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In this note we give a new proof of the following surprising fact: the space
of all non-empty subsets of a circle of cardinality at most 3 is homeomorphic to
a 3-sphere, while the subspace corresponding to one-element subsets, is a trefoil
knot.

1. Spaces of finite subsets

For X a topological space let expk X be the set of all non-empty finite subsets of
X of cardinality at most k. There is a map from the Cartesian product of k copies of
X with itself to expk X which sends x1 xk to x1 xk . The quotient
topology gives expk X the structure of a topological space. Notice that for any
m k the space expmX is canonically embedded into expk X . Clearly, exp1X X .
The simplest non-trivial example is provided by the space exp2 S1 which is

homeomorphic to the Möbius band. One way to see it is as follows ([3]). Let
us identify S1 with the boundary of an open disk D in the projective plane. Notice
thatM RP2 D is a Möbius band. For each point x M there exist at most two
lines that pass through x and have a tangency with S1. Let T x exp2 S1 be the
corresponding set of tangency points. Then

T :M exp2 S1

is the desired homeomorphism. Notice that the boundary of the band corresponds
to one-point subsets.
The space exp3 S1 is described by a theorem of R. Bott:

Theorem 1. (Bott, [2]) The space exp3 S1 is homeomorphic to a 3-sphere S3.

The fact that exp3 S1 is a 3-sphere is not obvious at all. In particular, K. Borsuk
claimed in [1] that exp3 S1 is homeomorphic to S1 S2. In fact, Bott’s paper [2] is
a part of a letter to Borsuk where Bott points out the mistake in [1] and corrects the
argument.
An interesting illustration of the non-triviality of Bott’s theorem is the following

result, due to E. Shchepin. Recall that exp1 S1 is a circle, and thus the inclusion
map : exp1 S1 exp3 S1 is a knot in S3.

Theorem 2. (Shchepin, [unpublished]) The embedding : S1 S3 is a trefoil knot.

Remark. The trefoil comes equipped with a canonical “non-orientable Seifert
surface” which is the Möbius band exp2 S1 exp3 S1 .
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In his proof of Theorem 1 Bott used a rather complicated “cut-and-paste” ar-
gument. Shchepin’s proof of Theorem 2 was based on a direct calculation of the
fundamental group of S3 S1 . The purpose of this note is to show that the above
theorems are equivalent to a well-known fact about lattices in a plane.

2. Spaces of lattices.

A closed discrete additive non-trivial subgroup of C is either isomorphic to
Z Z or to an infinite cyclic group. Such subgroups will be referred to as (non-
degenerate) lattices and degenerate lattices respectively and the set of all these
subgroups will be denoted by .
The set is, in fact, a metric space. For L let L be the closure of the set of the

elements of L in the Riemann sphere C . Assume that the Riemann sphere is
given its usual “round” metric. Then the distance between two subgroups L L
is defined as the minimal such that L is contained in the closed -neighbourhood
of the set L, and L is contained in the closed -neighbourhood of L. (This distance
function is known as the Hausdorff metric, 28 of [4] is the classical reference for
it.)
The multiplicative group R of positive real numbers acts on freely by re-

scaling the lattices. The quotient space by this action can be represented as the
union

R L0 L1
where L0, L1 are the spaces of degenerate, respectively non-degenerate lattices
considered up to re-scaling.

Theorem 3. The space of all lattices up to re-scaling R is homeomorphic to
S3. The subspace L0 of degenerate lattices is a circle and the inclusion L0 R
is a trefoil knot.

Remark. The space L1 can be thought of as the space of unimodular lattices, that
is, lattices whose fundamental domain has unit area. Thus L1 can be identified with
the homogeneous space SL 2 R SL 2 Z . Indeed, applying elements of SL 2 R
to the standard basis in R2 one obtains all unimodular lattices, and every lattice has
SL 2 Z as its automorphism group.

The proof of the above theorem can be found in [7], see also page 84 of [6]. We
sketch the argument very briefly below.

Sketch of the proof. For L define the complex numbers G4 L and G6 L by

Gk L k

where the sum is taken over all non-zero points of L. The following statements are
well-known in the theory of elliptic functions:

(a) the map C2 0 given by sending the subgroup L to the pair G4 L G6 L
is a homeomorphism;

(b) a pair u v C2 0 is the image of a non-degenerate lattice if and only if
20u3 49v2 0.
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(For a non-degenerate lattice L the numbers G4 L and G6 L are the parameters
in the differential equation for the Weierstraß function L:

L
2 4 3

L 60G4 L L 140G6 L
The statements (a) and (b) are equivalent to saying that a differential equation of the
above form determines a non-degenerate lattice provided that the cubic polynomial
on the right-hand side has distinct roots.)
Now, consider a unit sphere S3 centred at the origin in C2. For any L and

any t 0
G4 tL t 4G4 L
G6 tL t 6G6 L

This means that for any L there exists the unique L such that L and L are
homothetic, and such that the point G4 L G6 L lies on S3 C2 0. It follows
from (a) that the map which sends L to G4 L G6 L gives a homeomorphism
between R and S3. Finally, the intersection of S3 with the curve 20u3 49v2
0 is easily seen to be a trefoil knot; according to (b) this set corresponds precisely
to the degenerate lattices.

3. Main theorem

Our main result relates Theorem 3 to Theorems 1 and 2.

Theorem 4. There is a homeomorphism : R exp3 S1 which identifies the
circle L0 with S1 .

Remark. The circle S1 acts as a subgroup of PSL 2 R on rotating the lattices.
It will be clear from the construction below that sends the action of S1 on R
to the action of SO 2 by rotations on exp3 S1.

Proof. The Voronoi cell1 V L of a non-degenerate lattice L is defined as the set of
such z C that z z for all non-zero lattice points L. The Voronoi cell
of a rectangular lattice is a rectangle, for any other lattice it is a hexagon ([5]).

Let v be a vertex of the polygon V L . The minimal distance between v and
points of L is attained generically on three (in case of a rectangular lattice four)

1also known as the Dirichlet region
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lattice points i. The set of lines connecting v to these points consists of either 3
or 2 lines, as shown on the figure.
Consider the translation of C which sends the vertex v to the origin. It sends the

lines connecting v to i to lines passing through the origin. It is easy to see that the
resulting set of lines only depends on L and not on the choice of the vertex v.
Recall now that lines passing through the origin inR2 can be thought as points of

a circle S1 RP1. Thus the above construction associates to every non-degenerate
lattice L a point L in exp3 S1. For homothetic lattices L, L it is clear that L
L so, in fact, descends to a map

: L1 exp3 S1

It remains to define the map on degenerate lattices. Each additive cyclic
subgroup of C is contained in the unique line. The map is defined on L0 by
sending a degenerate lattice L to the one-point subset of RP1 that corresponds to
the line orthogonal to the line containing L.
The continuity of needs to be checked on L0 and on the subspace of rectan-

gular lattices. In both cases it is straightforward.
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