ON POSITIVE TYPE INITIAL PROFILES
FOR THE KDV EQUATION

SERGEI GRUDSKY AND ALEXEI RYBKIN

(Communicated by James E. Colliander)

Abstract. We show that the KdV flow evolves any real locally integrable
initial profile \(q \) of the form \(q = r' + r^2 \), where \(r \in L^2_{\text{loc}}, \ r|_{\mathbb{R}_+} = 0 \) into a
meromorphic function with no real poles.

1. Introduction

This note is closely related to the recent paper [7] by Kappeler et al. and [12] by
one of the authors.

More specifically, we are concerned with well-posedness and related issues of the
initial value problem for the Korteweg-De Vries (KdV) equation \((x \in \mathbb{R}, t \geq 0)\)

\[
\begin{aligned}
\partial_t u - 6u \partial_x u + \partial_x^3 u &= 0, \\
u(x, 0) &= q(x)
\end{aligned}
\]

with certain non-smooth and non-decaying initial profiles \(q \).

The problem of well-posedness of \((1.1)\) was raised back in the late 1960s about the
same time as the inverse scattering formalism for \((1.1)\) was discovered and has drawn
everous attention. We are not in a position to go over the extensive literature on
the subject and refer to the book [13] by Tao where further references are given. We
only mention here that a large amount of effort has been put into well-posedness
in Sobolev spaces \(H^s (\mathbb{R}) \) with negative indices \(s \) (that is, the space of distributions
subject to \((1 + |x|)^s \hat{f}(x) \in L^2 (\mathbb{R}))\). Reaching \(s = -3/4 \) in [8] by Colliander et al.
was a very important milestone. This case covers such physically significant initial
data as the delta function, Coulomb potential, etc., but the harmonic analytical
methods employed there meet real problems for \(s < -3/4 \). An important step in
crossing this threshold was done by Kappeler et al. [7], where it was shown that
\((1.1)\) is globally well-posed in a certain sense if \(q = r' + r^2 \) with some \(r \in L^2 (\mathbb{R}) \).

The map

\[
B(r) = r' + r^2, \quad r \in L^2_{\text{loc}} (\mathbb{R}),
\]

is commonly referred to as Miura. It is easy to see that the Schrödinger operator

\[
L_q = -\partial_x^2 + q(x), \quad x \in \mathbb{R},
\]

was a very important milestone. This case covers such physically significant initial
data as the delta function, Coulomb potential, etc., but the harmonic analytical
methods employed there meet real problems for \(s < -3/4 \). An important step in
crossing this threshold was done by Kappeler et al. [7], where it was shown that
\((1.1)\) is globally well-posed in a certain sense if \(q = r' + r^2 \) with some \(r \in L^2 (\mathbb{R}) \).

The map

\[
B(r) = r' + r^2, \quad r \in L^2_{\text{loc}} (\mathbb{R}),
\]

is commonly referred to as Miura. It is easy to see that the Schrödinger operator

\[
L_q = -\partial_x^2 + q(x), \quad x \in \mathbb{R},
\]

was a very important milestone. This case covers such physically significant initial
data as the delta function, Coulomb potential, etc., but the harmonic analytical
methods employed there meet real problems for \(s < -3/4 \). An important step in
crossing this threshold was done by Kappeler et al. [7], where it was shown that
\((1.1)\) is globally well-posed in a certain sense if \(q = r' + r^2 \) with some \(r \in L^2 (\mathbb{R}) \).

The map

\[
B(r) = r' + r^2, \quad r \in L^2_{\text{loc}} (\mathbb{R}),
\]

is commonly referred to as Miura. It is easy to see that the Schrödinger operator

\[
L_q = -\partial_x^2 + q(x), \quad x \in \mathbb{R},
\]
is positive, i.e. $L_q \geq 0$, for any such $q \in B \left(L_{l_{oc}}^2 (\mathbb{R}) \right)$. One of the main results of [7] is that the converse of this fact also holds true; i.e. if $L_q \geq 0$, then $q \in B \left(L_{l_{oc}}^2 (\mathbb{R}) \right)$. We call such a potential q positive type, and it is our main object.

We note that all functions in $B \left(L^2 (\mathbb{R}) \right)$ exhibit certain decay at $\pm \infty$. On the other hand, there has been significant interest in non-decaying solutions to (1.1) (other than periodic). The case of the so-called steplike initial profiles (i.e. when $q(x) \to 0$ sufficiently fast as $x \to +\infty$ ($-\infty$) and $q(x)$ doesn’t decay at $-\infty$ ($+\infty$)) is of physical interest and has attracted much attention since the early 1970s. We refer to the recent paper [5] by Egorova-Grunert-Teschl for a comprehensive account of the (rigorous) literature on steplike initial profiles with specified behavior at infinity (e.g. q tending to a constant, periodic function, etc.). In the recent paper [12] of one of the authors (see also [11]) the case of q’s rapidly decaying at $+\infty$ and sufficiently arbitrary at $-\infty$ is studied in great detail.

The current note is concerned with treating positive type steplike initial data q in (1.1). To avoid technical complications we assume that $q \in L_{l_{oc}}^2 (\mathbb{R})$ and identically vanishes on $\mathbb{R}_+ := (0, \infty)$, even though q has no smoothness and any kind of decay at $-\infty$ except that the fact that q vanishes on \mathbb{R}_+ leads to an extremely strong smoothing effect. Dispersion instantaneously turns such initial profiles $q(x)$ into a function $u(x,t)$ meromorphic in x on the whole complex plane for any $t > 0$. The well-posedness of problem (1.1) can therefore be understood in a classical sense and moreover it comes with an explicit formula

$$u(x,t) = -2\partial_x^2 \log \det (1 + H_{x,t}),$$

where $H_{x,t}$ is the Hankel operator with symbol

$$\varphi_{x,t}(\lambda) = \frac{i\lambda - m(\lambda^2)}{i\lambda + m(\lambda^2)} e^{2i\lambda(\lambda^2 t + x)}, \quad \lambda \in \mathbb{R}, \ x \in \mathbb{R}, \ t > 0,$$

where m is the Titchmarsh-Weyl m-function associated with L_q on $\mathbb{R}_- := (-\infty, 0)$ with a Dirichlet boundary condition at 0.

Each pole of the meromorphic in x function $u(x,t)$ is necessarily double moving over time $t > 0$, but no other type of singularity can develop. The well-posedness of our problem, among others, means that such poles never cross the real line (but may however asymptotically approach it). That is, no positon (a solution having a second order moving singularity) may occur in our situation. Incidentally, a positon solution is an example of a singular solution from $H^{-2}(\mathbb{R})$. Note that while such solutions (as well as some other strongly singular solutions) were discovered a long time ago and have received considerable attention (see e.g. [9] by Matveev and the extensive literature cited therein), no rigorous general theory is available to date to treat such initial data. We only mention that the main difficulty comes from the fact that the Schrödinger operator L_q with $q \in H^{-2}$ is ill-defined, as it can be introduced in different non-equivalent ways which result in real problems applying the inverse scattering method. Standard harmonic analytic techniques also fail to handle such singular distributions.

Our approach is based on a suitable adaptation of the inverse scattering formalism and analysis of Hankel operators with certain oscillatory symbols. Moreover, the theory of Hankel operators is used in a quite substantial way, and we hope that our approach may turn out to be productive in many other important issues of completely integrable systems.
The paper is organized as follows. In Section 2 we review Hankel operators and prove a new result related to a Hankel operator with a cubic oscillatory symbol. In Section 3 we recall the concept of the Titchmarsh-Weyl \(m\)-function and some elements of the scattering theory. In the last section, Section 4, we state and prove our main result.

2. HANKEL OPERATORS

Hankel operators naturally appear in linear algebra, operator theory, complex analysis, mathematical physics, and many other areas. In our note they play a crucial role. However, their formal definitions vary. In the context of integral operators, a Hankel operator is usually defined as an integral operator on \(L^2(\mathbb{R}_+)\) whose kernel depends on the sum of the arguments; i.e.

\[
(\mathbb{H}f)(x) = \int_{0}^{\infty} H(x+y)f(y)dy \quad , \quad x \geq 0 \, , \quad f \in L^2(\mathbb{R}_+) ,
\]

with some function \(H\).

In many situations, including ours, \(H\) is not a function but rather a distribution. It is convenient then to accept a regularized version of (2.1).

Let\(^1\)

\[
(\mathcal{F}f)(\lambda) = \frac{1}{\sqrt{2\pi}} \int e^{i\lambda x} f(x)dx
\]

be the Fourier transform and \(\chi\) the Heaviside function of \(\mathbb{R}_+\).

Definition 2.1. Given \(\varphi \in L^\infty(\mathbb{R})\), we call the operator \(\mathbb{H}_\varphi\) on \(L^2(\mathbb{R}_+)\) defined for any \(f \in L^2(\mathbb{R}_+)\) by

\[
\mathbb{H}_\varphi f = \chi \mathcal{F}\varphi \mathcal{F}f
\]

the Hankel operator on \(L^2(\mathbb{R}_+)\) with symbol \(\varphi\).

It follows from a straightforward computation that (2.1) and (2.2) agree if \(\varphi \in L^2(\mathbb{R}) \cap L^\infty(\mathbb{R})\) and \(H = \mathcal{F}\varphi\). However if \(\varphi\) is merely \(L^\infty(\mathbb{R})\), then \(\mathcal{F}\varphi\) is not a function but a (tempered) distribution. The operator \(\mathbb{H}\) given by (2.1) is no longer well-defined, but the one given by (2.2) is.

The Hankel operator \(\mathbb{H}_\varphi\) is clearly bounded from (2.2). One immediately has

\[
\|\mathbb{H}_\varphi\| \leq \|\varphi\|_\infty .
\]

Membership of \(\mathbb{H}_\varphi\) in narrower Schatten-Von Neumann ideals is, however, a much more subtle issue which was completely resolved by Peller in about 1980 (see e.g. [10]).

We will be particularly concerned with the invertibility of \(1 + \mathbb{H}_\varphi\). The first fact is trivial.

Lemma 2.2. Let \(\varphi\) be such that \(|\varphi(\lambda)| \leq 1\) a.e. \(\lambda \in \mathbb{R}\) and \(|\varphi(\lambda)| < 1\) a.e. on a set \(S\) of positive Lebesgue measure. Then \(-1\) is not an eigenvalue of \(\mathbb{H}_\varphi\).

Proof. Assume \(-1\) is an eigenvalue of \(\mathbb{H}_\varphi\) and \(f \neq 0\) is the corresponding normalized eigenvector (i.e. \(\|f\|_{L^2(\mathbb{R}_+)} = 1\)).

It follows from

\[
f + \mathbb{H}_\varphi f = 0
\]

\(^1\)For brevity we set \(f := f_{-\infty}^\infty\).
that

\[1 + \int \varphi(\lambda) \hat{f}(\lambda) \hat{f}(\lambda) d\lambda = 0 \]

and hence

(2.4) \[1 + \text{Re} \int \varphi(\lambda) \hat{f}(\lambda) \hat{f}(\lambda) d\lambda = 0. \]

But

\[
\text{Re} \int \varphi(\lambda) \hat{f}(\lambda) d\lambda \leq \int \left| \varphi(\lambda) \hat{f}(\lambda) \right| \left| \hat{f}(\lambda) \right| d\lambda
\leq \left\| \varphi \hat{f} \right\|_{L^2(\mathbb{R}_+)} \left\| \hat{f} \right\|_{L^2(\mathbb{R}_+)} = \left\| \varphi \hat{f} \right\|_{L^2(\mathbb{R}_+)}
= \left(1 - \int_S \left(1 - |\varphi(\lambda)|^2 \right) \left| \hat{f}(\lambda) \right|^2 d\lambda \right)^{1/2}
< 1,
\]

(2.5) since as an \(H^2 \) function \(\hat{f} \) cannot vanish identically on \(S \). Comparing (2.4) and (2.5) leads to a contradiction. \(\square \)

The proof of Lemma 2.2 is no longer valid if \(|\varphi(\lambda)| = 1 \) for a.e. real \(\lambda \).

However in our setting symbols \(\varphi \) have a very specific structure:

(2.6) \[\varphi(\lambda) = e^{i\lambda(a^2+a)} I(\lambda), \]

where \(a \) is a real number and \(I \) is an inner function of the upper half plane (i.e. \(I \in H^\infty_+ \) and \(|I(\lambda)| = 1 \) a.e. \(\lambda \in \mathbb{R} \)).

Lemma 2.3. Let \(\varphi \) be given by (2.6). Then

1. \(\mathbb{H}_\varphi \) is a compact operator,
2. \(1 + \mathbb{H}_\varphi \) is invertible.

Proof. Our argument is based upon the factorization (see [1], [4], Section 5.10, [6])

(2.7) \[e^{i\lambda(a^2+a)} = B(\lambda)U(\lambda), \quad \lambda \in \mathbb{R}, \]

where \(B(\lambda) \) is a Blaschke product with infinitely many zeros accumulating at infinity and \(U \) is a unimodular function from \(C(\mathbb{R}) \), the class of continuous on \(\mathbb{R} \) functions \(f \) subject to

\[\lim_{\lambda \to -\infty} f(\lambda) = \lim_{\lambda \to \infty} f(\lambda) \neq \pm \infty. \]

Since a product of an inner function and a \(C(\mathbb{R}) \)-function is in the algebra \(H^\infty_+ + C(\mathbb{R}) \), by the Hartman theorem [8], \(\mathbb{H}_\varphi \) is compact and (1) is proven.

Consider the Hankel operator (2.2) in the Fourier representation. Denoting \(P_\pm \) as the Riesz projection in \(L^2(\mathbb{R}_+) \) onto \(H^2_\pm \), we have

\[
\mathcal{F} \mathbb{H}_\varphi \mathcal{F}^{-1} = \mathcal{F} \chi \mathcal{F} \varphi \mathcal{F}^{-1} = P_+ \mathcal{F} \varphi = P_+ \mathcal{F}^2 \varphi = P_+ J \varphi = J P_+ \varphi,
\]

where \(J f(x) = f(-x) \). Thus, the operator

(2.8) \[J P_- \varphi : H^2_+ \to H^2_+ \]

\(H^p_\pm (0 < p \leq \infty) \) are standard Hardy spaces of the upper (lower) half planes \(\mathbb{C}_\pm \).
is unitarily equivalent to \mathbb{H}_φ. Let T_φ be the Toeplitz operator on H^2_+, i.e.

$$T_\varphi f = P_+ \varphi f, \quad f \in H^2_+.$$

Note ([2], Ch. 2) that (2.7) implies left-invertibility of the operator T_φ and, by the Devinatz-Widom theorem ([2], p. 59), there exists a function $f \in H^\infty_+$ such that

$$\|\varphi - f\|_{L^\infty} < 1.$$

Thus, it immediately follows from the representation (2.8) that

$$\mathbb{H}_\varphi = \mathbb{H}_{\varphi - f}$$

and hence from (2.3) and (2.7) that

$$\|H_\varphi\| = \|\mathbb{H}_{\varphi - f}\| \leq \|\varphi - f\|_{L^\infty} < 1.$$

This proves (2), and the lemma is proven.

3. The Titchmarsh-Weyl m-function and the reflection coefficient

Consider the half line Schrödinger equation

$$L_q u = zu, \quad x \in \mathbb{R}_-.$$

If $L_q \geq 0$, then there exists a unique (up to a multiplicative constant) solution, called Weyl, such that $\Psi(x, z) \in L^2(\mathbb{R}_-)$ for each $z \in \mathbb{C}^+$. Existence and uniqueness of such a solution take place under much more general assumptions on q (see e.g. [14]), but we don’t need to explain them here.

Definition 3.1. The function

$$m(z) = -\frac{\partial_x \Psi(0, z)}{\Psi(0, z)}, \quad z \in \mathbb{C}^+,$$

is called a (Dirichlet or principal) Titchmarsh-Weyl m-function associated with L_q on $L^2(\mathbb{R}_-)$ with the Dirichlet boundary condition $u(0) = 0$.

The Titchmarsh-Weyl m-function is a fundamental object of the spectral theory of ordinary differential operators and has a number of important properties. In particular, $m(z)$ is analytic on \mathbb{C}^+ and has the Herglotz property: $m : \mathbb{C}^+ \to \mathbb{C}^+$.

Moreover, due to the positivity of L_q the function $m(\lambda^2)$ as a function of λ is analytic everywhere in \mathbb{C}^+ and $m(\lambda^2) = i\lambda + o(1), \lambda \to \infty$, in any angle $0 < \varepsilon < \arg \lambda < \pi - \varepsilon$.

Now define the reflection coefficient $R(\lambda)$ from the right incident of q such that $q|_{\mathbb{R}_+} = 0$. To this end consider a solution to

$$L_q y = \lambda^2 y$$

which is proportional to the Weyl solution $\Psi(x, \lambda^2)$ on \mathbb{R}_- and equal to $e^{-i\lambda x} + R(\lambda)e^{i\lambda x}$ on \mathbb{R}_+. From the continuity of this solution and its derivative at 0 one has

$$R(\lambda) = \frac{i\lambda - \frac{\psi'(0, \lambda^2)}{\psi(0, \lambda^2)}}{i\lambda + \frac{\psi'(0, \lambda^2)}{\psi(0, \lambda^2)}} = \frac{i\lambda - m(\lambda^2)}{i\lambda + m(\lambda^2)}.$$

Note that while m has no clear physical meaning, the reflection coefficient R does.

It follows from the above properties of the m-function that $R(\lambda)$ is an analytic function on \mathbb{C}^+ and $|R(\lambda)| \leq 1$ for $\lambda \in \mathbb{C}^+$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
4. MAIN RESULT

In this section we state and prove our main result.

Theorem 4.1. Let \(q \) in (1.1) be locally integrable, supported on \(\mathbb{R}_- \) and such that the Schrödinger operator \(L_q \geq 0 \). Then there is a (unique) classical solution to (1.1) given by

\[
\tag{4.1} u(x, t) = -2\partial_x^2 \log \det \left(1 + \mathbb{H}_{x,t} \right).
\]

Here \(\mathbb{H}_{x,t} \) is the trace class Hankel operator on \(L^2(\mathbb{R}_+) \) with the symbol

\[
\varphi_{x,t}(\lambda) = \frac{i\lambda - m(\lambda^2)}{i\lambda + m(\lambda^2)} e^{2i\lambda x + 8i\lambda^3 t},
\]

where \(m \) is the (Dirichlet) Titchmarsh-Weyl \(m \)-function of \(L_q \) on \(L^2(\mathbb{R}_-) \).

The solution \(u(x, t) \) is meromorphic in \(\mathbb{C}^+ \) for any \(t > 0 \) with no real poles.

Proof. It is proven in [2] that

\[
L_q \geq 0 \implies q \in B\left(L^2_{\text{loc}} \right),
\]

where \(B(r) = r' + r^2 \) is the Miura map. Since \(q \in L^1_{\text{lim func loc}} \), the function \(r \) is locally absolutely continuous. Approximate \(r \) with smooth, compactly supported functions \(\tilde{r} \). Then \(\tilde{q} = r' + r^2 \) approximates \(q \) in \(L^1_{\text{loc}} \). For each \(\tilde{q} \) there exists the right reflection coefficient \(\tilde{R} \). The (classical) Marchenko operator \(\mathbb{H}_{x,t} \) has no discrete component (since \(L_{\tilde{q}} \geq 0 \)) and hence it takes the form

\[
\left(\mathbb{H}_{x,t} f \right)(\cdot) = \int_0^\infty \tilde{H}_{x,t}(\cdot + y) f(y) dy,
\]

where

\[
\tilde{H}_{x,t}(\cdot) = \frac{1}{2\pi} \int e^{2i\lambda x+8i\lambda^3 t} e^{i\lambda(\cdot)} \tilde{R}(\lambda) d\lambda.
\]

For the reflection coefficient \(\tilde{R} \), by (5.1), we have

\[
\tilde{R}(\lambda) = \frac{i\lambda - \tilde{m}(\lambda^2)}{i\lambda + \tilde{m}(\lambda^2)},
\]

where \(\tilde{m} \) is the Titchmarsh-Weyl \(m \)-function associated with \(L_{\tilde{q}} \) with the Dirichlet boundary condition at 0. By the properties of the reflection coefficient, \(\tilde{R}(\lambda) \) is analytic in \(\mathbb{C}^+ \), \(\tilde{R}(\lambda) = O(1/\lambda) \), \(\lambda \to \pm \infty \), and \(|\tilde{R}(\lambda)| \leq 1 \), \(\lambda \in \mathbb{C}^+ \). One can obviously deform the contour of integration in (4.3) now and thus (4.3) reads

\[
\tilde{H}_{x,t}(\cdot) = \frac{1}{2\pi} \int_{\text{Im } \lambda = h} e^{2i\lambda x+8i\lambda^3 t} e^{i\lambda(\cdot)} \tilde{R}(\lambda) d\lambda,
\]

for any \(h > 0 \). Since the integrand in (4.4) is clearly integrable along the line \(\text{Im } \lambda = h \), the operator \(\mathbb{H}_{x,t} \) is trace class (see [12]) and the function

\[
\tilde{u}(x, t) = -2\partial_x^2 \log \det \left(1 + \mathbb{H}_{x,t} \right)
\]

is well-defined and solves (1.1) with the initial data \(\tilde{q} \).

We now pass to the limit in (4.5) as \(\tilde{q} \to q \) in \(L^1_{\text{loc}} \). It is well-known that \(\tilde{m}(\lambda^2) \to m(\lambda^2) \) on each compact set in \(\mathbb{C}^+ \), and hence

\[
\tilde{R}(\lambda) = \frac{i\lambda - \tilde{m}(\lambda^2)}{i\lambda + \tilde{m}(\lambda^2)} \quad \rightarrow \quad R(\lambda) = \frac{i\lambda - m(\lambda^2)}{i\lambda + m(\lambda^2)}
\]
on each compact in \mathbb{C}^+. The oscillatory factor $e^{2i\lambda x + 8i\lambda^3 t}$ exhibits a superexponential decay on $\text{Im} \lambda = h > 0$. This means that (see [12] for)
\[\tilde{H}_{x,t} \rightarrow H_{x,t} \]
for any $x \in \mathbb{R}$, $t > 0$ in trace class norm, and hence
\[\det (1 + \tilde{H}_{x,t}) \rightarrow \det (1 + H_{x,t}) . \]

Note that $\tilde{H}_{x,t}$ and
\[H_{x,t} (\cdot) = \frac{1}{2\pi} \int_{\text{Im} \lambda = h} e^{2i\lambda x + 8i\lambda^3 t} e^{i\lambda (\cdot)} R(\lambda) d\lambda \]
are clearly entire with respect to x, for any $t > 0$. It is quite easy to see that $\tilde{H}_{x,t}, H_{x,t}$ are operator-valued functions entire with respect to x for any $t > 0$. This means that the functions
\[\tilde{u}(x,t) = -2\partial_x^2 \log \det (1 + \tilde{H}_{x,t}) \]
are meromorphic in x on the whole complex plane for any $t > 0$ and converge to the meromorphic function
\[u(x,t) = -2\partial_x^2 \log \det (1 + H_{x,t}) \]
as $\tilde{q} \rightarrow q$ in L^1_{loc}.

It remains to show that $\det (1 + H_{x,t})$ doesn’t vanish on the real line for any $t > 0$. Since $H_{x,t}$ is trace class, this amounts to showing that -1 is not an eigenvalue of $H_{x,t}$ for all $x \in \mathbb{R}$, $t > 0$. We have two cases: L_q has some absolutely continuous (a.c.) spectrum and L_q has no a.c. spectrum. The first case immediately follows from Lemma 2.2

The second case is a bit more involved. If the a.c. spectrum of L_q is empty, then the Titchmarsh-Weyl m-function is real a.e. on the real line and hence the reflection coefficient $|R(\lambda)| \leq 1$ in \mathbb{C}^+ and $|R(\lambda)| = 1$ a.e. on \mathbb{R}; i.e. R is an inner function of the upper half plane. Lemma 2.3 then applies.

Remark 4.2. Theorem 4.1 implies very strong well-posedness of the KdV equation with eventually any steplike positive type initial data supported on $(-\infty, 0)$. Each such solution $u(x,t)$ is smooth and hence solves the KdV equation in the classical sense. It also has a continuity property in the sense that if $\{q_n\}$ is a sequence of smooth functions of the form $q_n = r_n^2 + r'_n$ convergent in L^1_{loc} to q, then the sequence of the corresponding solutions $\{u_n(x,t)\}$ converges to $u(x,t)$ in L^1_{loc} for any $t > 0$. This, in turn, implies uniqueness. The initial condition is satisfied in the sense that
\[\|u(\cdot,t) - q\|_{L^1_{\text{loc}}} \rightarrow 0, \quad t \rightarrow 0. \]

Remark 4.3. We assumed that $q \in L^1_{\text{loc}}$ and $q|_{\mathbb{R}^+} = 0$ for simplicity. These conditions can be replaced with $L_q \geq 0$ and a suitable decay assumption at $+\infty$, but the consideration becomes much more involved due to serious technical complications related to singular potentials. We plan to return to this topic elsewhere.
REFERENCES

DEPARTAMENTO DE MATEMÁTICAS, CINVESTAV DEL I.P.N. APORTADO POSTAL 14-740, 07000 MEXICO, D.F., MEXICO
E-mail address: grudsky@math.cinvestav.mx

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF ALASKA FAIRBANKS, P.O. BOX 756660, FAIRBANKS, ALASKA 99775
E-mail address: arybkin@alaska.edu