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Abstract

We present here an extended abstract of the
work [7]. Our objective is the study of vox-solids
and their applications. A vox-solid is a solid
digitized into unitary cubes whose boundary is
a surface; the face adjacency graph embedding
of a vox-solid is the graph whose vertices are the
voxel’s boundary faces, and the edges relate pairs
of boundary faces sharing exactly one side. Our
main conjecture says that every face adjacency
graph is Hamiltonian.

1 Introduction

References to definitions, propositions, theorems
and so on correspond to those used in [7].

The boundary representation of a region in the
plane consists of a traversing around its bound-
ary [2]; for this, the given region is digitized into
a finite union of pixels (unit squares.) The main
motivation of this work was generalizing this rep-
resentation to vox-solids, which are solids digi-
tized into a finite union of voxels (unit cubes),
by also traversing their boundaries. In our rep-
resentation we associate with each vox-solid a
graph whose vertices correspond with the faces
on its boundary, and whose edges indicate the ad-
jacency relationship between faces. For a given
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vox-solid, such a graph is called the face adja-

cency graph of the vox-solid.

The problem that we study consists in finding
Hamiltonian cycles on the face adjacency graph
of vox-solids. From a combinatorial point of view
this is a very interesting problem since it is re-
lated with the characterization of 4-regular and
4-connected Hamiltonian graphs. Our main con-
jecture states that every face adjacency graph is
Hamiltonian.

This conjecture is interesting because, if true,
it would give us an important family of Hamilto-
nian 4-regular graphs on every oriented surface,
in contrast to seeking a complete characteriza-
tion of all the Hamiltonian 4-regular graphs on a
specific surface. Important attempts have been
made for the later which in general is a very dif-
ficult problem; on the other hand, the approach
followed in this work, by further introducing the
restriction of voxelability seems to be enough to
characterize a very wide family of Hamiltonian
4-regular graphs. The problem is extremely chal-
lenging. We believe that any method developed
to solve it will produce new interesting theoreti-
cal results and combinatorial structures.

But this conjecture is not only important from
a theoretical point of view. In Computer Science
it has applications in representing 3-dimensional
solids by considering the Hamiltonian cycle on
their face adjacency graph as a chain of sym-
bols in an alphabet describing the boundary. An-
other application is the design of interconnection
topologies in network systems and parallel com-
puter architectures. In conclusion, the study of
this conjecture is important from the Combina-
torics and the Computer Science points of view.
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2 Vox-solids

In order to define and characterize “vox-solids”,
we use two different topological ways to view
3-space. The first one involves the use of grat-

ings which are subdivisions into cubes of the Eu-
clidean 3-space by planes parallel to the coordi-
nate axes. All the elements in the subdivision
are voxels, that is, identical cubes with edges
of length 1. We always work with the grating
G whose voxels have integer barycenters, in this
way we understand by the coordinates of a voxel

the coordinates of its barycenter. Some useful
subsets of G are the 0,1,2 or 3-simplexes which
respectively are voxel corners, voxel edges, voxel
faces and voxels; we say that a k-simplex has k-

dimension.
A finite union of simplexes with the same di-

mension k is a k-chain, 0 ≤ k ≤ 3; no chain
contains simplexes of different dimensions. The
boundary ∂(C) of a k-chain C is a k − 1-chain
containing the set of k − 1-simplexes that belong
to an odd number of k-simplexes in C.

In these terms a vox-solid V is a connected 3-
chain whose boundary is a surface (definition

2.4.1.) Some examples appear in figure 1

a)

b)

c)

Figure 1: Vox-solids, their tilings and face adja-
cency graphs

The second topological interpretation of the
space that we use comes from Digital Topology

(see [5]), this field deals with digital pictures
which are a finite subset B of the integer lattice

in R3 (or in R2), and two adjacency relations. B

is called the black points set and its complement
the white points set; the first adjacency relation
establishes when two black points are adjacent
and the second one when two white points or a
black and a white points are adjacent. The adja-
cency relations are chosen in such a way that the
resulting structure defines a topological space.

The voxels’ barycenters in a finite 3-chain
determine the black points set of a unique 3-
dimensional digital picture; conversely, the black
points of a 3-dimensional digital picture define
the voxels’ barycenters of a unique 3-chain. Not
all 3-chains are vox-solids, this is only true when
the digital picture associated to a 3-chain has one
black and one white components, and it does not
contain the configurations pictured in figure 2
(theorem 2.4.2.)

a)                                     b)                                      c)
W1

W2

Figure 2: Configurations in theorem 2.4.2. The
gray points in a) may be black or white

One special type of vox-solids are the step vox-

solids in which is possible to order its voxels into
a sequence V1, . . . , Vn in such a way that for each
i, (1 ≤ i ≤ n) the chain {V1, . . . , Vi} is a vox-solid
(definition 2.5.1.) On step vox-solids it is pos-
sible to use inductive arguments based on voxel
by voxel constructions as a technique of proof;
unfortunately not every vox-solid is a step vox-
solid, one counter-example appears in figure 3.
An interesting open problem is the characteriza-
tion of step vox-solids. (problem 2.5.1.)

3 Main conjecture

Given a topological space S we denote by C(S)
the set of connected components of S. A surface

embedding (see [3] and [4]) Ψ is defined to be a
triple (Σ, U, V ) where Σ is a surface, U is a closed
subset of Σ and V is a finite subset of U such that
C(U−V ) is a finite set of homeomorphic copies of
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Figure 3: a) A toroidal non step vox-solid V . b)
T (V)

the open unit interval (0,1). We denote by Σ(Ψ)
the surface in which Ψ is embedded, by V (Ψ) the
vertex set V of Ψ, by E(Ψ) the edge-set C(U−V )
of Ψ and by F (Ψ) the face set C(Σ − U) of Ψ.

Given a 3-chain T the face adjacency graph of
T is the graph τT having as vertices the set of 2-
simplexes in ∂(T ), two vertices F1, and F2 being
joined by an edge if and only if F1 and F2 have
just a 1-simplex in common (definition 3.2.1.)
The tiling graph of T , denoted by τ∗

T , has as ver-
tices the set of 0-simplexes in ∂(T ) and two ver-
tices P1, P2 form an edge if and only if P1 and P2

are the ends of a 1-simplex in ∂(T ) (definition

3.2.2.) A graph G is voxelable if there exists
a vox-solid V such that G is isomorphic to τV .
(definition 3.2.4.) A surface embedding Ψ is
said to be voxelable if G(Ψ) is voxelable (defi-

nition 3.2.5.) The characterization of voxelable
graphs is a very difficult problem which we leave
open (problem 3.2.1); we give then a list of
necessary conditions, but still we don’t have a
sufficient condition.

Let V be a vox-solid, the natural tiling embed-

ding of V is the embedding

Ψ∗

V

def
= (∂(V), {S|S is a 1-simplex in ∂(V)},

{T |T is a 0-simplex in ∂(V)})

The dual of this embedding is denoted by ΨV

and is called the natural face adjacency graph em-

bedding of V .

Notice that two different vertices in G(Ψ∗
V
) are

adjacent if and only if they are the endpoints of a
1-simplex in ∂(V), this and the adjacency relation
of τ∗

V
are the same, in consequence these graphs

are isomorphic. Similarly G(ΨV) is isomorphic
to τV .

On the other hand, we use a result from Tutte
which states that every 4-connected planar graph
is Hamiltonian (theorem 3.3.3) [10], this result
together with theorems 3.3.1 and 3.1.4 implies
that the face adjacency graph of a spherical vox-
solid is always Hamiltonian (corollary 3.3.4.)
From an algorithmic point of view Chiba and
Nishizeky proved that a Hamiltonian cycle can
be found in 4-connected planar graphs in linear
time [1]

Theorem 3.3.1 extends the conditions known
on embeddings in order to have a
4-connected graph embedded on a surface with
4-representativity (see [6]); theorem 3.1.4 states
that every face adjacency graph is 4-connected.

A result similar to theorem 3.3.3 was conjec-
tured for toroidal graphs but remains open yet.
Robin Thomas and Xingxing Yu [9] proved that
5-connected toroidal graphs are Hamiltonian, the
same authors proved that 4-connected projective-
planar graphs are Hamiltonian [8].

We finish with the statement of the main con-
jecture in our work: Every face adjacency graph
is Hamiltonian (conjecture 3.6.1.)

4 Properties of voxelable

graphs

In our work we give additional necessary condi-
tions for a graph to be voxelable, we also give an
algorithm to reconstruct certain vox-solids from
their natural face adjacency graph embedding.

Let Ψ be an embedding with G(Ψ) 4-regular
and Σ(Ψ) oriented. The straight decomposition

KΨ of Ψ is the partition of edges in U(Ψ) into
edge disjoint cycles C1, . . . , Ck in such a way that
each edge is traversed exactly once by these cy-
cles and such that for each vertex W of V (Ψ) if
e1, e2, e3 and e4 are the edges incident with W

in cyclic order (with regard to Ψ) then e1We3

are traversed consecutively (in one way or in the
other) and similarly e2We4 are traversed consec-
utively (in one way or in the other.) This de-
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composition is unique up to the choice of the
beginning vertex of the curves, up to reversing
the curves and up to permuting the indices of
C1, . . . , Ck.

When V is a vox-solid the cycles in the straight
decomposition of ΨV are called orthogonal cy-

cles (definition 4.4.1.) The most important re-
sult on this decomposition states that any vox-
elable graph G always admits a decomposition
into three classes of concentric orthogonal cycles,
such that every vertex is the intersection of two
cycles in different classes (theorem 4.2.1.)

We use this results to construct, when it is pos-
sible, a vox-solid with face adjacency graph iso-
morphic to G(Ψ) for a given embedding Ψ. The
method takes as reference a fixed coordinate sys-
tem Ω and seeks for a 2-chain whose 2-simplexes
correspond with the vertices in G(Ψ) and have
the same adjacencies as those in the graph; an
important role is played by the orthogonal cycles,
which suggest us the types of faces with regard
to Ω (up, down, left, right, front or back) that
must be associated in this 2-chain. If the result-
ing 2-chain is the boundary of a vox-solid then
we conclude that Ψ is voxelable.

5 Hamiltonicity of voxelable

graphs

In this section we give new ways to see our prob-
lem and talk about the Hamiltonicity of certain
families of voxelable graphs. For sake of clarity,
we introduce some definitions.

Let G be a graph, a 2-factor of G is a 2-regular
spanning subgraph of G. If A and B are non-
empty subsets of V (G) then, [A, B] denotes the
set of edges in G with an end in A and the other in
B. If G is 2-cellularly embedded into an oriented
surface S then we denote by G∗ the dual of G and
by [A, B]∗ the set of dual edges in G∗ associated
to the edges in [A, B].

The problems that we study in this section are:

Problem P1: Let Ψ be a 2-cellular embedding
with Σ(Ψ) oriented and G(Ψ∗) 4-regular. Prob-
lem P1 on Ψ consists in finding a set A ⊂ V (Ψ)
such that:

1. Every face in Ψ has at least one vertex in A.

2. Every face in Ψ has at least one vertex in A.

3. If a face in Ψ has just two vertices in A then
both are adjacent in G(Ψ).

Problem RP1: Similar to P1 but condition 2
is replaced by “G(Ψ)〈A〉 is a tree”.

Clearly a solution to RP1 is a solution to P1

but the converse in general is not true. A solution
A to P1 on an embedding Ψ with G(Ψ) 4-regular
and Σ(Ψ) oriented generates a 2-factor on G(Ψ)∗,
in fact it is G(Ψ∗)〈[A,A]∗〉 (proposition 5.1.2),
but if A is a solution to RP1 then this 2-factor is
a Hamiltonian cycle (proposition 5.1.4.) The
converse of the last is only true on the sphere.

In general finding a solution to RP1 is a dif-
ficult problem which we leave open; in contrast,
finding solutions to P1 is very easy for the natu-
ral tiling embeddings of vox-solids, the basic idea
consists in finding a solution A0 to P1 on the nat-
ural tiling embedding of a vox-solid V0 formed by
a single voxel, A0 is then transformed into a solu-
tion to P1 for the natural tiling embedding of an
arbitrary vox-solid V . The precise method to do
that transformation is given in proposition 5.2.1.

Under certain circumstances, whose study is
the main subject of the following section, the
solutions to P1 found by the last method, can
easily be transformed into solutions to RP1, or
equivalently into Hamiltonian cycles for a face
adjacency graph.

As an example of the way in which this strat-
egy is applied, we introduce an infinite family of
vox-solids whose face adjacency graph is always
Hamiltonian:

Let G be a simple connected graph with edges
{e1, . . . , em}. One thickening of G, is a graph GT

satisfying the following conditions:
1. For each vertex W in G, GT contains a k-

cycle CW with k = v(G : W )1. If ei1 , ei2 , . . . , eik

are the edges in G incident to W , then we label
the edges of CW arbitrarily with one and only
one of the symbols in the set {ei1(W ), ei2(W ),
. . ., eik

(W )}, and we label the vertices in CW

arbitrarily with one and only one of the symbols
in the set {W 1, W 2, . . . , W k}.

2. For every i (1 ≤ i ≤ m) suppose that
ei = (U, W ), ei(U) = (U j1 , U j2) and ei(W ) =

1The degree or valency of W in G.
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(W k1 , W k2), then GT contains one of the set of
edges {(U j1 , W k1), (U j2 , W k2)} or {(U j1 , W k2),
(U j2 , W k1)} but not both. We denote by Ce the
4-cycle in GT with vertices U j1 , W k1 , W k2 and
U j2).

An easy but important result says that the
thickening of a simple and connected graph is al-
ways Hamiltonian (proposition 5.3.1.)

On the other hand, let V be a vox-solid, divide
every voxel in V into eight identical cubes and
make them grow (preserving the proportions) un-
til they become voxels again. Clearly we obtain
a new vox-solid which we call the refinement of
V and denote it by V3. A vox-solid is a thick

vox-solid if and only if it is the refinement of an-
other vox-solid (see figure 4.) The link between
the refinement of a vox-solid and the thickening
of a graph is given by the following result.

a)                                                                          b)

Figure 4: a) A vox-solid V , b) V3

Let V be a vox-solid then τV3 is the thickening
of τV (lemma 5.3.3.)

Having as a consequence that the thickening of
a voxelable graph is a voxelable and Hamiltonian
graph (theorem 5.3.4.)

This is important because one of our motiva-
tions was the generalization of Freeman’s chains
to 3-dimensions. These chains give a boundary
description of a 2-dimensional digital picture by
means of a chain formed by the consecutive edges
in the boundary of the black components, the ob-
jective is to have a short description of the image
(see [2].) Theorem 5.3.4 warranties that for every
vox-solid we can always make a Hamiltonian de-
scription of its boundary if we work in its refine-
ment; the price we pay is the increasing, by a con-
stant factor, of the number of boundary elements
(2-simplexes) needed in our representation. So,
from the Computer Science point of view, this
theorem solves the problem of the representation
of the boundary of a vox-solid by a finite chain

(the 3-dimensional version of Freeman’s chains.)
As discussed in our original work, we can find
such a representation in linear time on the num-
ber of 2-simplexes in ∂(V). In this way, theorem
5.3.4 is a satisfactory practical result.

6 Heuristic to find Hamilto-

nian cycles on the face ad-

jacency graph of vox-solids

In chapter 6 of our original work we give an
heuristic method to find Hamiltonian cycles on
the face adjacency graph τV of a vox-solid V . Our
method is divided into three phases. In the first
one we find a partition of V in which all the ele-
ments are spherical vox-solids and at most one of
them is non-spherical, then we find, if it is possi-
ble, (with the aid of corollary 3.3.4 and phases 2
and 3 of this method) Hamiltonian cycles on each
sub-vox-solid which then are merged together to
obtain a Hamiltonian cycle in τV . The second
phase is applied only to non-spherical vox-solids
which in certain way are of minimum size, the
key idea consists in finding 2-factors on τV which
some times can be transformed into Hamiltonian
cycles by making local reconfigurations. Finally,
the third phase is similar to the second one but it
works with more complex local reconfigurations.

7 Circular graphs and

Hamiltonicity of 4-regular

graphs

We give an alternative presentation to the prob-
lem of Hamiltonicity in face adjacency graphs in
terms of circle graphs. It is a nice combinatorial
formulation which unfortunately requires several
advanced definition and results from graph the-
ory and matroid theory that cannot be placed
in this short space. We encourage the interested
reader to see this material in the chapter 7 of the
original work.
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8 A new topology for proces-

sor interconnection in par-

allel computers

Interconnection networks are basic schemes to
interconnect individual processors by links able
to transmit binary data; applications of them
are widely found in computer science, VLSI
design, parallel computers, computer networks
and telecommunication systems. The topological
properties of an interconnection network deter-
mine its reliability, fault tolerance, mean trans-
mission time and in general all its performance.

Interconnection network topologies are static

and dynamic. In a static one, point-to-point links
interconnect the network nodes in some fixed
topology while in a dynamic the links can be
switched. We study the static class.

An interconnection network topology is a graph
whose vertices and edges represent processors
and dedicated links between processors respec-
tively. Almost all static network topologies stud-
ied in the literature have some degree of sym-
metry. Such a symmetric topology has many
advantages: First it allows the network to be
constructed from simple building blocks and ex-
panded in a modular fashion. Second, regular-
ity in the topology facilitates the use of simple
routing algorithms. Third, it is easier to develop
efficient computational algorithms for multipro-
cessors interconnected by a symmetric network.
Finally, it makes the network easier to model and
analyze. In a symmetric topology, a few simple
rules are sufficient to specify the entire topology.

These reasons justify why the static network
interconnection topologies used in practice have
a ”high” level of symmetry and regularity. Voxe-
lable graphs are 4-regular with sub-families hav-
ing different levels of symmetry, some of them are
suitable as interconnection topologies.

9 Conclusions

Vox-solids and voxelable graphs opened a very
interesting bridge between combinatorics, topo-
logical graph theory and computation. We think
that this bridge can be extended to another ar-
eas in discrete mathematics and we can develop
further applications in engineering. The prob-

lems left open are very challenging and could do
important contributions in mathematics.
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