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Traditional notion of Toeplitz operators

H a Hilbert space of functions (on some domain Ω in Rd or Cd or
on some smooth manifold M), usually, L2.

L a closed subspace in
H. P : H → L orthogonal projection. F a function (symbol).

T = TF = TF ,L = PF ,

Tu = PFu, u ∈ L.
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Another point of view

A acting in H, K = H	L, the Toeplitz operator TA associated
with A and acting in L (≡ the compression of A onto L, or the
angle of the operator A) is defined as

TA : u ∈ L 7−→ P(Ax) ∈ L.

In such a general setting, different operators A′ and A′′, and even
different enveloping spaces H can generate the same Toeplitz
operator

A′ =

(
A′1,1 A′1,2
A′2,1 A′2,2

)
, A′′ =

(
A′′1,1 A′′1,2
A′′2,1 A′′2,2

)
, Then TA′ = TA′′ if and only if A′1,1 = A′′1,1.
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Examples
1. M = T = S1, the unit circle. H = L2(S1), L = H2 - the Hardy
space, boundary values of analytic functions in the disk D.
Riesz-Toeplitz operators.

1a. Generalization. M the boundary of a pseudoconvex domain
G ⊂ Cd . H = L2(M), L = H2 boundary values of analytic
functions in G .
2.Ω = D the unit disk, H = L2(D, dµ), µ-measure, L ⊂ H the
Bergman space of analytic functions in D. Particular cases:
Bα : dµ = Cα(1− |z |2)αdA, α > −1
2a. Generalization. Ω a bounded pseudoconvex domain in Cd with
smooth boundary. H = L2(Ω), L = B ⊂ H, the Bergman space of
analytic functions in Ω.
2b. Generalization. Ω = Cd , µ Gaussian measure,
dµ = π−de−|z|

2
dA(z), H = L2(Cd , µ), L = F the Fock

(Segal-Bargmann) space of entire analytic functions
2c. Generalization. Solutions of some elliptic equation or system.
Little is known in general. Important particular case- solutions of
the Helmholtz equation. Will study later.
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Typical questions for Toeplitz operators

For individual operators: Definition, boundedness and compactness
conditions, closedness and closability when boundedness is not
granted, uniqueness of the symbol, finite rank property, extension
to wider classes of symbols, spectral properties, Fredholm property.

For sets of operators: algebraic properties, commutative
subalgebras...
Unless specified otherwise, we will consider spaces of functions in
D ⊂ C1 ≡ R2, or the whole C1 ≡ R2 (Bergman or Fock spaces).
The picture with enveloping space is not always feasible.
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Consider Bα and H2 both as spaces of analytic functions. Taylor
series:
u(z) =

∑∞
0 ukzk . For Bα:∫

|u(z)|2(1− |z |2)αdA(z) = 2π
∑
|uk |2

∫ 1

0
(1− |r |2)αr 2k+1dr =

2π
∑
|uk |2

k!Γ(2 + α)

Γ(k + 2 + α)

So, by the Stirling’s formula

‖u‖2
Bα �

∑
|uk |2k−(α+1), ‖u‖2

H2 �
∑
|uk |2,

Therefore, formally, one can consider the Hardy space as a limit
case of the weighted Bergman space as α = −1. This analogy is
sometimes useful. On the other hand, H2 can be identified with
the space of analytic functions in D with boundary values in L2,
with the above norm. But there is no reasonable candidate for the
enveloping space H. Redefining Bα the space of analytic fictions in
D, having boundary values in the negative Sobolev space
H−(α+1)/2(S). Here H2 becomes B−1 in a natural way. Again, no
candidate for the enveloping space.



Bergman type spaces vs Hardy type spaces.

The reproducing kernel, P : H → L. The orthogonal projection
P2 = P. For Bergman space Bα, P is an integral operator with
smooth kernel. Pu(z) =

∫
Ω K (z ,w)u(w)dµ(w).

For weighted Bergman,
K (z ,w) = (α + 1)(1− |w |2)α(1− zw̄)−(2+α),
For Fock: K (z ,w) = 1

π ezw̄ .
For Hardy type spaces: Not necessarily.
Pu(z) = (2π−1)(V .P.)

∫
T(1− zw̄)−1u(w)dA(w) (principal value

integral).
Since P is an orthogonal projection, K (z ,w) = K (w , z),∫

K (z ,w)K (w , ζ)dµ(w) = K (z , ζ).
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For Bergman type spaces: The functional φz(u) = u(z). The
functional is bounded. By the Riesz Theorem,

φz(u) = 〈u, kz〉, kz(·) ∈ L.

〈u, v〉 =
∫

u(z)v(z)dµ(z) =
∫ ∫

u(w)kz(w)v(z)dµ(z)dµ(w).
On the other hand,
〈u, v〉 =

∫
u(w)v(w)dµ(w) =

∫ ∫
u(w)kw (z)v(z)dµ(z)dµ(w).

Comparing: kw (z) = kz(w).
∫

kz(w)kw (ζ)dw = kz(ζ). Thus, the
operator with kernel kw (z) is an orthogonal projection from H
onto L.

K (z ,w) = kw (z).

K (z ,w) belongs to L in z variable for w fixed, and belongs to the
complex adjoint of L in w variable, for z fixed.
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For the Hardy space,
Pu(z) = (2π−1)(V .P.)

∫
T(1− zw̄)−1u(w)dl(w), not an integral

operator, the functional φz(u) = u(z) is not bounded. In Lecture 3
we will see what can be done about it.



Which spaces admit a reproducing kernel?

Until recently: spaces of solutions of elliptic equations or systems.
If A is an elliptic operator in Ω, x0 ∈ Ω, then, from the elliptic
regularity:

|u(x0)| ≤ CG (‖u‖L2(G) + ‖Au‖L2(G))

where G is an open set containing x0.

The Hardy space on S is not a space of solutions of an elliptic
equation or system. No reproducing kernel. The projection
P : L2(T)→ H2, singular integral operator

Pu(z) = (2π−1)(V .P.)

∫
T

(1− zw̄)−1u(w)dl(w).

The kernel DOES NOT belong to H2 for fixed w . (!)
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Operators with (un)bounded symbol

F ∈ L∞(Ω). TFu = PFu.

Composition of two bounded operators, bounded.
For unbounded F , for example, F ∈ Lp, p <∞, multiplication by
F is not a bounded operator in L2, moreover the set of u ∈ L such
that Fu ∈ L2 is hard to describe and may be very small. Even
worse, F being a distribution.
A possible way out. P : H → L. If L consists of smooth functions,
P, actually, acts as P0 : E(Ω)′ → E(Ω), E(Ω) ≡ C∞(Ω) and,
probably, even to P0 : E(Ω)′ → L. Therefore for F ∈ E ′, the
operator T? = (P0)′F : L → L makes sense. Serious questions:
when T? acts into L, when is it bounded. Some attempts have
been made (Zorboska, Taskinen-Virtanen...). Not quite
satisfactory.
Problem. To define in a reasonable Toeplitz operators with
bad symbols.
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Which operators in a Bergman type space are and are not
Toeplitz?

Sometimes, rather advanced machinery is needed. Case of the
Bergman space, L = B(D)

Example 1. , T = J : u(z) 7→ u(−z), reflection. Is is a Toeplitz
operator with bounded symbol F ? Answer is NO, but the
explanation is not easy. Suppose ’yes’. The operator is radial,
commutes with rotations Uτu(z) = u(e−iτz). F = F (r), r = |z |.
The eigenfunctions are the standard monomial basis of B
ek(z) =

√
k + 1 zk , k = 0, 1, . . . , and the action is

(Jek)(z) = (−1)kek(z).

So, the eigenvalue sequence γγγ is 1,−1, 1,−1.... (Sic! this is not
simply the spectrum but the specially ordered sequence).But this is
impossible for a Toeplitz operator with bounded symbol since for
such operators the spectral sequence must satisfy (Grudsky,
Maximenko, Vasilevskii 2013) limn/m→1 |γn − γm| → 0 (slowly
oscillating ), which is not the fact.
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oscillating ), which is not the fact.



The same question in F . Even harder (Berger/Coburn, 1994) - not
only J is not a Toeplitz operator with bounded symbol, not only it
is not a Toeplitz operator with (possibly) unbounded symbol such
that F (z) = O(e |z

2|−A|z|) (for all A), but it cannot be norm
approximated by such Toeplitz operators, and the 0 operator is the
best approximation.

Quite nice an operator is not Toeplitz.
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Finite rank operators

Can a finite rank operator be a Toeplitz one? No. Both in B and
in F a finite rank Toeplitz operator (with function-symbol) must
be zero (Luecking 2007, Borichev-GR, 2015). In particular a rank 1
operator, Pk,l : ek 7→ el , and zero elsewhere (Pk,lu = 〈u, ek〉el) is
not Toeplitz.



So, the direct definition is not quite satisfactory. Need for the
enveloping space (which does not necessarily exist), complications
with singular symbols, distributions, non-Toeplitz for some
important operators. Another approach is needed.



Sesquilinear forms

Definition Φ(u, v), linear in u, antilinear in v ,
|Φ(u, v)| ≤ C‖u‖L‖v‖L. By Riesz theorem, such form defined a
bounded operator in L, TΦ, 〈TΦu, v〉 = Φ(u, v).

u, v in a
Bergman type space - no need for the enveloping space. Might be
too much freedom: we will restrict ourselves to reasonable forms.
Important: for spaces with reproducing kernels, we do not need
Riesz and have TΦ explicitly: set v(w) = kz(w). We get

(TΦu)(z) = 〈TΦu, kz〉 = Φ(u(.), kz(.)).

Explicit action of the Toeplitz operator.
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Examples

1. J reflection. Φ(u, v) =
∫

u(z)v(−z)dA(z).

2. Rank 1 operator Pk,lu = (u, ek)el . Φ(u, v) = 〈u, ek〉〈el , v〉.
3. For a function-symbol F on D,
FF (u, v) =

∫
F (z)u(z)v(z)dA(z) Why? Classical Toeplitz

operators:
〈TFu, v〉 = 〈PFu, v〉 = 〈Fu,Pv〉 = 〈Fu, v〉.
4. For a measure ν on D or C: Fν(u, v) =

∫
u(z)v(z)dν(z)

5. (generalization of 3,4) For a distribution F ∈ E ′(Ω):
FF (u, v) = (F , uv̄)
6. (generalization of 3,4,5) For a distribution F ∈ E ′(Ω× Ω):
FF (u, v) = (F , u ⊗ v).
7. (generalization of 6)For hyperfunction F :
FF (u, v) = (F , u ⊗ v)....
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A general structure

X linear topological space. X ′ its dual space Ψ(φ) = (Ψ, φ). L be
a reproducing kernel Hilbert space with kz(·).

X -valued sesquilinear form G on L: a continuous mapping

G(·, ·) : L ⊕ L −→ X ,

For a continuous X -valued sesquilinear form G and Ψ ∈ X ′, the
sesquilinear form FG,Φ on L :

FG,Ψ(u, v) = Ψ(G(u, v)) = (Ψ,G(u, v)).

TG,Ψu(z) := (TFGb,Φ
u)(z) = (Φ,G(u, kz)).
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In our examples, X may be a space containing all products uv̄ , in
other words, L(L × L), G(u, v) = u ⊗ v̄ .

More generally, one can
take X = L ⊗ L. Moreover, it is sufficient that Ψ is X - is bounded
only on the range of G.
With this structure, the question of boundedness of the operator is
reduced to the boundedness of a particular sesquilinear form and a
functional. This is a hard analysis now, which should be performed
for each particular space and class of forms individually.
Among properties: The composition of sesquilinear forms defined
above fits into the same class, the same holds for adjoint. Such
operators form a ∗-algebra.
The choice of forms - to be a natural generalization of usual ones.
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Hardy space as Bergman space

In the model: H2 = {uanalytic inD, u|T ∈ L2(T)}. No reasonable
enveloping space. But: for a measure ν on D, sesqiulinear form
F(u, v) =

∫
D Fuv̄dA(z). Moreover, F ∈ E ′(D), F(u, v) = (F , uv̄),

which makes sense since uv̄ is a smooth function on D.

In this space we can consider sesqiulinear forms, for example∫
D u(z)v̄(z)dµ(z), where µ is a measure on D. If
suppµ ⊂ ∂D = T, we arrive to the usual Riesz-Toeplitz operators.
We meet other important examples in Lecture 3.
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Symbols with compact support

We start ’hard’ analysis part of our presentation by considering a
wide class of symbols F , for which, in any Bergman type space,
the sesquilinear form FF (u, v) is bounded, moreover, compact (i.e.,
defines a compact operator).

We consider L = B(D), the Bergman space on the disk in C. For
other spaces and other dimensions the reasoning is similar.
F ∈ E ′(Ω), Ω = D, a distribution with compact support. (There
exists a compact set K ⊂ Ω such that (F , u) = 0 for any
u ∈ E(D), uK = 0).
Theorem If F ∈ E ′(D), the sesquilinear form FF (u, v) = (F , uv̄)
is bounded in B(D), moreover, it is compact, i.e., defines a
compact operator in B(D).
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Proof. The structure theorem for distributions with compact
support: If F ∈ E ′(Ω),Ω ⊆ Rd , there exit N ≥ 0 and continuous
functions gα(x), |α| ≤ N such that F =

∑
|α|≤N Dαgα, moreover,

the support K′ of gα can be chosen compact and arbitrarily close
to suppF .

(F , uv̄) =
∑
|α|≤N

(Dαgα, uv̄) =
∑
|α|≤N

(gαDα(uv̄)) ≤

∑
|α|≤N

∫
K′
|gα,β||Dβu||Dα−β v̄ |dA ≤ C

∑
|α|+|β|≤N

∫
|∂αu||∂βv |dA.

As it follows from elliptic regularity,
∫
K′ D

β|u|2dA ≤ C
∫

Ω |u|
2, and

this gives boundedness. The embedding theorem gives
compactness.
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Similar reasoning proves a more general result. Let F ∈ E ′(Ω×Ω).
Consider the sesquilinear form

FF (u, v) = (F , u ⊗ v̄), u, v ∈ L.

defines a compact Toeplitz operator, TFu(z) = (F , u ⊗ kz).

Example: F = a(w , ω)δ(w − θ(w)), a ∈ L1
comp(Ω× Ω).

F(u, v) =
∫

a(w , h(w))u(w)v̄(θ(w))dA(w).
More. L = H2, Hardy space in our representation as B−1. Again,
for F with compact support in D (or D× D), the sesquilinear form
(F , uv̄), (or (F , u ⊗ v̄)) defines a compact operator. Similarly for
the Fock space F .
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Examples.1. F = δ(z − z0).
FF (u, v) = (δ(z − z0), uv̄) = u(z0)v(z0).
TFu(z) = F(u, kz) = u(z0)kz0(z) = 〈u, kz〉kz . Rank one operator.

2. F = ∂k∂
l
δ(z − z0).

FF (u, v) = (−1)k+l(δ(z − z0), ∂k∂
l
uv̄) = (−1k+l)u(k)(z0)v̄ (l)(z0).

The Toeplitz operator TFu(z) = 〈u, k(k)
z0 〉k

(l)
z0 . Again rank one

operators.
(Theorem.) Any finite rank Toeplitz operator is a linear
combination of these ones.
3. An important special case. z0 = 0 ∈ D or in C. Tek = Ck,lel .
Tej = 0, j 6= k .
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Remarks.1. Since the operators are compact, the important topic
is the study of the quality of this compactness, the rate of decay of
eigenvalues or singular numbers. It is known not that much. For
the Bergman space, the s-numbers decay exponentially, and
sometimes the exact exponential order is found. For the Fock
space, the s-numbers decay superexponentially, as n−cn. A lot of
questions open.

2.The above results show that a substantial study in the topic
should involve symbols whose support touches the boundary (for
Bergman type spaces) or spreads to infinity (for Fock type spaces).
This will be done further on.
3. Bergman spaces under consideration consist of analytic
functions. Therefore, the functions u(z)v(z) and
u ⊗ v(z ,w) = u(z)v(w) are not only smooth but real-analytic.
Therefore it is possible to consider symbols F even more singular
than distributions, hyperfunctions, that involve derivatives of all
orders.
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Removing compact support condition

We considered F ∈ E ′(Ω), symbols with compact support. If
F ∈ D′(Ω), the form (F , uv̄) is not defined.

But!

(F , uv̄) =
∑
|α|≤N

(Dαgα, uv̄) =
∑

Cα,β

∫
|α|+|β|≤N

|∂αu||∂βv |dA.

The left-hand side may not defined if the compact support
condition is dropped, but the right-hand side can (probably!) be
extended. New notion: Carleson measures for derivatives.
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Carleson measures

L.Carleson, 1962. A measure µ on the disk D, such that for any
u ∈ H2 = B−1, ∫

D
|u|2dµ ≤ C‖u‖2

H2 .

In our language: the sesquilinear form F(u, v) =
∫
D uv̄dµ is

bounded on B−1. Carleson: condition:
S(r0, θ0) = {re iθ}, r ∈ (r0, 1), θ ∈ (θ0 − (1− r0), θ0 + (1− r0)).
|µ(S(r0, θ0))| ≤ C (1− r0), all θ0, r0.

After this, results for many
other spaces.
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Carleson measures for Fock space

∫
C
|u|2e−|z|

2
dµ ≤ C‖u‖2

F ≡ C

∫
|u(z)|2e−|z|

2
dA(z)

Theorem (Zhu): A positive measure µ on C1 is F-C measure if
and only if for a fixed ρ0, µ(B(z0, ρ0)) ≤ C for all z0 ∈ C1, with
constant C not depending on z0.

(If µ is not positive, ’if’ part
holds.)
Definition. Measure µ is called F-C-measure for derivative of
order k (k-F-C measure) if∫

C
|u(k)|2e−|z|

2
dµ ≤ $k(µ)‖u‖2

F ≡ $k(µ)

∫
|u(z)|2e−|z|

2
dA(z).

Questions: to find a condition for µ to be a k-FC measure.
Dependence of $k(µ) on k is important.
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Theorem. (GR, NV, 2014) A measure µ is a k-FC measure if and,
for µ ≥ 0, only if, for some (and, therefore, for any) r > 0, the
quantity

Ck(µ, r) = (k!)2 sup
z∈C

{
|µ|(B(z , r))(1 + |z |2)k

}
(0.1)

is finite. For a fixed r , the constant $k(µ) in can be taken as
$k(µ) = C (r)Ck(µ, r), with some coefficient C (r) depending only
on r .



In other words, Theorem states that µ is a k-FC measure if and
only if (1 + |z |2)kµ is a FC measure. If k = 0, then any 0-FC
measure is just a FC measure. The quantity $k(µ) in will be
called the k-FC norm of the measure µ.

It is convenient to extend the notion of k-FC measures to
half-integer values of k , defining these measures as those for which
(k!)2 supz∈C

{
|µ|(B(z , r))(1 + |z |2)k

}
= $k(µ) <∞.

|µ| is the variation of measure µ.
Relation of measures for different k:
For any integers p ∈ Z+ and integer or half-integer k a measure µ
is a k-FC measure if and only if the measure µp = (1 + |z |2)(k−p)µ
is a p-FC measure, moreover, for integer k, Cp(µ, r) � Ck(µp, r).
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Estimates for distributional sesquilinear forms

Let µ be a k-FC measure, with integer or half-integer k . With µ
we associate the sesquilinear form

F(u, v) =

∫
C

u(α)(z)v (β)(z)e−|z|
2
dµ(z), u, v ∈ F(C), (0.2)

for some α, β with α + β = 2k . This form is bounded in F(C),
moreover

|F(f , g)| ≤ C (F)‖u‖F‖v‖F , with C (F ) ≤ ($α(µ)$β(µ))
1
2 . (0.3)

$k(µ)(k!)2 sup
z∈C

{
|µ|(B(z , r))(1 + |z |2)k

}
.

The higher is derivative, the faster ’decay’ of the measure at ∞.
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If µ is k-Fc measure then the distribution

(e−|z|
2
µ, u(α)v (β)) = (−1)α+β(∂α∂

β
(e−|z|

2
µ), uv̄)

extends from D(C) to a continuous functional on functions
u, v ∈ F , so defines a bounded Toeplitz operator with
distributional symbol.



Compact forms

As usual, for any norm estimate for the operator defined by a
symbol, the boundedness result is accompanied by a compactness
result.
Definition. A measure µ is called vanishing k-FC measure if

lim
|z|→∞

(|µ|(B(z , r))(1 + |z |2)k) = 0.

Corollary: Let µ be a vanishing k-FC measure, with integer or
half-integer k . Then the operator in F(C) defined by the form
with α + β = 2k is compact.



Compact forms

As usual, for any norm estimate for the operator defined by a
symbol, the boundedness result is accompanied by a compactness
result.
Definition. A measure µ is called vanishing k-FC measure if

lim
|z|→∞

(|µ|(B(z , r))(1 + |z |2)k) = 0.

Corollary: Let µ be a vanishing k-FC measure, with integer or
half-integer k . Then the operator in F(C) defined by the form
with α + β = 2k is compact.



Symbols and operators of weak almost-infinite type
Definition. Let F(u, v) be a sesquilinear form on the Fock space
F(C). This form is a symbol of weak almost-finite type if there
exist a collection µµµ = {µα,β}α,β=0,1,2,... of (α + β)/2-FC measures
such that, for each u, v ∈ F2, the series∑

j

∑
max(α,β)=j

Fα,β(u, v) ≡
∑
j

∑
max(α,β)=j

(∂α∂
β
µα,β, uv̄),

converges to F(u, v).

It is convenient to consider µµµ as the formal sum

µµµ '
∑
α,β

∂α∂
β
µα,β.

Remark. By Banach-Steinhaus th. F is automatically bounded.
Equivalently: Fj =

∑
α+β≤j Fα,β. TFj

converges weakly to TF.
Although the convergence is weak, it is rather strong: for any
u ∈ F , (TFj

u)(z)→ (TFu)(z) any z .Conversely, if the operators
Tj are uniformly bounded and the sequence Tju converges to Tu
point-wise: (Tju)(z)→ (TFu)(z), u ∈ F2 and z ∈ C, then Tj

converges to T weakly.
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Any bounded operator in F is a Toeplitz operator with
symbol of weak almost finite type.(??)

Recall symbols hα = Cα∂
α∂αδ(z). They define rank one

projections Pα onto eα (eα = cαzα is the standard monomial
basis). For a given bounded T, Tα,β = PαTPβ is a rank one

operator with symbol constant times ∂α∂βδ(z), a Toeplitz one
with distributional symbol. And the sum

∑
Tα,β converges weakly

to T.



Symbols and operators of norm almost finite type.

Let µµµ = {µα,β}α,β=0,1,2,... be a collection of (α + β)/2-FC
measures. We say that this collection is a symbol of norm almost
finite type if

|||µµµ||| =
∑
α,β

$α+β
2

(µα,β) <∞. (0.4)

This corresponds to norm convergence of corresponding Toeplitz
operators.
To prove for particular examples, it is important that we know the
dependence of constants on the order of derivatives.
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Example

Let hα,β(z), α, β = 0, 1, . . . , be bounded functions in C such that

sup
z∈C
{|hα,β(z)|(1 + |z |)α+β} ≤ (α!β!)−1cα,β

with
∑

cα,β <∞. With each function hα,β(z) we associate the
measure µα,β that has the density hα,β(z) with respect to the
Lebesgue measure, consider the symbol

µµµ '
∑
α,β

∂α∂
β
µα,β,

the convergence condition is satisfied, and therefore, the formal
series µµµ can serve as a symbol of a bounded Toeplitz operator Tµµµ
with differentiation of all orders.



example

Let δn, n = n1 + in2, be the delta-measure placed at the point n.
With each point n we associate the distribution

θn = ∂αn∂
βn
δz−n,

with some αn, βn. Each term defines a compact operator. Norm
estimate: pn ≤ Cαn!βn!(1 + |n|)αn+βn So, if we take the sum of
these distributions with sufficiently small coefficients, we have
norm convergence.



Toeplitz operators in the Bergman space

B = B0(D). The construction is the same. Principal difference is
in hard analysis.

Carleson measures for B. µ on D is a C measure if∫
D |u|

2dµ ≤ C‖u‖2 = C
∫
D |u|

2dA for all u ∈ B.
Theorem (Hastings, 1973, Luecking 1983, Zhu 1988). Fix
p ∈ (0, 1). For a measure µ to be a Carleson measure for B it is
sufficient, and for a positive measure necessary, that

|µ|(B(z , p(1− |z |))) ≤ C (1− |z |)2.

And this constant C determines the norm of the Toeplitz operator
with symbol µ.
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Similar to Fock space, we define sesquilinear forms

F = Fα,β,µ(u, v) =

∫
D

u(α)(z)v (β)(z)dµ.

and study boundedness conditions.

k-C measure (for Bergman)∫
D |u

(k)|2dµ ≤ C (k , µ)‖u‖2
B. Theorem(GR, NV, 2015) For a

measure µ to be k-C measure, it is sufficient and for µ > 0
necessary that

|µ|(B(z , p(1− |z |))) ≤ $k(µ, p)(1− |z |)2(1+k).

and this $k(µ, p) determines the constant
C (k, µ) = Cp−2k(k!)2$k(|µ|, p). Further the theory goes on
similar to Fock. Weak and norm almost finite type. Representation
of any bounded operator as Toeplitz. Examples of operators with
unbounded order of derivatives.
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Operators in the Herglotz space
(GR, NV, 2016). Solutions of the Helmholtz eqn. ∆u + u = 0 in
Rd . What Hilbert space? NB! no nontrivial solutions in L2(Rd).
Important for applications: a little bit worse than L2:

‖u‖2
H2 = lim sup

R→∞
R−1

∫
|x |<R

|u(x)|2dx .

Herglotz (or Agmon-Hörmander space).Satisfy the Sommerfeld
radiation condition∫

|x |=R
|∂ru − iu|2dS = o(Rd−1).

and, in fact

‖u‖2
H2 = lim

R→∞
R−1

∫
|x |<R

|u(x)|2dx .

(dx = dA(x)) The norm is nonlocal. Cannot serve as an
enveloping space.Pérez-Esteva, Barcelo: candidates for enveloping
space.Spaces with differential norm, do not admit multiplication by
a nondifferential function.
A different approach.
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Herglotz representation

Fourier transform. (1− |ξ|2)û(ξ) = 0. û(ξ) a distribution
supported on S = Sd−1. Suppose: φ(ξ) is a function on S.

u(x) = (Iφ)(x) = cd

∫
S
φ(ξ)e ixξ dS(ξ), with cd =

√
π

(2π)d/2
,

Conversely, φ can be recovered from u as ’far field pattern’.
Unitary equivalence of H2 and L2(S)
Reproducing kernel space. The reproducing kernel can be found
explicitly
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Let u(x) = Iφ ∈ H2, for some φ ∈ L2(S). Thus, for the
reproducing kernel K (x , y) = kx(y), we have

u(x) = 〈u(·), kx(·)〉.

kx(·) belongs to H2 for any x ∈ Rd , it can be represented as

kx(y) = (IΨx)(y) = cd

∫
S

Ψx(ξ)e iξydS(ξ),

with some function Ψx ∈ L2(S).
The reproducing property and the unitarity of I give

Ψx(ξ) = cd e−ixξ,

And, so, K (x , y) = kx(y) = c2
d

∫
S e−i(x−y)ξdS(ξ). Is a difference

kernel,
= π

(2π)d/2 |x − y |−(d−2)/2J(d−2)/2(|x − y |).
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Sesquilinear forms

Following the general pattern: F sesquilinear form.
TFu(x) = F(u(.), kz(.)). Which forms to study?

1. F(u, v) = 〈PFu, v〉 = 〈〈kx(y),F (y)u(y)〉y , v(x)〉x ;
TFu(x) = F(u(.), kz(.)) = 〈Fu(.), kx(.)〉. Non-convenient since the
scalar product is nonlocal. But: important results Barcelo,
Pérez-Esteva and their groups. Based upon fine estimates for
Bessel functions.
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2. F(u, v) = FF (u, v) =
∫
Rd F (x)u(x)v̄(x)dx . Important. The

Born approximation for the scattering matrix in the classical and
quantum scattering theory.

Easy to extend to distributions:
FF (u, v) = (F , uv̄), since u, v ∈ C∞.
Suppose:F being considered as distribution, belongs to the
Schwartz class S ′(Rd) of tempered distributions, so that its
Fourier transform F̂ , restricted to a neighborhood of the ball
|ξ| ≤ 2, is a locally integrable function.
Set u = Iφ, v = Iψ, φ, ψ ∈ L2(S).

FF (u, v) = c2
d

∫
Rd

∫
S

∫
S

F (x)e i(ξ−η)xφ(ξ)ψ(η)dxdS(ξ)dS(η).

Set F̂ (ξ) = (2π)−d/2
∫
Rd e−ixξF (x) dx , then

FF (u, v) =
π

(2π)d/2

∫
S

∫
S

â(η−ξ)φ(ξ)ψ(η)dS(ξ)dS(η) = bT̆Fφ, ψc,

where T̆F := T̆FF
is the operator in L2(S), defined by

(T̆aφ)(η) =
π

(2π)d/2

∫
S

F̂ (η − ξ)φ(ξ)dS(ξ).
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The Toeplitz operator generated by FF (u, v) in the Herglotz space
is unitarily equivalent to the integral operator in L2(S)



(T̆aφ)(η) =
π

(2π)d/2

∫
S

F̂ (η − ξ)φ(ξ)dS(ξ).

Integral operator of convolution type – but not this exactly. T̆F

acts on functions defined on the sphere S, while the values of the
kernel F̂ (η − ξ), that are involved in the action of the operator, are
calculated at all points η − ξ ∈ B(0, 2), where B(0, 2) is the closed
ball in Rd with radius 2 and centered at the origin.



Interesting properties

1. (Non) degeneracy. Is it possible that TF = 0 but F 6= 0? If F
has compact support (F ∈ E ′), F̄ must be zero in the ball B(0, 2),
but for an entire function F̂ this is impossible! The condition of
compact support can be relaxed to he reasoning extends to any
class of symbols with quasi-analytic Fourier transform. This, in
particular, holds for those symbols a that satisfy the condition
|F (x)| = O(γ(|x |)) for |x | → ∞ with a monotone function
γ(t)↘ 0 satisfying ∫ ∞

0

| log(γ(t))|
1 + t2

dt <∞.



Degeneracy
On the other hand, quite a lot of ’degenerate’ symbols. Since the
values of F̂ that are involved in the expression for the action of T̆F

are only the ones that are attained at the points of B(0, 2), the
operator T̆F is zero and, therefore,

TF = 0⇔ supp F̂ ∩ B(0, 2) = 0

.

For example, let F (x) ∈ S ′ , say, belong to Lp
loc. Cut-off function

ω(ξ) ∈ C∞, ω(ξ) = 1, |ξ| ≤ 2, and ω(ξ) = 0, |ξ| ≥ 3. The inverse
Fourier transform ω̌(x) of ω is a smooth function on Rd with decay,
faster than any negative power of |x |. Therefore, the convolution
Fω = F ∗ ω̌ makes sense.Now consider the symbol F~ = F − Fω.
The Fourier transform F̂~(ξ) equals F̂~(ξ) = F̂ (ξ)(1− ω(ξ)), and
it vanishes in the ball. The operator is zero.
(Compare with previous spaces. For B unknown. For F there are
examples of F that produce zero operator but they grow
VERRRRY fast, as e |z|

2−|z|α , α < 1. And this is rather sharp. For
α > 1 such examples are impossible.!!)
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Finite rank property

Let F has compact support. Is it possible that TF has finite rank?

Yes! but only if F is a finite sum of δ distributions and their
derivatives. Similar to F . Proof (GR,NV, 2016): a long way. We
take the result for F then derive a similar result for the harmonic
Fock space, and then pass to H2. By the way, at some moment we
loose one dimension. So, the result is not proved in dimension 2.
We hope so much but still no approaches to dim 2 (:().
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Symbol F with compact support

. F ∈ E ′(Rd). Similar to the Fock space: the form
F(u, v) = (F , uv̄) is bounded in H2 since F =

∑
|α|≤N Dαgα. The

operator is bounded, moreover, compact.



Radial symbols
A special, important and most transparent, case when the function
F is radial: F = F (|x |) = F (r).
The orthonormal basis in H2

en,j(x) =
√
π in

Jn+(d−2)/2(r)

r (d−2)/2
Yn,j(ξ),

Given a locally integrable radial function F = F (|x |) = F (r), we
introduce the spectral sequence γγγF = {γF (n)}n∈Z+ , where

γF (n) = π

∫
R+

F (r)[Jn+(d−2)/2(r)]2 r dr .

the eigenvalues, repeated with multiplicity
Nn,d = (2n+d−2)(n+d−3)!

n!(d−2)! , if n ≥ 1, 1 for n = 0. If γF (n) is
bounded, the operator can be defined as bounded. A simple
boundedness condition: F ∈ L1(R+). This condition is almost
sharp. r−σ, σ Q 1.

Question: which sequences of numbers γγγ may serve as the spectral
sequence of an operator Ta, with certain symbol F (r) ∈ L1(R+).
(For Bergman space on the disk, found recently by
Bauer/Herrera/Vasilevski.)
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General symbols

(T̆Fφ)(η) =
π

(2π)d/2

∫
S

F̂ (η − ξ)φ(ξ)dS(ξ).

Theorem. Let F (x) ∈ L1
loc ∩ S ′(Rd). For ξ ∈ S, |ξ| = 1, denote

by Sξ the unit sphere {η : |η − ξ| = 1}, centered at ξ. Suppose

that for any ξ ∈ S, the restriction of F̂ to Sξ belongs to L1(Sξ) and

‖F̂‖L1(Sξ) ≤ C .(A kind of restriction condition.) Then T̆F is
bounded in L2(S), and, therefore, the operator TF , is bounded in
H. Moreover ‖TF‖ ≤ C .

Majoration properties: If |F (x)| ≤ G (x) for |x | large and TG is
bounded then TF is bounded as well. This gives a scale of
conditions, say, for various choices of radial G .
Local singularities do not play role in the boundedness problem.
Therefore, F can be a distribution, with conditions set on the
behavior at infinity, say, for F ∗ ω.
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Spectral properties

F (x) almost homogeneous,
F (x) = θ(x/|x |)t−σ + o(t−σ), t → +∞, σ > 1 (important for
scattering). The operator T̆F is a pseudodifferential operator on S.

Eigenvalue asymptotics: λ±n ∼ C±n
1−σ
d−1 . (M.Birman, D.Yafaev.)

Asymptotics of scattering phases. If F has compact support, the
eigenvalues decay very fast. |λ±n | � n−n.
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One more type of sesquilinear forms.

Recall I : L2(S)→ H2, (Iφ)(x) = cd
∫

S e−ixξφ(ξ)dS(ξ), isometry.
Consider I∗ : H2 → L2(S) and the sesquilinear form

Fa(u, v) =

∫
S

a(ξ)(I∗u)(ξ)(I∗v)(ξ) dS(ξ),

for a function a ∈ L∞(S).

Unitary equivalent to the multiplication
operator by a in L2(S). Action:

(TFau)(x) =

∫
S

a(ξ)(I∗u)(ξ)(I∗kx)(ξ) dS(ξ)

= cd

∫
S

a(ξ)(I∗u)(ξ)e ixξ dS(ξ) = (IaI∗u)(x).

Such operators are bounded, moreover they form a commutative
C ∗ algebra, isometrically isomorphic to L∞(S.)
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Topics for further studies

.

– The results concerning sesquilinear forms in Bergman and Fock
spaces are obtained for the complex dimension 1. To carry over to
higher dimensions (some complications in obtaining criteria for
Carleson measures for derivatives)
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Analysis in poly-Fock spaces, the images of Fock spaces under the
’creation’ operator Q∗ = ∂z + z̄ . Some new effects to expect.
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Topics for further studies

Unbounded forms. If the form F(u, v) is unbounded, it still may
define a reasonable operator in the Hilbert space. For this, it is
necessary that F is defined on a dense set D(F), is sectorial
| Im (F(u, u))| ≤ C Re (F(u, u)) and the form is closable, this
means that un ∈ D(F), un → 0 and F(un − um, un − um)→ 0 imply
F(un, un)→ 0. Alternatively, the closability of the operator T:
un ∈ D(T), un → 0, ||T(un − um)|| → 0 imply ‖Tun‖ → 0. Closed
operators possess many nice properties of bounded ones. Very
little is known. There are some very recent results by Yafaev for
the Hardy space.



Topics for further studies

The truncated Hardy space. Very recent. H2 is not a reproducing
kernel space.

But one can find nice subspaces which are such ones.
Let ϕ be an inner function in D, an analytic function such that the
limit values on T satisfy |ϕ(z)| = 1. Truncated Hardy space:

H2
ϕ = H2 	 ϕH2.

If ϕ is differentiable on T, H2
ϕ is a reproducing kernel space,

Kz(w) =
1− ϕz

ϕw(1− z̄w)
.

Space is invariant wrt Conjugation: Cu = z̄ϕū.
CKz(w) = ϕ(z)−ϕ(w)

z−w -conjugate kernel.
Unlike the whole Hardy space, w can be on T.
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CKz(w) = ϕ(z)−ϕ(w)

z−w -conjugate kernel.

Unlike the whole Hardy space, w can be on T.



Topics for further studies

The truncated Hardy space. Very recent. H2 is not a reproducing
kernel space.But one can find nice subspaces which are such ones.
Let ϕ be an inner function in D, an analytic function such that the
limit values on T satisfy |ϕ(z)| = 1. Truncated Hardy space:

H2
ϕ = H2 	 ϕH2.

If ϕ is differentiable on T, H2
ϕ is a reproducing kernel space,

Kz(w) =
1− ϕz

ϕw(1− z̄w)
.

Space is invariant wrt Conjugation: Cu = z̄ϕū.
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Trivial example: ϕ(z) = zn. H2
ϕ the space of polynomials deg < n.

In this connection - Böttcher-Silberman.

However, for general ϕ the
space is infinite-dim. Much progress recently, mostly to the
classical machinery of anal. functions. Beurling: all invariant
subspaces of the backward shift are H2

ϕ for some inner ϕ.

Truncated Toeplitz operator TF
ϕu = PϕFu, u ∈ H2

ϕ.



Trivial example: ϕ(z) = zn. H2
ϕ the space of polynomials deg < n.
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Tϕ
Fu = Tϕ

Fu = PϕFu, u ∈ H2
ϕ a closed densely defined operator

with D(TF ) = {u ∈ H2
ϕ,Pϕu ∈ H2

ϕ}.

In many aspects similar to Bergman-Toeplitz. For bounded F
automatically bdd, but also for many unbounded as well.
Degeneracy: TF = 0 iff F ∈ ϕH2 + ϕH2. Recently:Inverse
boundedness (does a bounded Toeplitz operator have at least one
bounded symbol?). Reproducing Kernel Thesis: Boundedness is?
determined by the behavior of the operator on the reproducing
kernels. Finite rank problem (Bessonov). A good review paper by
S. Ramon Garcia and William Ross
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Topics for further studies. General weights

Let ψ(z) be an almost everywhere positive function.
Bψ = {uanalytic

∫
ψz |u|2dAz <∞}. The same questions:

boundedness, compactness, positivity, invertibility Schatten
classes...

Difference with classical weights - no explicit formula for the
reproducing kernel, moreover, why this kernel exists? Some
progress for Mackenhaupt weights:∫

B(a,r)
ψdA

∫
B(a,r)

ψ−1 ≤ C |B(a, r)|2

Similar problem for weighted Fock space. Was started by Luecking,
30 years ago. Some serious results recently, Olivia Constantin, A.
Aleman, K. Guo, D.Zheng....In many cases the description of
Carleson measures. Very recent: Z.Wang, X.Zhao. Harmonic
weighted Bergman spaces.
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weighted Bergman spaces.



Topics for further studies. Vector-valued Bergman spaces
and matrix (operator valued) symbols.

Here even the reproducing kernel property is unclear. But
Aleman-Constantin: Boundedness of Bergman projection under
Mackenhaupt condition. More recent results.



Topics for further studies. More general Bergman spaces

Solutions of an elliptic equation with variable coefficients.
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much more!
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