting the inner product in L2(0, a ) ,  
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Since W*(X-,) = W(xm) and W ( X , )  W(X-,) = Qm, it follows that 

(ATfr,BTfT) = (PTh,, QmQrhr) 

= (PrhT, QTh,) - (PThr, PmQTh,) = -(PTh,i PrnQrhr). 

Thus, 

J(A,fT,B.rfT)l 5 IIPThTll IIPmQ.rll IlhTll 5 CIIPmQrll 
with some constant C < cm independent of r .  As Pm is compact and Q: = Q, 
converges strongly to zero, we may conclude that IIPm,Q, 1 1  + 0. Consequently, 
(A, f,, B, f,) + 0 as r + cm. Finally, because 1 1  A, f T  + B, f, ( 1  + 0 and 

I(A,f, + % f T l I 2  = l l ~ , f , I l ~  + l l ~ ~ f ~ 1 1 ~  + 2Re(A,f,,B,f,), 

we obtain that IIA, f , l l  + 0. The rest is as in the proof of Theorem 3.1. 0 

We call a family {f,),>o of nonzero functions f, E L 2(0 , r )  asymptotically 
strongly localized in the beginning part if 

lim IlP(o,s,)fTll = I 
T + W  ll f7 1 1  

whenever s, + ca as r + cm and 0 < s, < r for all r. Again notice that s, 
is allowed to increase as slowly as desired (or required). For example, the choice 
s, = log log log r ( r  large enough) is admitted. 

Theorem 5.2. If X $ a#(R)  and wind (a, A) = -m < 0, then every asymptoti- 
cally good pseudomode for {W,(a)) at X is asymptotically strongly localized in the 
beginning part. 

This can be proved by the same arguments as in the proof of Theorem 3.2.  
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