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Abstract

A graph is terminal ∆ − Y -reducible if, it can be reduced to a distinguished set of

terminal vertices by a sequence of series-parallel reductions and ∆−Y -transformations.

Terminal vertices (o terminals for short) cannot be deleted by reductions and transfor-

mations. Reducibility of terminal graphs is very difficult and in general not possible

for graphs with more than three terminals (even planar graphs). Terminal reducibility

plays an important role in decomposition theorems in graph theory and in important

applications, as for example, network reliability. We prove terminal reducibility of pla-

nar graphs with at most three terminals. The most important consequence of our proof

is that this implicitly gives an efficient algorithm, of order O(n4), for reducibility of pla-

nar graphs with at most three terminals that also can be used for restricted reducibility

problems with more terminals. It is well known that these operations can be translated

to operations on the medial graph. Our proof makes use of this translation in a novel

way, furthermore terminal vertices now seen as terminal faces and by duality of the

reductions and transformations, the set of terminals can be taken as a set of vertices

and a set of faces of the original graph.

1Corresponding author. Partially supported by CONACyT grants U40201, 45256 and SNI.
2Partially supported by CONACyT grants U40201, 45256 and SNI.
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1 Background

A graph is planar if it can be drawn in the plane without edge crossings, and it is a plane

graph if it is so drawn in the plane. The drawing separates the rest of the plane into regions

called faces. We consider graphs which may include loops (edges whose two end vertices are

identical), parallel edges (two edges with the same end vertices) and parallel loops.

∆ ↔ Y Operations: A class of graphs Q, is said to be (∆ ↔ Y) reducible to a canonical

simple graph structure P if, any G ∈ Q can be reduced to P , by repeated application of the

following four reductions and two transformations :

R0 Loop reduction. Delete a loop.

R1 Degree-one reduction. Delete a degree one vertex and its incident edge.

R2 Series reduction. Delete a degree two vertex y and its two incident edges xy and yz,

and add a new edge xz.

R3 Parallel reduction. Delete one of a pair of parallel edges.

Each of these reductions decreases the number of vertices or edges in a graph. Two other

transformations of graphs are important. A wye (Y) is a vertex of degree three. A delta (∆)

is a cycle {x, y, z} of length three. The transformations are:

Y∆ Wye-delta transformation. Delete a wye w and its three incident edges wx, wy, wz,

and add in a delta {x, y, z} with edges xy, yz, and zx.

∆Y Delta-wye transformation. Delete the edges of a delta {x, y, z}, add in a new vertex w

and new edges wx, wy, and wz.
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Terminals are distinguished vertices that cannot be deleted by reductions and transfor-

mations. When a specified subset A of the nodes is distinguished as terminal nodes, we

require that for any a ∈ A, a cannot take the place of the degree one or degree two vertex

in reductions R1 and R2, or the degree three vertex in the Y∆ transformation, described

above.

Working with terminals introduces the question of deciding what should be considered as

an adequate list of irreducible configurations. In [5], Feo and Provan introduce an operation

which we call an FP-assignment: it reassigns a degree one terminal vertex a incident to a

non-terminal vertex b. This is done by eliminating the vertex a and then changing the status

of b considering it a terminal vertex.

FP − assignment (see Figure 1). Eliminate a terminal vertex a of degree one that is the

end of a pendant edge and then change the status of the other end vertex of the edge

considering it as a terminal vertex.

b Terminal vertexb

aTerminal vertex
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Figure 1: FP-assignment

This transformation implicitly re-embeds terminal pendant edges, but it remains consis-

tent by keeping track of these reassignments. In other words, when we apply this transfor-

mation we ”forget” how some pendant edges were originally embedded in order to be able

to perform further reductions. In applications, one must keep track of the embedding of

pendant edges in order to reverse correctly the reduction process.

Allowing FP-assignments, the set of irreducible configurations is decreased substantially

without changing the nature of the reduction problem (this is particularly useful in applica-
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tions and reduction algorithms), with an unnatural long list of irreducible configurations as

Figure 2 shows.

terminal vertex
non terminal vertex

Figure 2: Artificial irreducible 3-terminal plane graphs

Definition 1.1 A connected plane graph is terminal ∆ ↔ Y reducible if, it can be re-

duced to eliminate all non-terminal vertices by using R0, R1, R2, R3, Y∆, ∆Y, and

FP-assignments.

Contracting an edge e = uv, consists of deleting e and identifying its two endpoints u = v

to make a single vertex. A minor of G is a graph formed by a sequence of edge deletions,

edge contractions and deletion of isolated vertices.

Combining the previous two concepts, we can have a minor H of a graph G with terminals.

Specifically, a terminal minor is formed using the same three minor operations as above,

except that we forbid contracting an edge joining two terminals and deleting an isolated

terminal. It follows that H has the same number of terminals as G.

In 1966 G.V. Epifanov proved the following important theorem :

Theorem 1.1 (Epifanov [4]). Each connected plane graph with two terminals is ∆ ↔ Y

reducible to a single edge between the terminals.

This theorem has the following corollary:
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Corollary 1.2 (Epifanov [4]), Grünbaum [7]). Each connected plane graph is ∆ ↔ Y re-

ducible to a vertex.

Since Epifanov’s and Grünbaum’s work simpler proofs have been found (see [5] and [11]).

For generalizations see for instance [10]. It is important to note that not every connected

graph is ∆ ↔ Y reducible, one such graph is the complete bipartite graph K4,4.

Theorem 1.3 (Truemper [11], Gitler [6], and Archdeacon,etal [2]).

Suppose that H is a terminal minor of G. If G is terminal ∆ ↔ Y reducible, then H is

terminal ∆ ↔ Y reducible.

It follows that if a connected graph G is ∆ ↔ Y reducible, then each connected minor H

of G is ∆ ↔ Y reducible as well.

Theorem 1.4 (Gitler [6]). A two connected plane graph with three terminals is ∆ ↔ Y

reducible to a copy of K3 with the original three terminals as vertices.

We first describe an outline of the proof given by Gitler [6]. Let G be a two connected

3-terminal plane graph. The first step is to show that G can always be embedded on some

grid F which is also a 3-terminal plane graph, and has G as a minor. Then, using the corner

and modified corner algorithms appearing in [6], the second step is to show that F is ∆ ↔ Y

reducible to a specific 3-terminal graph, called a perfect mirror M . The third step consists

in showing that M is ∆ ↔ Y reducible to K3. Finally, the minor G of F is ∆ ↔ Y reducible

to K3 by Theorem 1.3.

Connected plane graphs with more than three terminals are in general not reducible

([2, 6]), see the example in Figure 3.
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Four terminal graph G Medial graph of G

= terminal

= terminal

Figure 3: Non reducible 4 terminal plane graph

2 Preliminaries

Given a connected plane graph G, its medial graph M(G) is defined as follows. The vertices

of M(G) are the edges of G. Each face f = e1, . . . , er of length r in G determines r edges

{eiei+1 : 1 ≤ i ≤ r − 1}
⋃
{ere1} of M(G). In this definition, a loop e that bounds a face is

viewed as a face of length one, and so determines one edge of M(G), which is a loop on e

(similarly for pendant edges).

The graph M(G) is four regular and plane. Let G∗ denote the dual of the graph G, then

M(G) ≡ M(G∗); G and G∗ are the face graphs of M(G). Any connected four regular plane

graph is the medial graph of some pair of dual plane graphs. When speaking about the

medial graph M(G) we always take as reference the face graph G that does not contain a

vertex corresponding to the infinite face in M(G), and we refer to it as the black graph of

M(G). The faces in M(G) corresponding to the vertices in G are black faces and the others

white faces.

Let M be a 4-regular graph embedded on the plane. The straight decomposition K(M)

of M is the decomposition of the edges of M into closed curves C1, ..., Ck, (called closed

geodesic arcs) in such a way that, each edge is traversed exactly once for these curves and in

each vertex v of M if e1, e2, e3 and e4 are the edges incident to v in cyclic order, then e1ve3
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are traversed consecutively (in one way or the other); in this case e1 has as direct extension

e3 (e3 has as direct extension e1). Similarly e2ve4 are traversed consecutively (in one way

or the other). The straight decomposition is unique up to choice of the beginning vertex of

curves, up to reversing the curves and up to permuting the indexes of C1, ..., Ck.

We always view a given plane connected graph G with k-terminal vertices, through its

medial graph as a black graph, together with its straight decomposition K(M(G)) into closed

geodesic arcs and we call the faces in M(G) corresponding to the k terminal vertices of G,

the terminal faces of M(G).

2.1 Delta-Wye operations on the medial graph

The ∆ ↔ Y operations introduced in section 2, have a direct translation on to M(G) as

four medial reductions and two medial transformations (see [3]). If a ∆ ↔ Y operation

O (transformation or reduction) is applied on G giving O(G) then the medial graph of the

resulting graph M(O(G)) is M(G) after the application of the corresponding medial operation

OM. In other words M(O(G)) ≡ OM(M(G)). In general we denote a medial operation with

its ∆ ↔ Y name followed by M as subscript.

The (∆ ↔ Y)M operations are defined as (see Figure 4):

R0M Medial loop reduction. Topologically collapse a white loop (a loop enclosing a white

face) in M(G) to a single vertex of degree two and then omit this vertex.

R1M Medial degree-one reduction. Topologically collapse a black loop (a loop enclosing a

black face) in M(G) to a single vertex of degree two and then omit this vertex.

R2M Medial series reduction. Topologically collapse a digon enclosing a black face in M(G),

to a single vertex of degree four, thus identifying the end vertices of the digon.
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R3M Medial parallel reduction. Topologically collapse a digon enclosing a white face in

M(G), to a single vertex of degree four, thus identifying the end vertices of the digon.

Each of these reductions decreases the number of vertices, edges or faces in M(G). The

other two transformations on M(G) are:

(Y∆)M Medial Y∆ transformation. Topologically collapse a black triangle face to a single

vertex of degree six, thus identifying the vertices of the triangle, then expand this vertex

to a white triangle whose edges are incident to the black regions.

(∆Y)M Medial ∆Y transformation. Topologically collapse a white triangle face to a single

vertex of degree six, thus identifying the vertices of the triangle, then expand this vertex

to a black triangle whose edges are incident to the white regions.

expand

collapse

expand

collapse

expand

expand

collapse

expand

collapse

expand

collapse

collapse
omit

Figure 4: Medial (∆ ↔ Y)M transformations

As before, when a specified subset F of black faces is distinguished as terminal faces, we

require that for any f ∈ F , f cannot take the place of the black loop or the black face in
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the medial operations R1M and R2M, or the black triangle in the medial operation (Y∆)M,

described above.

We now state the formulation of the FP-assignment on the medial graph:

FPM Medial FP assignment (see Figure 5). Eliminate a black terminal loop a provided

that its cone b (the cone of a loop (or 1 − lens) is defined in Section 3) corresponds to

a non-terminal face, henceforth b is considered a terminal face.

b

Terminal face a

Terminal face
�
�
�
�

Figure 5: FP-assignment

If a medial graph with terminal faces can be reduced by using the operations defined

above, to eliminate all non-terminal black faces then it is terminal (∆ ↔ Y)M reducible.

3 k-lenses

Throughout the remaining part of this paper G will denote a four regular, connected, plane

graph (a medial graph), together with its straight decomposition K(G). We follow [7].

A path v0v1 . . . vn in G is a geodesic arc, if and only if, vi−1vi has vivi+1 as direct extension

for 1 ≤ i < n; for a closed geodesic arc, v0 = vn, and vn−1vn has v0v1 as direct extension. We

call simple paths or simple geodesic arcs, those paths or geodesic arcs which do not have self

intersections.

Given an integer k > 0, a subgraph L of G is called a k-lens provided:
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L1: L consists of a simple closed path (see Figure 6.a) R = v0,0v0,1 . . . v0,i0v1,0v1,1 . . . v1,i1

. . . vk−1,0vk−1,1 . . . vk−1,ik−1
v0,0 called the boundary of L, and all the vertices and edges

of G contained in one of the connected components of the complement of R in the 2-

sphere. We call interior of L to one such connected component, the vertices and edges

contained in it are the inner vertices and edges of R.

L2: For 0 ≤ j < k vj,0vj,1 . . . vj,ijv(j+1) mod k,0 are simple geodesic arcs, called geodesic bound-

ary arcs. No inner edge of R is incident to the vertices v0,0, v1,0, . . . , vk−1,0, which are

called the poles of the k-lens.

a)

b)

c)

d)

e)

f)

0,0V0,10,2

1,0

1,1 1,2

1,3 3,0

VV

V

V V

V

2,0

2,1

V

V
V

Figure 6: Lenses examples

Figure 6 depicts examples of k-lenses. a) a 4-lens, b) and c) two 2-lenses, d) a configuration

that is not a 2-lens and e) and f) two 1-lenses.

In a generic way, a lens is a k-lens for some value of k. Let L be a lens, it is singular if,

it does not contain any inner vertex or edge; otherwise it is non singular.

A chord of L is a simple geodesic arc P = p0p1 . . . pk such that p0 and pk belong to the

boundary of L but the other vertices and edges in P are interior to L.
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The rays of a pole w in L are the edges in G which are incident to w but do not belong

to the boundary of L. By definition, the rays of a pole in L are not in the interior of L.

Given a pole w of a lens L there is a unique face F interior to L incident to w. Of the

remaining faces incident to w exactly one, say H, shares color with F (since the boundary of

a lens is a Jordan curve, F and H are distinct faces). We call H the cone associated to the

pole w of L.

When we talk about the rays and cone of a 1-lens we do not make any explicit reference

to the pole.

A k-lens (k ≥ 2) L in G is indecomposable, if and only if, it does not contain properly

a 1-lens or a 2-lens. A 1-lens is indecomposable, if and only if, it does not contain properly

in its interior a 1-lens or a 2-lens (see Figure 7). A k-lens which is not indecomposable is

decomposable. All lenses in Figure 6 are indecomposable, the 1-lens in Figure 12.b is not.

The following result is a consequence of this definition.

Lemma 3.1 A k-lens is indecomposable, if and only if, the following conditions are true:

I1: Every inner edge in L belongs to a chord of L.

I2: Two different chords in L meet in at most one vertex.

I3: If k > 1 then each chord in L intersects the boundary of L in exactly two vertices: each

of them in a different geodesic boundary arc.

We say that an indecomposable k-lens (k ≥ 2) can be emptied, if after a finite sequence of

(Y∆)M or (∆Y)M transformations it becomes singular. Note that after applying any of these

transformations to an indecomposable k − lens the resulting k − lens is indecomposable.

The following result is used several times in our proofs.

Lemma 3.2 For every graph G, any indecomposable k-lens L (with k = 2 or 3) in G can be

emptied through a finite sequence of (Y∆)M or (∆Y)M operations.
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indecomposable 1−lensdecomposable 1−lens

indecomposable 2−lensdecomposable 2−lens

Figure 7: Decomposable and indecomposable k-lens (k = 1, 2)

Proof: The proof for k = 2 was given by Grünbaum [7].

Now assume that L is a 3-lens. We first prove two elementary results.

Proposition 3.3 Let L be an indecomposable 3-lens with geodesic boundary arcs A, B, and

C. Suppose L does not contain chords meeting both A and B, then there exists a triangular

face R in L sharing an edge with C (see Figure 8).

Proof: We give an algorithmic proof. Let C be the set of chords in L including the geodesic

boundary arcs A and B. We orientate each geodesic path in C from its common vertex with

A or B to its common vertex with C (see Figure 9).

Let C0 be a geodesic path in C chosen arbitrarily. Inductively suppose we have built Ci

(i ≥ 0), we will construct Ci+1 as follows. We represent by wi the intersection vertex between

Ci and C and by vi the vertex along Ci (following its orientation) appearing just before wi,

vertex vi always exists (probably on A or/and B). We designate Ci+1 the geodesic arc in C

which is distinct to and meets Ci at vi. We stop this inductive construction when vi is equal

to vi+1.
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R

BA

C

Figure 8: Illustration of Lemma 3.3

Geodesic paths C0, C1, C2, . . . are pair-wise distinct, otherwise a 1- or 2-lens should be

contained in L contradicting that L is indecomposable. Since C is finite the sequence

C0, C1, C2, . . . is finite too, so there exists a maximum index n such that Cn belongs to

the sequence. It follows from the construction that vn−1, wn−1 and wn are the vertices of a

triangular face in L which share the edge wn−1wn with C and the proposition is true.

An example of this construction appears in Figure 9. In this case C0 = A, n = 2 and the

final triangular face is v1w1w2.

C1

0v

C0

C

A

C

B

= 2v

2w

2

1w

1v

w0

Figure 9: Example of the construction in Proposition 3.3.

13



Corollary 3.4 Any indecomposable 3-lens L with boundary arcs A, B, and C which does

not contain chords meeting simultaneously A and B can be emptied through medial (Y∆)M

or (∆Y)M operations.

Proof: The triangular face R determined by Lemma 3.3 can be eliminated from L applying a

(Y∆)M or a (∆Y)M operation. The resulting 3-lens satisfies the conditions in the hypothesis

of Proposition 3.3 and, again, there exists a triangular face R′ which can be eliminated. We

may continue in this manner until the original 3-lens is emptied.

Now, to prove Lemma 3.2 let A, B and C be the boundary arcs of L. Among the

chords in L meeting simultaneously A an B we choose one (in general there are several

possibilities), named D, such that in the 3-lens with boundary arcs A, B and D no chord

meets simultaneously A and B. We empty this 3-lens using the method in Corollary 3.4 and

then we eliminate D from the interior of the lens by a (Y∆)M or (∆Y)M transformation. We

continue in this way until the original 3-lens becomes singular. This completes the proof.

Figure 10: After a medial series or parallel reduction a 1-lens becomes a 2-lens

The last Lemma is not valid for k = 1: in Figure 10 we show a 1-lens to which only a

medial series or parallel reductions can be applied, notice that after applying any of these

reductions, the 1-lens is transformed into a 2-lens and the structure of the original 1-lens is

lost. So, “emptied” does not apply in this context.

The Lemma does not hold for k > 3. Figure 11 depicts a 4-lens which cannot be emptied
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Figure 11: A 4-lens which cannot be emptied by (∆ ↔ Y)M transformations

by the application of any (∆ ↔ Y)M transformations.

4 One-step (∆ ↔ Y)M reducibility

We study how to obtain a reduction in a medial graph with terminal faces by (∆ ↔ Y)M

operations.

Definition 4.1 A medial graph G is one-step (∆ ↔ Y)M reducible if, it admits a sequence

of (∆ ↔ Y)M operations in which all of them are (∆Y)M or (Y∆)M except the last one,

which is a reduction of type R0M, R1M, R2M, R3M, or FPM.

A t-scheme in a graph G is a 1-lens T containing a chord P . Let S = w0 . . . wjw0 and

P = p0 . . . pi be the boundary and the chord of T , respectively. Assume that p0 = ws and

pi = wr (0 < r < s ≤ j). The 2-lens of T , denoted L2(T ), is the 2-lens with boundary

p0 . . . pi−1wrwr+1 . . . ws−1p0. The 3-lens of T , denoted L3(T ) is the 3-lens with boundary

w0 . . . wr−1pi . . . p1ws . . . w0. (See Figure 12).

Lemma 4.1 Let L be an arbitrary k-lens in a graph G with k = 1 or k = 2. Then it must

contain a singular 1-lens or an indecomposable 2-lens.

Proof: We start with k = 2. If L is indecomposable the result is true, otherwise it contains

a 1-lens or a 2-lens. If L contains a 1-lens, say M, we have two possibilities:
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2
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w0
cone

L (T)

L (T)

Figure 12: (a) A t-scheme T . (b) A t-scheme in a four regular plane graph

L.1 M is singular and the result is true.

L.2 M is not singular. Now, if M is not a t-scheme then it contains a geodesic arc which

intersects itself in its interior, so M contains a 1-lens T which we take in place of M ,

and we repeat this replacement until an empty loop or a t-scheme is found. If M is

a t-scheme then consider L2(M) instead of L (we mean, L has been replaced now by

L2(M)). If the new L is indecomposable the proof is over, otherwise we start again

the analysis in a recursive manner. Since G is finite we finish after a finite number of

steps.

If L does not contain a 1-lens then, since L is decomposable, must contain a 2-lens N

which takes the place of L and we continue as before, in a recursive way. This completes the

analysis for k = 2.

For k = 1 the analysis corresponds to Cases L.1 and L.2 given before.

This result has the following corollary.

Corollary 4.2 Let L be an arbitrary terminal free k-lens in a graph G, with k = 1 or k = 2.

Then G is one-step (∆ ↔ Y)M reducible.
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Proof: By Lemma 4.1 L contains a singular 1-lens or an indecomposable 2-lens. In the

former case G reduces its number of edges and faces after the application of a R0M or a R1M

operation. In the latter case the indecomposable 2-lens can be emptied by Lemma 3.2, and

G reduces the sum of the number of vertices, edges and faces, after the application of a R2M

or a R3M operation.

For 3-lenses we have a similar corollary:

Corollary 4.3 Let L be an arbitrary terminal free 3-lens in a graph G. If L is not indecom-

posable then G is one-step (∆ ↔ Y)M reducible.

Proof: Since L is not indecomposable it contains a 1-lens or a 2-lens. The result follows

from Corollary 4.2.

Lemma 4.4 If G has a non singular 1-lens T containing at most one terminal face then G

is one-step (∆ ↔ Y)M reducible.

Proof: Suppose that T is not a t-scheme, hence T has no chords, and thus it contains at

least a 1-lens T ′. If T ′ is singular and terminal free then the result follows because we can

apply a R0M or a R1M operation. If T ′ is singular and contains a terminal face, then the

cone of T ′ is not a terminal face and so we can apply the FPM reduction and the result is

true. If T ′ is not singular and terminal free then the result follows from Corollary 4.2. If T ′

is not singular and contains at most one terminal face then T is replaced with T ′ and we

start the analysis in a recursive manner.

Now, if T is a t-scheme then one of L2(T ) or L3(T ) is terminal free. In the first case

the result follows from Lemma 3.2. In the second case, if L3(T ) is not indecomposable then

the result is true by Corollary 4.3. If L3(T ) is indecomposable then we empty it using the

method given in the proof of Corollary 3.4 (in order to simplify the explanation, we still
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denote by T the resulting 1-lens). After this L3(T ) becomes a triangular non terminal face

which can be eliminated from T by the application of a (∆Y)M or (Y∆)M operation. After

this operation the cone of T is not a terminal face and we have two possible situations:

1. The 1-lens T is a loop containing a terminal face. Then its cone does not contain a

terminal face and we can apply an FPM reduction.

2. The 1-lens T is not singular and contains at most one terminal face. In this case we

start again with the analysis on T in a recursive way.

Corollary 4.5 If G has a 1-lens T containing at most one terminal face, and the cone of T

is terminal free then G is one-step (∆ ↔ Y)M reducible.

Proof: If T is not singular then the result follows from Lemma 4.4. Otherwise T satisfies

one of the following:

1. T is terminal free, so the result is true since we can apply one of the reductions R0 or

R1.

2. T contains exactly one terminal face. The result is true again because we can apply

the FPM reduction.

5 Main Theorem

We prove that any graph with three terminal black faces is (∆ ↔ Y)M reducible to one of the

graphs M(P3) or M(P ′
3) given in Figure 13. We call these graphs the irreducible (∆ ↔ Y)M

graphs or simply irreducible graphs.

In order to reduce a graph with three terminal black faces, we first show (Theorem 5.2)

that any graph not isomorphic to the irreducible graphs must contain at least one of four

18



(b)

(c) (d)

(a)

Figure 13: Irreducible graphs: a) P3, b) P ′
3, c) M(P3) and d) M(P ′

3)

configurations. Next we show that each of these four configurations is one-step (∆ ↔ Y)M

reducible (Theorem 5.11). For this we use the results of sections 3 and 4 to show that there

always exist a terminal free indecomposable k − lens (k = 1, 2) or a non singular 1 − lens

containing at most one terminal face, or a singular 1 − lens containg a terminal face with

terminal free cone. Since each of these is one step (∆ ↔ Y)M reducible, a reduction is

obtained. Hence the sum of the number of vertices, edges and faces is decreased. Then the

main result (Theorem 5.12) follows by successive application of a finite sequence of one-step

medial reductions.

Henceforth G3 will denote a connected four regular plane graph with three terminal black

faces, together with its straight decomposition. Let C be a closed geodesic arc in G3. A

vertex x in C is a self-intersection vertex of C, if all the edges which are incident to x belong

to C. The self-intersection number of C is the number of self-intersection vertices in C.

Lemma 5.1 A closed geodesic arc C in a graph G3 contains the boundary of a 1-lens, if and

only if, its self-intersection number is greater or equal to one.

Proof: Let us assume that C contains the boundary of a 1-lens L. All the edges which are

incident to the pole of L belong to C. This pole is a self-intersection vertex of C and the

result follows.
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Suppose now that the self-intersection number of C is greater than zero. Let us assume

that C = v0v1 . . . vn with v0 = vn. The smallest number k such that the sequence v0, . . . , vk

contains a repeated vertex is lower than n, otherwise the self-intersection number of C would

be equal to zero. If vi = vk for some 0 ≤ i < k then vivi+1 . . . vk is the boundary of a 1-lens

contained in C.

Theorem 5.2 Let G3 be a non-empty graph, then it (see Figure 14):

C1 contains a closed geodesic arc C with self-intersection number greater or equal than two,

such that there exists a non singular 1-lens whose boundary is contained in C, or

C2 contains a closed geodesic arc C with self-intersection number one, such that there exists

a non singular 1-lens whose boundary is contained in C, or

C3 has at least one 1 − lens and all its 1 − lenses are singular, or

C4 contains only closed geodesic arcs with self-intersection number zero.

C2 C3 C4C1

Figure 14: Configurations in Theorem 5.2

Proof: If G3 contains a closed geodesic arc C such that there exists a non singular 1-lens

whose boundary is contained in C, then from Lemma 5.1 the self-intersection number n of
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C is greater than zero. If n ≥ 2 then C1 is satisfied. If n = 1 then C2 is true.

Otherwise, no geodesic arc in G3 contains the boundary of a non sigular 1-lens.

Thus, if one closed geodesic arc D in G3 has self-intersection number greater than zero,

we have from Lemma 5.1 that D contains the boundary of a 1-lens. This 1-lens is singular

as well as any other 1-lens contained in G3, so C3 is true.

In the remaining case no geodesic arc in G3 has self-intersection number greater than zero

and C4 is satisfied.

We will prove now that any graph G3 which is not isomorphic to one of the irreducible

graphs M(P3) and M(P ′
3) is one-step (∆ ↔ Y)M reducible (see Theorem 5.11 below). We

will prove this result for each case in Theorem 5.2. The key idea is to determine, (for k ≤ 3):

1. Four k-lenses (with k = 0 or 1) having pairwise disjoint interiors, or

2. two k-lenses (with k = 0 or 1) L and N and one 1-lens T having pairwise disjoint

interiors and the cone of T not contained in the interior of the three lenses, or

3. two 1-lenses with disjoint interiors and cones disjoint of both interiors.

In each case we try to locate four disjoint regions, if we are successful then one of them

should be terminal free (because G3 contains at most three terminals). The terminal free

region is used to prove that G3 is one-step (∆ ↔ Y)M reducible. If we are not able to find a

terminal free region we prove that G3 is isomorphic to one of the irreducible graphs.

In order to complete the proof we need some structural results about the existence of

lenses with disjoint interiors. The first one is a direct consequence of Jordan’s Theorem

curve.
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Lemma 5.3 Let C1 and C2 be two Jordan curves on the plane such that C1 ⊂ ext(C2)
⋃

C2

and C2 ⊂ ext(C1)
⋃

C1. Then int(C1)
⋂

int(C2) = ∅.

Here int(C1) and ext(C1) denote the interior and exterior regions of C1, respectively. It is

used that int(C1) be the bounded connected region of C1 and ext(C1) the other one. But for

a 1, 2 or 3-lens L, as we established in Section 3, ext(∂(L)) is the connected region containing

the rays of the lens and int(∂(L)) is the other connected region.

Lemma 5.4 Let G3 be a graph containing a non sigular 1-lens T . Then one of the following

cases is satisfied (see Figure 15).

Case 5.4.1. There exist a 2-lens L in G3 whose interior is disjoint to the interior of T .

Case 5.4.2. There exist a 1-lens N in G3 whose interior and cone are disjoint to the interior

of T .

Proof: Let v1v2 be an edge in G3 contained in the exterior of T in such a way that v1 belongs

to the boundary of T but v1 is not the pole of T . Vertex v1 exists because T is non singular.

Let v0v1v2 . . . vk be the geodesic arc containing v1v2 such that k is the minimum k > 1

satisfying one of the conditions: i) vk is in the boundary of T , or ii) vk = vj for some index

0 < j < k. Vertex vk does exist because the edge v0v1 is in the interior of T (since v1 is

not the pole of T ), v1v2 ∈ ext(T ) and the geodesic arc v1v2 . . . is closed, then in some vertex

different from v1, say vk′ , this geodesic arc should cross again the boundary of T and thus k

should be lower or equal than k′.

We have two possibilities.

Condition i) is satisfied. Since v1 and vk belong to the boundary of T there exist a geodesic

arc t1, . . . , tl contained in the boundary of T with v1 = t1 and vk = tl. In this way

v1 . . . vktl−1 . . . t1 is the boundary of a 2-lens L. From the construction we have that
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∂(L) ⊂ ext(T )
⋃

∂(T ) and ∂(T ) ⊂ ext(L)
⋃

∂(L); so, from Lemma 5.3 the interior of

T is disjoint to the interior of L, and Case 5.4.1 is satisfied.

Condition ii) is satisfied. Then vj . . . vk is the boundary of a 1-lens N . Since all the edges

vjvj+1, . . . , vk−1vk are in the exterior of T we have that ∂(N ) ⊂ ext(T ). In the same

manner we can prove that ∂(T ) ⊂ ext(N ). We conclude from Lemma 5.3 that the

interior of T is disjoint to the interior of N , and Case 5.4.2 is true.

=

2

v

t
l

v
k

v
1

t
1

=

v

Condition ii)

N

T

v
0

v
1

j
v = v

k

j+1

Condition i)

L

T

v
0

2
v

Figure 15: Illustration of Lemma’s 5.4 proof.

Assertions like ∂(L) ⊂ ext(T )
⋃

∂(T ) in previous lemma deserve some further analysis.

For instance, from the construction for Condition i), part of ∂(L) is the geodesic arc t1, . . . , tl

which is contained in ∂(T ), the remaining part of ∂(L) is the geodesic arc v1v2 . . . vk which is

formed by edges contained in the exterior of T because v1v2 is in the exterior of this lens and

the geodesic arc v1 . . . vk never crosses the boundary of T , so ∂(L) ⊂ ext(T )
⋃

∂(T ) is hold.

These type of analysis however will not be done henceforth, because they are straightforward

and it helps to make shorter proofs. At some point we will go beyond and simply say “the

interiors of T and L are disjoint”.
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Lemma 5.5 Let G3 be a graph containing a closed geodesic arc C with self-intersection

number greater than one such that there exists a non-sigular 1-lens T whose boundary is

contained in C. Then one of the following is satisfied.

Case 5.5.1. There exist a non-singular 1-lens O whose interior is disjoint to the interior of

T .

Case 5.5.2. There exist a 1-lens N whose interior and cone are disjoint to the interior of

T .

Proof: Let v1 be the pole of T and let v1v2 be one of the rays of T ; by definition v1v2 are

in the exterior of T . Let v1v2 . . . vk be the geodesic arc containing v1v2 such that k is the

minimum k > 1 satisfying one of the conditions: i) vk is in the boundary of T , or ii) vk = vj

for some index 0 < j < k. Vertex vk does exist because the closed geodesic arc C has at least

two self-intersection vertices, one is v1 and the other one is found when v1v2 . . . intersects

itself or reaches the boundary of T .

Under condition ii) we can prove that Case 5.5.2 is hold exactly as we did with Case 5.4.2

at Lemma 5.4. So we only need to prove Case 5.5.1.

Let us assume that condition i) is hold and let v1u2 . . . ul−1v1 the boundary of T , since T

is not singular l > 3. We know that vk is in the boundary of T and it is different to v1, so

there exists an index 1 < j < l such that vk = uj. The geodesic arc ujuj+1 . . . ul−1v1v2 . . . vk

is the boundary of a 1-lens O. From this construction we have that ∂(O) ⊂ ext(T )
⋃

∂T

and ∂(T ) ⊂ ext(O)
⋃

∂O and conclude from Lemma 5.3 that the interior of T is disjoint to

the interior of O. Finally O is not singular because the pole of T (v1) is on the boundary of

O and it is distinct to the pole of O (vk). We conclude that Case 5.5.1 is true.

For Case 5.5.1 it is possible to prove something stronger: besides the 1-lens O we can find

a 2-lens L (with boundary v1u2 . . . ujvk−1 . . . v1) such that the interiors of T , O, and L are

pairwise disjoint. However the existence of L is irrelevant when we work with at most three
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Figure 16: Illustration of Lemma’s 5.5 proof.

terminals.

Proposition 5.6 Let G3 be a graph containing a closed geodesic arc C with self-intersection

number greater or equal than two, such that there exists a non singular 1-lens T whose

boundary is contained in C. Then G3 is one-step (∆ ↔ Y)M reducible. In other words, if

G3 satisfies condition C1 of Theorem 5.2, then G3 is one-step (∆ ↔ Y)M reducible.

Proof: If T contains at most one terminal face then the proposition follows from Lemma 4.4.

Otherwise T contains two or more terminal faces.

From Lemma 5.5 we know that one of the cases 5.5.1 or 5.5.2 is hold.

If Case 5.5.1 is true then G3 contains a singular 1-lens O with interior disjoint to T .

Terminal faces in T are not in O (on the contrary the interiors of T and O would intersect

at common terminal faces). In this way O contains at most one terminal face and the result

follows applying Lemma 4.4 to O.

If Case 5.5.2 is satisfied then G3 contains a 1-lens N whose interior and cone are disjoint

to T . If the cone of N is terminal free then N contains at most one terminal face and the

result follows from Corollary 4.5. If the cone of N contains a terminal face then N is terminal

free and the result follows from Corollary 4.2.
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Proposition 5.7 Let G3 be a graph containing a closed geodesic arc C with self-intersection

number one, such that there exists a non singular 1-lens T1 whose boundary is contained in

C. Then G3 is one-step (∆ ↔ Y)M reducible. In other words, if G3 satisfies condition C2 of

Theorem 5.2, then G3 is one-step (∆ ↔ Y)M reducible.

Proof: Since C has self-intersection number one, it contains two 1-lenses with disjoint inte-

riors. One of these is T1, name the other T2.

If T1 contains at most one terminal face then the result follows from Lemma 4.4. Otherwise

T1 contains two or more terminal faces and if T2 is non singular, for sure, it contains at most

one terminal face and again the result follows from Lemma 4.4.

We can assume now that T1 contains two or more terminal faces and that T2 is singular.

If T2 is terminal free then the result follows from Corollary 4.2.

The remaining case is when T1 contains exactly two terminal faces, T2 is singular and

contains a terminal face. From Lemma 5.4 (applied to T1) we know that there exist a

1- or 2-lens T3 whose interior is disjoint to T1. On the other hand ∂(T3) ⊂ ext(T2) and

∂(T2) ⊂ ext(T3); from Lemma 5.3 we know that the interior of T3 is disjoint to the interior

of T2. It means that T3 is terminal free. The result follows from Corollary 4.2.

Let G3 be a graph. If v1v2 is one edge in G3 we say that v1v2 is between v1w1 and v1w2 with

respect to v1, if and only if: i) the edges v1w1 and v1w2 are in G3, ii) none of the edges v1w1

and v1w2 is the direct extension of v1v2. For instance, in Figure 17.a the edge e is between

sq1 and sp1 with respect to s. This concept is used in the proof of the next proposition.

Proposition 5.8 Let G3 be a graph non-isomorphic to the irreducible graphs M(P2), M(P3),

or M(P ′
3), containing at least one 1-lens, and in which all 1-lenses are singular. Then G3 is

one-step (∆ ↔ Y)M reducible. In other words, if G3 satisfies condition C3 of Theorem 5.2,

then G3 is one-step (∆ ↔ Y)M reducible.
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Proof: If G3 contains at least three 1-lenses then one of them is terminal free or one of

their cones is terminal free. If one of the 1-lenses is terminal free the result follows from

Corollary 4.2. Otherwise it follows from Corollary 4.5.

Graph G3 cannot contain less than two 1-lenses. If G3 contains exactly two 1-lenses S

and T whose cones cs and ct are different faces then int(cs) ∩ int(T ) = int(ct) ∩ int(S) = ∅

(otherwise G3 would be isomorphic to M(P2)). It means that the interiors of S, T , cs and

ct are pairwise disjoint and thus one of them is terminal free. If S or T is terminal free the

result follows from Corollary 4.2, if cs or ct is terminal free, it follows from Corollary 4.5.

We only need to analyze the case in which G3 contains exactly two 1-lenses S and T

whose cones are in a common face, say f (see Figure 17). If one of S, T , or f are terminal

free then the proposition follows from Corollaries 4.2 or 4.5 like in the previous paragraphs.

So we assume that the three terminals are in S, T , and f .

Both 1-lenses S and T should belong to the same closed geodesic arc C (since the minimum

number of 1-lenses in a closed geodesic arc with self-intersection number greater than zero

is two, if S and T are in different closed geodesic arcs then the number of 1-lenses in G3 is

at least four but this is not possible), so the rays of S and T should be connected by two

geodesic paths P and Q going from s to t (the poles of S and T , respectively). All edges in

C are in P
⋃

Q
⋃

S
⋃

T .

Since s and t belong to the boundary of their common face f there is a continuous curve

in R
2 going from s to t crossing f such that no edge in G3 crosses that curve. We can think

this curve as the embedding of some edge e going from s to t through f . Since P has no

self-intersection vertices (because otherwise G3 would contain more than two 1-lenses) the

embedding of P
⋃
{e} is a Jordan curve separating R

2 into two connected regions R1 and R2.

We have two cases: i) both 1-lenses S and T are in the same region, say R1; or ii) the 1-lens

S is contained into R1 and T is contained into R2 (see Figure 17.a and .b).
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Let sq1 and ql−1t be the edges in Q which are incident to s and t, respectively. In the

same manner let sp1 and pm−1t be the first and last edges in P . Edge e should be between

sq1 and sp1 with respect to s and edge e should be between ql−1t and pm−1t with respect to

t.

So, in case i) both edges sq1 and ql−1t should be in R1, it means that the number of times

that Q crosses P (in vertices different to s and t) is even. When this number is zero and G3

only contains one geodesic curve, G3 is isomorphic to the irreducible graph M(P3) (compare

Figure 13.c and Figure 17.a). If the number of intersections among internal vertices of P and

Q is greater than zero then two consecutive intersections between internal vertices of P and

Q define a 2-lens L whose interior is disjoint to S, T and f . The 2-lens L is terminal free

and the result follows from Corollary 4.2.

In case ii) the edge sq1 should be in R1 but ql−1t should be in R2 (see Figure 17.b), it

means that the number of times that Q crosses P is odd. When this number is one and G3

only contains one geodesic curve, G3 is isomorphic to the irreducible graph M(P ′
3) (compare

Figure 13.d and Figure 17.b). If the number of intersections among internal vertices of P

and Q is greater than one then two consecutive intersections between internal vertices of P

and Q define a 2-lens L′ whose interior is disjoint to S, T and f . The 2-lenses L′ is terminal

free and the result follows from Corollary 4.2.

Certainly G3 could contain more closed geodesic curves besides C. Any additional closed

geodesic curve should have self-intersection number zero because otherwise G3 would contain

more than two 1-lenses. If G3 contains more closed geodesic curves, one of them, say D,

should intersect C in a vertex v (because G3 is connected). Without losing generality we

may assume that v ∈ P . Then D is first going into R1 crossing P , then at some different

point v′ in P D should leave R1; between these two intersection vertices a 2-lens terminal

free should be formed and the result follows from Corollary 4.2.
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Figure 17: Illustration of Proposition 5.8

29



We need an additional structural result to complete the proof of Theorem 5.2.

Lemma 5.9 Let G3 be a graph containing two closed geodesic arcs C and D, both of them

with self-intersection number zero and having at least one vertex in common then G3 contains

four 2-lenses whose interiors are pairwise disjoint.

Proof: It follows from Jordan’s theorem curve that C and D have an even number of vertices

in common, and the minimum possibility is two. We distinguish two cases: i) C and D have

exactly two intersection vertices and ii) C and D have more than two common vertices. Let

us assume that C = c0c1 . . . cl−1c0 and D = d0d1 . . . dm−1d0 for some natural numbers l and

m and c0 = d0.

If case i) is true then there exist two indices l1 and m1 (0 < l1 < l and 0 < m1 < m)

such that cl1 = dm1
. Denote PC = c0 . . . cl1 , QC = cl1 . . . cl−1c0, PD = d0 . . . dm1

, QD =

dm1
. . . dm−1d0, then PCP−1

D , PCQ−1
D , QCP−1

D and QCQ−1
D are four 2-lenses whose inte-

riors are pairwise disjoint (see Figure 18.a).

If case ii) is satisfied then there exist four indices l1, l2,m1 and m2 (0 < l1 < l2, < l and

0 < m1 < m2 < m such that cl1 = dm1
and cl2 = dm2

. Denote PC = c0 . . . cl1 ,

QC = cl1 . . . cl2 , RC = cl2 . . . cl−1c0, PD = d0 . . . dm1
, QD = dm1

. . . dm2
, then PCP−1

D ,

QCQ−1
D , RCPCQD and QCRCPD are four 2-lenses whose interiors are pairwise disjoint

(see Figure 18.b).

Proposition 5.10 Let G3 be a graph in which all closed geodesic arcs have self-intersection

number zero. Then G3 is one-step (∆ ↔ Y)M reducible. In other words, if G3 satisfies

condition C4 of Theorem 5.2, then G3 is one-step (∆ ↔ Y)M reducible.

Proof: Any vertex in G3 is the intersection of two closed geodesic arcs C and D, both of

them with self intersection number zero. From Lemma 5.9 G3 contains four 2-lenses whose
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interiors are pairwise disjoint. Since G3 contains at most 3-terminals, one of these 2-lenses is

terminal free and the result follows from Corollary 4.2.

Theorem 5.11 Let G3 be a graph not isomorphic to one of the irreducible graphs M(P3)

and M(P ′
3), then G3 is one-step (∆ ↔ Y)M reducible.

Proof: We have proved respectively in Propositions 5.6, 5.7, 5.8 and 5.10 that for cases C1,

C2, C3 and C4 of Theorem 5.2, G3 is one-step (∆ ↔ Y)M reducible. Since these cases cover

any possibility this ends the proof of Theorem 5.11.

Theorem 5.12 Any graph G3 can be (∆ ↔ Y)M reduced to one of the irreducible graphs.

Proof: Since any graph G3 which is not isomorphic to one of the irreducible graphs is one-

step (∆ ↔ Y)M reducible and in each one-step reduction the sum of the number of vertices,

edges and faces is decreased, after a finite number of one-step (∆ ↔ Y)M reductions we reach

one of the irreducible graphs.
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It readily follows that any connected planar graph with at most three terminals is (∆ ↔ Y)

reducible to a vertex, an edge, a path P3, or the graph P ′
3. Each vertex in the reduced graph

is terminal.

6 Implementation of the algorithm

It is worth noticing that the proof of Theorem 5.12 implicitly gives an algorithm for reducibil-

ity that can be implemented efficiently. We did one implementation in the C programming

language just as it is described in the previous section and without any optimization. The

program was used to test the proof completeness. In our experiments we reduced thousands

of graphs randomly generated with about 200 vertices and faces. For each graph we made

the reduction for any possible way to place the terminals and in all cases the algorithm found

the reductions exactly as is described in the proof.

The program is available at

http://aishia.math.cinvestav.mx/~deltawye/deltawye.html

there you can find the instructions to submit planar graphs as well as to interpret the results.

The source code is available requesting it directly to the authors of this work.

A simpler and more efficient implementation is the following one. We build a data struc-

ture that contains a representation of the indecomposable 1-lens and 2-lens. For each lens

we take the number of interior faces as a measure of its complexity, we also save the number,

if any, of the terminals it contains. Then we iteratively proceed as follows: we find a lens of

minimum complexity that is one-step (∆ ↔ Y)M reducible and empty it. From theorems 5.2

and 5.11 we know such lens always exists. Since in each one-step (∆ ↔ Y)M reduction the

sum of the number of vertices, edges and faces is decreased, after a finite number of iterations

we reach one of the irreducible graphs.
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We finish this section giving some details about the constructive approach in the proof of

Theorem 5.2 that we have implemented.

Algorithm 6.1 [To (∆ ↔ Y)M reduce a graph G3]

Input: The graph G3.

Output: The (∆ ↔ Y)M reduction of G3.

Method:

1. G ← G3

2. While G is not (∆ ↔ Y)M reduced do

3. Determine the closed geodesic arc pattern C1, C2, C3 o C4 in the statement of theorem

5.2 contained in G.

4. Identify the pairwise interior disjoint 1- and 2-lenses in P (use Lemma 5.4, 5.5 or 5.9

to arc patters C1, C2 and C4, respectively). For C3 follow Proposition 5.8.

5. Count internal and terminal faces inside the 1 or 2-lenses in P . Identify 1-lenses’ cones.

Finally determine the lens L in P that should be emptied.

6. If L is a t-scheme containing a terminal face then

7. Find recursively the singular terminal free 1-lens,

or the indecomposable terminal free 2-lens or the 1-lens with exactly

one terminal face and empty cone inside L to make a 1-step

(∆ ↔ Y)M reduction (see Lemma 4.4 and Corollary 4.5).

8. If L is a 1-lens containing exactly one terminal face and the cone of L

is terminal free then

9. Apply the medial FP assignment to L.

10. else

Empty and reduce L (see Corollary 4.2).
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11. Replace G by the reduced graph.

12. Return G.

Proposition 6.1 Algorithm 6.1 runs in O(|V (G3)|
4) worst time.

Proof: In this proof we denote by ni = |V (G3)| − i + 1 the number of vertices in G in

iteration i at step 2 in the algorithm. We denote by Tj(ni) the time complexity of step j to

accomplish iteration i.

Steps 3 and 4 require traversing the edges in G along the geodesic curves. In the route

every edge should be oriented in the traversing direction; then, for each geodesic we should

count the number of self-intersections and look at the relative orientation of the geodesic in

these vertices to determine the pattern P as well as the 1- and 2-lenses it contains. Since in

the worst case every edge in G is reached and the number of edges in G is proportional to

ni, this process is completed in time T3(ni) + T4(ni) = O(ni)

The counting of internal faces and terminal inside 1- or 2-lenses in P to accomplish step

5, could be done without altering the complexity T3(ni) for faces meeting the geodesic arc

in P . The other faces could be counted recursively by visiting faces which are adjacent to

previously counted ones. Since we know the 1-lenses in P we can find their cones too. In

this process we finally choose L as the 1- or 2-lens in P with zero terminal faces or the

t − scheme in P containing one terminal face. All this process could be completed in time

T5(ni) = O(ni).

Step 7 requires to locate first a chord in L or a loop in L and then determine where the

terminal is (in the 3-lens or the 2-lens of L, or in a 1-lens contained in L), this process could

be completed in O(ni) time. Then we may need to empty a 3- or 2- lens, that would take

additional time O(n2
i ). After that we can bring out of L one edge and continue recursively.

Since in this process we may require make L singular, the number of steps is T7(ni) = O(n3
i ).

In step 10 we need to identify if there is a 1- or 2-lens contained in L. This could be done
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by navigating all the geodesic arcs contained in L, we give to each geodesic arc a number and

assign to each vertex the numbers of the geodesic arcs meeting at that vertex. A 1-lens is

contained in L, if and only if, the pair of numbers assigned to a vertex are equal. A 2-lens is

contained in L, if and only if, two vertices inside L have the same pair of numbers assigned.

All this process could be completed in time proportional to the number of edges inside L

which is O(ni). Once we identify a 1- or 2-lens inside L we replace L by the new lens. We

continue in this way until L becomes indecomposable, the whole process takes O(n2
i ) time

in the worst case. Finally we empty L by locating and (∆ ↔ Y)M transforming triangles

incident to the boundary. We finish the process in T10(ni) = O(n2
i ) time.

The total time we need to run the algorithm is

T (|V (G3)|) =

|V (G3)|∑

ni=1

(T3(ni) + T4(ni) + T5(ni) + T7(ni) + T10(ni))

= O(|V (G3)|
4)

In this proof we made a direct implementation of the constructive approach in Theo-

rem 5.2, the algorithm could be substantially improved by the application of specialized

dynamic data structures and algorithms. In fact we conjecture that it could be improved to

O(|V (G3)|
3) worst time.

As a concluding remark observe that given the duality of (∆ ↔ Y)M operations: {R0M

and R1M}, {R2M and R3M}, {(Y∆)M and (∆Y)M} it is natural to define the dual opera-

tion (FPM)∗ associated to FPM which can be applied to a subset of white faces distinguished

as terminals. Then one may consider the problem of terminal (∆ ↔ Y)M reducing a medial

graph with a set of distinguished black and white faces as terminals by using all of the eight
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operations on the medial graph. This is equivalent to the problem of ∆ ↔ Y reducing a

plane graph, in which we have subsets of vertices and faces as possible terminals.
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