LATTICES IN $\mathbb C$ AND FINITE SUBSETS OF A CIRCLE

JACOB MOSTOVOY

In this note we give a new proof of the following surprising fact: the space of all non-empty subsets of a circle of cardinality at most 3 is homeomorphic to a 3-sphere, while the subspace corresponding to one-element subsets, is a trefoil knot.

1. Spaces of finite subsets

For X a topological space let $\exp_k X$ be the set of all non-empty finite subsets of X of cardinality at most k. There is a map from the Cartesian product of k copies of X with itself to $\exp_k X$ which sends (x_1, \ldots, x_k) to $\{x_1\} \cup \ldots \cup \{x_k\}$. The quotient topology gives $\exp_k X$ the structure of a topological space. Notice that for any $m \le k$ the space $\exp_m X$ is canonically embedded into $\exp_k X$. Clearly, $\exp_1 X = X$.

The simplest non-trivial example is provided by the space $\exp_2 S^1$ which is homeomorphic to the Möbius band. One way to see it is as follows ([3]). Let us identify S^1 with the boundary of an open disk D in the projective plane. Notice that $M = \mathbb{RP}^2 \setminus D$ is a Möbius band. For each point $x \in M$ there exist at most two lines that pass through x and have a tangency with S^1 . Let $T(x) \in \exp_2 S^1$ be the corresponding set of tangency points. Then

$$T: M \to \exp_2 S^1$$

is the desired homeomorphism. Notice that the boundary of the band corresponds to one-point subsets.

The space $\exp_3 S^1$ is described by a theorem of R. Bott:

Theorem 1. (Bott, [2]) The space $\exp_3 S^1$ is homeomorphic to a 3-sphere S^3 .

The fact that $\exp_3 S^1$ is a 3-sphere is not obvious at all. In particular, K. Borsuk claimed in [1] that $\exp_3 S^1$ is homeomorphic to $S^1 \times S^2$. In fact, Bott's paper [2] is a part of a letter to Borsuk where Bott points out the mistake in [1] and corrects the argument.

An interesting illustration of the non-triviality of Bott's theorem is the following result, due to E. Shchepin. Recall that $\exp_1 S^1$ is a circle, and thus the inclusion map $\Delta : \exp_1 S^1 \hookrightarrow \exp_3 S^1$ is a knot in S^3 .

Theorem 2. (Shchepin, [unpublished]) *The embedding* $\Delta : S^1 \to S^3$ *is a trefoil knot*.

Remark. The trefoil Δ comes equipped with a canonical "non-orientable Seifert surface" which is the Möbius band $\exp_2 S^1 \subset \exp_3 S^1$.

2000 Mathematics Subject Classification. Primary 54B20; Secondary 11H06.

1

2 J.MOSTOVOY

In his proof of Theorem 1 Bott used a rather complicated "cut-and-paste" argument. Shchepin's proof of Theorem 2 was based on a direct calculation of the fundamental group of $S^3 \setminus \Delta(S^1)$. The purpose of this note is to show that the above theorems are equivalent to a well-known fact about lattices in a plane.

2. Spaces of lattices.

A closed discrete additive non-trivial subgroup of \mathbb{C} is either isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$ or to an infinite cyclic group. Such subgroups will be referred to as *(non-degenerate) lattices* and *degenerate lattices* respectively and the set of all these subgroups will be denoted by Λ .

The set Λ is, in fact, a metric space. For $L \in \Lambda$ let \overline{L} be the closure of the set of the elements of L in the Riemann sphere $\mathbb{C} \cup \{\infty\}$. Assume that the Riemann sphere is given its usual "round" metric. Then the distance between two subgroups $L, L' \in \Lambda$ is defined as the minimal such ε that \overline{L} is contained in the closed ε -neighbourhood of the set \overline{L} , and \overline{L} is contained in the closed ε -neighbourhood of \overline{L} . (This distance function is known as the *Hausdorff metric*, §28 of [4] is the classical reference for it.)

The multiplicative group \mathbf{R}^+ of positive real numbers acts on Λ freely by rescaling the lattices. The quotient space by this action can be represented as the union

$$\Lambda/\mathbf{R}^+ = L_0 \cup L_1$$

where L_0 , L_1 are the spaces of degenerate, respectively non-degenerate lattices considered up to re-scaling.

Theorem 3. The space of all lattices up to re-scaling Λ/\mathbb{R}^+ is homeomorphic to S^3 . The subspace L_0 of degenerate lattices is a circle and the inclusion $L_0 \hookrightarrow \Lambda/\mathbb{R}^+$ is a trefoil knot.

Remark. The space L_1 can be thought of as the space of *unimodular* lattices, that is, lattices whose fundamental domain has unit area. Thus L_1 can be identified with the homogeneous space $SL(2, \mathbf{R})/SL(2, \mathbf{Z})$. Indeed, applying elements of $SL(2, \mathbf{R})$ to the standard basis in \mathbf{R}^2 one obtains all unimodular lattices, and every lattice has $SL(2, \mathbf{Z})$ as its automorphism group.

The proof of the above theorem can be found in [7], see also page 84 of [6]. We sketch the argument very briefly below.

Sketch of the proof. For $L \in \Lambda$ define the complex numbers $G_4(L)$ and $G_6(L)$ by

$$G_k(L) = \sum_{\omega} \omega^{-k}$$

where the sum is taken over all non-zero points of L. The following statements are well-known in the theory of elliptic functions:

- (a) the map $\Lambda \to \mathbb{C}^2 \setminus 0$ given by sending the subgroup L to the pair $(G_4(L), G_6(L))$ is a homeomorphism;
- (b) a pair $(u, v) \in \mathbb{C}^2 \setminus 0$ is the image of a non-degenerate lattice if and only if $20u^3 49v^2 \neq 0$.

(For a non-degenerate lattice L the numbers $G_4(L)$ and $G_6(L)$ are the parameters in the differential equation for the Weierstraß function \mathcal{D}_L :

$$(\wp_L')^2 = 4\wp_L^3 - 60G_4(L)\wp_L - 140G_6(L).$$

The statements (a) and (b) are equivalent to saying that a differential equation of the above form determines a non-degenerate lattice provided that the cubic polynomial on the right-hand side has distinct roots.)

Now, consider a unit sphere S^3 centred at the origin in \mathbb{C}^2 . For any $L \in \Lambda$ and any t > 0

$$G_4(tL) = t^{-4}G_4(L),$$

 $G_6(tL) = t^{-6}G_6(L).$

This means that for any L there exists the unique $L' \in \Lambda$ such that L and L' are homothetic, and such that the point $(G_4(L'), G_6(L'))$ lies on $S^3 \in \mathbb{C}^2 \setminus 0$. It follows from (a) that the map which sends L to $(G_4(L'), G_6(L'))$ gives a homeomorphism between Λ/\mathbb{R}^+ and S^3 . Finally, the intersection of S^3 with the curve $20u^3 - 49v^2 = 0$ is easily seen to be a trefoil knot; according to (b) this set corresponds precisely to the degenerate lattices.

3. Main theorem

Our main result relates Theorem 3 to Theorems 1 and 2.

Theorem 4. There is a homeomorphism $\Phi : \Lambda/\mathbb{R}^+ \to \exp_3 S^1$ which identifies the circle L_0 with $\Delta(S^1)$.

Remark. The circle S^1 acts as a subgroup of $PSL(2, \mathbf{R})$ on Λ rotating the lattices. It will be clear from the construction below that Φ sends the action of S^1 on Λ/\mathbf{R}^+ to the action of SO(2) by rotations on $\exp_3 S^1$.

Proof. The *Voronoi cell*¹ V(L) of a non-degenerate lattice L is defined as the set of such $z \in \mathbb{C}$ that $|z| \leq |z - \omega|$ for all non-zero lattice points $\omega \in L$. The Voronoi cell of a rectangular lattice is a rectangle, for any other lattice it is a hexagon ([5]).

Let v be a vertex of the polygon V(L). The minimal distance between v and points of L is attained generically on three (in case of a rectangular lattice four)

¹also known as the *Dirichlet region*

J.MOSTOVOY

4

lattice points ω_i . The set of lines connecting v to these points consists of either 3 or 2 lines, as shown on the figure.

Consider the translation of \mathbb{C} which sends the vertex v to the origin. It sends the lines connecting v to ω_i to lines passing through the origin. It is easy to see that the resulting set of lines only depends on L and not on the choice of the vertex v.

Recall now that lines passing through the origin in \mathbb{R}^2 can be thought as points of a circle $S^1 = \mathbb{RP}^1$. Thus the above construction associates to every non-degenerate lattice L a point $\phi(L)$ in $\exp_3 S^1$. For homothetic lattices L, L' it is clear that $\phi(L) = \phi(L')$ so, in fact, ϕ descends to a map

$$\Phi: L_1 \to \exp_3 S^1$$
.

It remains to define the map Φ on degenerate lattices. Each additive cyclic subgroup of \mathbf{C} is contained in the unique line. The map Φ is defined on L_0 by sending a degenerate lattice L to the one-point subset of \mathbf{RP} that corresponds to the line *orthogonal* to the line containing L.

The continuity of Φ needs to be checked on L_0 and on the subspace of rectangular lattices. In both cases it is straightforward.

Acknowledgments. I would like to thank E. Shchepin, A. Mouhallil and A. Verjovsky for discussions. I am also grateful to T. Gendron, J. Roberts and S. Willerton for comments on the draft version of this paper.

REFERENCES

- [1] K. Borsuk, On the third symmetric potency of the circumference, Fund. Math. 36 (1949), 236–244
- [2] R. Bott, On the third symmetric potency of S_1 , Fund. Math. 39 (1952), 264–268.
- [3] É. Ghys, *Prolongements des difféomorphismes de la sphère*, Enseign. Math. (2) **37** (1991), 45–59.
- [4] F. Hausdorff, Set theory, Chelsea, NY, 1957.
- [5] G. Jones and D. Singerman, Complex functions, Cambridge University Press, Cambridge, 1987.
- [6] J. Milnor, Introduction to algebraic K-theory, Princeton, 1971.
- [7] I. Pourezza and J. Hubbard, The space of closed subgroups of R², Topology 18 (1979), 143–146.

Instituto de Matemáticas (Unidad Cuernavaca), Universidad Nacional Autónoma de México, Av. Universidad s/n, C.P. 62210, Cuernavaca, Morelos, MEXICO

E-mail address: jacob@matcuer.unam.mx